JPH10174883A - Aluminum material having photocatalytic function and its production - Google Patents
Aluminum material having photocatalytic function and its productionInfo
- Publication number
- JPH10174883A JPH10174883A JP8353954A JP35395496A JPH10174883A JP H10174883 A JPH10174883 A JP H10174883A JP 8353954 A JP8353954 A JP 8353954A JP 35395496 A JP35395496 A JP 35395496A JP H10174883 A JPH10174883 A JP H10174883A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum material
- porous
- titanium oxide
- film
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 78
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 42
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 48
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 23
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 239000004065 semiconductor Substances 0.000 claims abstract description 13
- 239000010407 anodic oxide Substances 0.000 claims description 17
- 229910001593 boehmite Inorganic materials 0.000 claims description 17
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 17
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 10
- 239000002245 particle Substances 0.000 abstract description 8
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 abstract description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 abstract description 5
- 239000002253 acid Substances 0.000 abstract description 3
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 238000004040 coloring Methods 0.000 abstract description 2
- 238000004043 dyeing Methods 0.000 abstract description 2
- 235000006408 oxalic acid Nutrition 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 49
- 238000012360 testing method Methods 0.000 description 35
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000000758 substrate Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000725 suspension Substances 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 238000007743 anodising Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000007654 immersion Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 101100258086 Postia placenta (strain ATCC 44394 / Madison 698-R) STS-01 gene Proteins 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical group [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 150000004045 organic chlorine compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光触媒機能を有す
るアルミニウム材(アルミニウム合金材を含む。以下同
じ)、詳しくは、表面に光触媒作用をそなえた半導体組
成物、とくに酸化チタンを固定(被覆)して、これら組
成物の光触媒作用を利用して大気環境中あるいは水中の
有害、汚染物質を除去するための光触媒機能を有するア
ルミニウム材およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum material having a photocatalytic function (including an aluminum alloy material; the same applies hereinafter), more specifically, a semiconductor composition having a photocatalytic action on its surface, in particular, fixing (coating) titanium oxide. Further, the present invention relates to an aluminum material having a photocatalytic function for removing harmful and polluting substances in the air environment or water by utilizing the photocatalytic action of these compositions, and a method for producing the same.
【0002】[0002]
【従来の技術】酸化チタンなどの半導体は、400nm
以下の波長の紫外線の照射を受けた場合、光触媒作用を
有し、殺菌、脱臭、汚染物質の分解などの機能を発揮す
ることが知られている。酸化チタンを例として先行技術
を説明すると、酸化チタンからなる光触媒皮膜を形成し
て種々の用途に供するために、基材に酸化チタンを固定
する方法が数多く提案されているが、アルミニウム基材
に適用する場合には、いずれの方法にも問題点がある。2. Description of the Related Art Semiconductors such as titanium oxide have a thickness of 400 nm.
It is known that when irradiated with ultraviolet rays having the following wavelengths, it has a photocatalytic action and exhibits functions such as sterilization, deodorization, and decomposition of contaminants. To explain the prior art using titanium oxide as an example, a number of methods have been proposed for fixing titanium oxide to a base material in order to form a photocatalytic film made of titanium oxide and provide it for various uses. When applied, both methods have problems.
【0003】例えば、粉末酸化チタンを無機系結合剤あ
るいは有機系結合剤により基材に固定する方法がある。
(特開平5-253544号公報、特開平7-60132 号公報、特開
平7-171408号公報、特開平7-265714号公報、特開平7-31
6342号公報、特開平7-232080号公報) しかしながら、無
機系結合剤で固定する方法においては、無機系結合剤の
多くは水に溶解または懸濁させた状態で使用するため、
水をはじいたりする基材には適用できず、また、基材の
種類によっては結合剤自体の密着性が著しく劣り結合剤
としての役割を果たさなくなる。[0003] For example, there is a method of fixing powdered titanium oxide to a base material using an inorganic binder or an organic binder.
(Japanese Unexamined Patent Publication No. Hei 5-535544, Japanese Unexamined Patent Publication No. 7-60132, Japanese Unexamined Patent Publication No. 7-171408, Japanese Unexamined Patent Publication No. 7-265714, Japanese Unexamined Patent Publication No. 7-31
However, in the method of fixing with an inorganic binder, most of the inorganic binder is used in a state of being dissolved or suspended in water,
It cannot be applied to a substrate that repels water, and depending on the type of the substrate, the adhesiveness of the binder itself is remarkably poor, so that it does not serve as a binder.
【0004】有機結合剤による方法では、400nmの
波長の紫外線を照射した場合、励起状態にある酸化チタ
ンと接触している有機系結合剤は分解し、短期間で結合
剤としての機能を失うという難点がある。In the method using an organic binder, when ultraviolet rays having a wavelength of 400 nm are irradiated, the organic binder in contact with the titanium oxide in an excited state is decomposed and loses its function as a binder in a short period of time. There are difficulties.
【0005】基材表面に酸化チタンを溶射する方法(特
開平3-8448号公報、特開平6-210170号公報) 、酸化チタ
ン粒子の懸濁液( 酸化チタンゾル) を基材に塗布し、焼
成して固着させる方法( 特開平6-293519号公報、特開平
6-205977号公報、特開平7-155598号公報) も提案されて
いるが、溶射法では1μm以下の薄膜を形成するのが難
しく、基材の種類によっては、基材表面の意匠性を損な
う場合もある。[0005] A method of spraying titanium oxide on the surface of a substrate (JP-A-3-8448, JP-A-6-210170), a method in which a suspension of titanium oxide particles (titanium oxide sol) is applied to the substrate and fired. Method (Japanese Patent Laid-Open No. 6-293519,
6-205977, JP-A-7-155598) have also been proposed, but it is difficult to form a thin film of 1 μm or less by the thermal spraying method, and depending on the type of the substrate, the design of the substrate surface is impaired. In some cases.
【0006】酸化チタンゾルを用いる方法においては、
酸化チタンの厚みが大きくなり基材への密着耐久性が劣
る傾向があり、また基材の意匠性も損なわれる。とく
に、焼成温度が低い場合には基材との密着性がわるく、
焼成温度が高い場合には、アルミニウム材料のように比
較的低い温度で軟化する材料には適用し難い。In the method using titanium oxide sol,
The thickness of the titanium oxide tends to be large, and the adhesion durability to the substrate tends to be poor, and the design of the substrate is also impaired. In particular, when the firing temperature is low, the adhesion to the substrate is poor,
When the firing temperature is high, it is difficult to apply to a material that softens at a relatively low temperature, such as an aluminum material.
【0007】CVD法、スパッタリング法、電子ビーム
蒸着法などの気相法により酸化チタンを固定する方法も
提案されているが、これらの方法においては設備が大規
模となるため、製造コストが高くなり、また酸化チタン
の付き回りもわるいため、単純な形状の基材にしか使用
できないという問題点がある。[0007] Methods of fixing titanium oxide by a gas phase method such as a CVD method, a sputtering method, and an electron beam evaporation method have also been proposed. However, in these methods, the equipment becomes large-scale, so that the manufacturing cost increases. In addition, there is a problem that titanium oxide can be used only for a substrate having a simple shape due to poor rotation.
【0008】[0008]
【発明が解決しようとする課題】本発明は、アルミニウ
ム基材上に、光触媒作用をそなえた半導体組成物、とく
に酸化チタンを被覆する場合における上記問題点を解消
するためになされたものであり、その目的は、アルミニ
ウム基材上に酸化チタンが密着性良く固定してなり、且
つ耐候性にも優れた光触媒機能を有するアルミニウム材
およびその製造方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems when a semiconductor composition having a photocatalytic action, particularly titanium oxide, is coated on an aluminum substrate. An object of the present invention is to provide an aluminum material in which titanium oxide is fixed on an aluminum substrate with good adhesion and has a photocatalytic function excellent in weather resistance and a method for producing the same.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
めの本発明による光触媒機能を有するアルミニウム材
は、表面に多孔質酸化アルミニウム皮膜が形成され、該
多孔質酸化アルミニウム皮膜に光触媒作用をそなえた半
導体組成物が固定していること、および表面に多孔質酸
化アルミニウム皮膜が形成され、該多孔質酸化アルミニ
ウム皮膜に酸化チタンが固定していることを構成上の基
本的特徴とし、多孔質酸化アルミニウム皮膜が多孔質陽
極酸化皮膜であること、および多孔質陽極酸化皮膜の厚
みが0.1〜50μmであることを第3、第4の特徴と
する。The aluminum material having a photocatalytic function according to the present invention for achieving the above object has a porous aluminum oxide film formed on the surface thereof, and the porous aluminum oxide film has a photocatalytic action. And a porous aluminum oxide film is formed on the surface thereof, and titanium oxide is fixed on the porous aluminum oxide film. The third and fourth features are that the aluminum film is a porous anodic oxide film and that the thickness of the porous anodic oxide film is 0.1 to 50 μm.
【0010】また、多孔質酸化アルミニウム皮膜が多孔
質ベーマイト皮膜であること、および多孔質ベーマイト
皮膜の厚みが0.1〜5μmであることを第5および第
6の特徴とする。Fifth and sixth characteristics are that the porous aluminum oxide film is a porous boehmite film and that the thickness of the porous boehmite film is 0.1 to 5 μm.
【0011】本発明による光触媒機能を有するアルミニ
ウム材の製造方法は、アルミニウム材の表面に多孔質酸
化アルミニウム皮膜を形成し、該多孔質酸化アルミニウ
ム皮膜に光触媒作用をそなえた半導体組成物を吸着させ
ること、およびアルミニウム材の表面に多孔質酸化アル
ミニウム皮膜を形成し、該多孔質酸化アルミニウム皮膜
に酸化チタンゾルを化学吸着させることを特徴とする。According to the method for producing an aluminum material having a photocatalytic function according to the present invention, a porous aluminum oxide film is formed on the surface of an aluminum material, and a semiconductor composition having a photocatalytic action is adsorbed on the porous aluminum oxide film. And a porous aluminum oxide film is formed on the surface of the aluminum material, and titanium oxide sol is chemically adsorbed on the porous aluminum oxide film.
【0012】本発明において、アルミニウム材表面の多
孔質酸化アルミニウム皮膜は、アルミニウム材の表面を
陽極酸化処理、またはベーマイト処理することにより形
成するのが好ましく、アルミニウム材の表面積を増大し
て酸化チタンなど半導体組成物の吸着量を大きくするこ
とができる。酸化チタンなどの固定のために、多孔質陽
極酸化皮膜の厚みは0.1〜50μmの範囲が好まし
く、多孔質ベーマイト皮膜の厚みは0.1〜5μmの範
囲が好ましい。In the present invention, the porous aluminum oxide film on the surface of the aluminum material is preferably formed by subjecting the surface of the aluminum material to anodizing treatment or boehmite treatment. The amount of semiconductor composition adsorbed can be increased. For fixing titanium oxide or the like, the thickness of the porous anodic oxide film is preferably in the range of 0.1 to 50 μm, and the thickness of the porous boehmite film is preferably in the range of 0.1 to 5 μm.
【0013】多孔質陽極酸化皮膜の厚みが0.1μm未
満では、耐食性が劣り、十分に多孔質にならないため光
触媒の吸着量が不十分となり易い。50μmを越える
と、皮膜に割れが生じ易くなり、光触媒能も飽和に達す
る。また処理時間も長くなり好ましくない。多孔質陽極
酸化皮膜のさらに好ましい厚みの範囲は3〜20μmで
ある。When the thickness of the porous anodic oxide film is less than 0.1 μm, the corrosion resistance is poor, and the porous anodic oxide film is not sufficiently porous, so that the adsorption amount of the photocatalyst tends to be insufficient. If it exceeds 50 μm, cracks tend to occur in the film, and the photocatalytic activity reaches saturation. In addition, the processing time is undesirably long. A more preferable thickness range of the porous anodic oxide film is 3 to 20 μm.
【0014】多孔質ベーマイト皮膜の厚みが0.1μm
未満では、耐食性が劣り、十分に多孔質にならないため
光触媒能が不十分となり易い。皮膜の厚みが5μmを越
えると、皮膜が剥離し易くなり、光触媒機能も飽和に達
する。また処理時間も長くなり好ましくない。多孔質ベ
ーマイト皮膜のさらに好ましい厚み範囲は0.1〜3μ
mである。The thickness of the porous boehmite film is 0.1 μm
If it is less than 1, the corrosion resistance is inferior and the photocatalytic ability tends to be insufficient because it is not sufficiently porous. When the thickness of the film exceeds 5 μm, the film is easily peeled, and the photocatalytic function reaches saturation. In addition, the processing time is undesirably long. A more preferable thickness range of the porous boehmite film is 0.1 to 3 μm.
m.
【0015】本発明においては、光触媒作用をそなえた
半導体組成物であれば、いずれも使用可能であり、例え
ば特開平6-170360号公報に開示されているような公知の
SrTiO3 、ZnO、CdS、SnO2 、RuO2 、
Cs3 Sb、InAs、InSb、GaAsやTiO2
などを挙げることができるが、とくにTiO2 が好適に
使用される。使用する半導体粒子の粒径は、1〜100
nm、好ましくは5〜20nmが適当である。粒径が1
nm未満では量子サイズ効果によりバンドギャップが大
きくなり短波長光でないと光触媒機能が得られないとい
う問題がある。また、粒径が小さ過ぎると取扱いが困難
となり分散性も低下する。取扱性の点からは5nm以上
の粒径のものが好ましい。一方、100nmを越える
と、多孔質酸化アルミニウム皮膜への吸着性がわるくな
るとともに密着性も低下する。In the present invention, any semiconductor composition having a photocatalytic action can be used. For example, known SrTiO 3 , ZnO, and CdS as disclosed in JP-A-6-170360 can be used. , SnO 2 , RuO 2 ,
Cs 3 Sb, InAs, InSb, GaAs or TiO 2
Among them, TiO 2 is particularly preferably used. The particle size of the semiconductor particles used is 1 to 100.
nm, preferably 5 to 20 nm. Particle size is 1
If it is less than nm, the band gap becomes large due to the quantum size effect, and there is a problem that a photocatalytic function cannot be obtained unless the light is short-wavelength light. On the other hand, if the particle size is too small, handling becomes difficult and the dispersibility decreases. From the viewpoint of handleability, those having a particle size of 5 nm or more are preferable. On the other hand, if it exceeds 100 nm, the adsorbability to the porous aluminum oxide film becomes poor and the adhesiveness also decreases.
【0016】[0016]
【発明の実施の形態】本発明による光触媒機能を有する
アルミニウム材の製造方法における好ましい実施態様
は、アルミニウム材を、硫酸、シュウ酸、リン酸または
これらの酸を2種以上混合した酸溶液中で陽極酸化処理
して、アルミニウム材の表面に陽極酸化皮膜を形成した
後、十分に水洗し、酸化チタン粒子を懸濁した溶液(酸
化チタンゾル)中に浸漬して、多孔質の陽極酸化皮膜に
酸化チタンを吸着させる。アルミニウム材の意匠性を高
めるために、陽極酸化皮膜を形成した後、電解着色法あ
るいは染色法により陽極酸化皮膜を着色し、ついで酸化
チタンを吸着させることもできる。酸化チタン以外の他
の上記半導体組成物についても、これらの組成物を懸濁
した溶液とし、この溶液中に多孔質の陽極酸化皮膜を形
成したアルミニウム材を浸漬する。BEST MODE FOR CARRYING OUT THE INVENTION In a preferred embodiment of the method for producing an aluminum material having a photocatalytic function according to the present invention, an aluminum material is mixed with sulfuric acid, oxalic acid, phosphoric acid or an acid solution in which two or more of these acids are mixed. After anodizing to form an anodized film on the surface of the aluminum material, wash it thoroughly with water, immerse it in a solution (titanium oxide sol) in which titanium oxide particles are suspended, and oxidize it to a porous anodized film. Adsorb titanium. In order to enhance the design of the aluminum material, after forming the anodized film, the anodized film may be colored by an electrolytic coloring method or a dyeing method, and then titanium oxide may be adsorbed. Also for the above-mentioned semiconductor compositions other than titanium oxide, these compositions are made into a suspended solution, and an aluminum material having a porous anodic oxide film formed thereon is immersed in this solution.
【0017】他の好ましい実施態様は、アルミニウム材
にベーマイト皮膜を形成した後、酸化チタンを懸濁した
溶液中に浸漬して、ベーマイト皮膜に酸化チタンを吸着
させる方法である。ベーマイト皮膜は、鱗片状あるいは
針状の結晶からなり、アルミニウム材の表面積を大きく
して酸化チタンの吸着量を増大させる。Another preferred embodiment is a method in which a boehmite film is formed on an aluminum material and then immersed in a solution in which titanium oxide is suspended to adsorb the titanium oxide on the boehmite film. The boehmite film is made of scale-like or needle-like crystals, and increases the surface area of the aluminum material to increase the adsorption amount of titanium oxide.
【0018】アルミニウム材へのベーマイト皮膜の形成
は、高温脱イオン水への浸漬、トリエタノールアミンを
代表とするアミンを添加した脱イオン水への浸漬、加熱
水蒸気中に暴露するなどの方法により行われる。本発明
によれば、酸化チタンゾルなど半導体組成物のゾルが多
孔質酸化アルミニウムの表面に単分子または数分子層の
厚みで化学吸着され、優れた密着性が与えられるものと
推測される。The boehmite film is formed on the aluminum material by a method such as immersion in high-temperature deionized water, immersion in deionized water to which an amine represented by triethanolamine is added, or exposure to heated steam. Will be According to the present invention, it is presumed that a sol of a semiconductor composition such as a titanium oxide sol is chemically adsorbed on the surface of the porous aluminum oxide in a thickness of a single molecule or several molecular layers, and excellent adhesion is provided.
【0019】[0019]
【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例 アルミニウム合金A6063押出材から、寸法100mm
×100mm×厚さ1mmの試験材を採取し、45℃で、1
0%水酸化ナトリウム水溶液中に3分間浸漬してエッチ
ング処理した後、水洗した。ついで20℃で、10%硝
酸溶液中に3分間浸漬して中和処理した後、水洗、乾燥
した。各試験材は上記の前処理を行った後、以下の方法
で処理された。Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example: Dimension 100 mm from extruded aluminum alloy A6063
A test material having a size of 100 mm × 1 mm thick was collected,
After being immersed in a 0% aqueous sodium hydroxide solution for 3 minutes to perform an etching treatment, the substrate was washed with water. Then, the mixture was immersed in a 10% nitric acid solution at 20 ° C. for 3 minutes for neutralization treatment, washed with water and dried. Each test material was processed by the following method after performing the above pretreatment.
【0020】実施例1 20℃で、15%硫酸水溶液中において、試験材を陽極
として、1.5A/dm2の電流密度で30分間直流電解
し、試験材の表面に約12μm の陽極酸化皮膜を形成し
た。つぎに陽極酸化処理した試験材を酸性の酸化チタン
懸濁液(石原産業(株)製STS−01)中に、20℃
で、3分間浸漬し、イオン交換水で水洗した後、150
℃の温度で加熱乾燥した。EXAMPLE 1 DC electrolysis was carried out at 20 ° C. in a 15% aqueous sulfuric acid solution at a current density of 1.5 A / dm 2 for 30 minutes using a test material as an anode, and an approximately 12 μm anodic oxide film was formed on the surface of the test material. Was formed. Next, the test material subjected to the anodizing treatment was placed in an acidic titanium oxide suspension (STS-01 manufactured by Ishihara Sangyo Co., Ltd.) at 20 ° C.
Immersion for 3 minutes, rinse with deionized water,
It was dried by heating at a temperature of ° C.
【0021】比較例1 実施例1と同様の条件で陽極酸化処理を行って、試験材
の表面に陽極酸化皮膜を形成した。Comparative Example 1 Anodizing treatment was performed under the same conditions as in Example 1 to form an anodized film on the surface of the test material.
【0022】比較例2 実施例1と同様の条件で陽極酸化処理を行って、試験材
の表面に陽極酸化皮膜を形成した後、実施例1の酸化チ
タン懸濁液を浸漬塗布し、150℃で加熱乾燥すること
により、酸化チタンを固着したものを作製した。Comparative Example 2 Anodizing treatment was performed under the same conditions as in Example 1 to form an anodic oxide film on the surface of the test material, and then the titanium oxide suspension of Example 1 was applied by dip coating at 150 ° C. By heating and drying in the above, a product to which titanium oxide was fixed was produced.
【0023】実施例2 20℃で、15%硫酸水溶液中において、試験材を陽極
として、1.5A/dm2の電流密度で30分間直流電解
し、試験材の表面に約12μm の陽極酸化皮膜を形成し
た。つぎに陽極酸化処理した試験材を、硫酸ニッケル・
6水和物50g/l、ホウ酸30g/l の25℃の水溶液に
浸漬し、交流電解(60Hz、14V(実効電圧)を7分間
行い、ブロンズ色に着色した。着色した試験材を、弱ア
ルカリ性の酸化チタン懸濁液(多木化学(株)製タイノ
ックA−6)中に、20℃で、1分間浸漬し、イオン交
換水で水洗した後、100℃の温度で加熱乾燥した。EXAMPLE 2 DC electrolysis was performed at 20 ° C. in a 15% aqueous sulfuric acid solution at a current density of 1.5 A / dm 2 for 30 minutes using a test material as an anode, and an approximately 12 μm anodic oxide film was formed on the surface of the test material. Was formed. Next, the anodized test material was replaced with nickel sulfate
It was immersed in an aqueous solution of 50 g / l of hexahydrate and 30 g / l of boric acid at 25 ° C., and subjected to alternating current electrolysis (60 Hz, 14 V (effective voltage) for 7 minutes) to be colored bronze. It was immersed in an alkaline titanium oxide suspension (TAINOK A-6 manufactured by Taki Kagaku Co., Ltd.) at 20 ° C. for 1 minute, washed with ion-exchanged water, and dried by heating at 100 ° C.
【0024】実施例3 20℃で、18%リン酸水溶液中において、試験材を陽
極として、90V で、35分間直流電解し、試験材の表
面に約7μm の陽極酸化皮膜を形成した。つぎに陽極酸
化処理した試験材を弱アルカリ性の酸化チタン懸濁液
(田中転写(株)製TOゾル)中に、20℃で1分間浸
漬し、イオン交換水で水洗した後、250℃の温度で加
熱乾燥した。Example 3 DC electrolysis was performed at 20 V for 35 minutes at 90 V in an 18% phosphoric acid aqueous solution at 20 ° C. in an 18% phosphoric acid aqueous solution to form an anodized film of about 7 μm on the surface of the test material. Next, the anodized test material was immersed in a weakly alkaline titanium oxide suspension (TO sol manufactured by Tanaka Transfer Co., Ltd.) at 20 ° C. for 1 minute, washed with ion-exchanged water, and then washed at a temperature of 250 ° C. And dried by heating.
【0025】比較例3 前記前処理のみを行った試験材を、酸性の酸化チタン懸
濁液(石原産業(株)製STS−01)中に、20℃
で、3分間浸漬し、イオン交換水で水洗した後、150
℃の温度で加熱乾燥した。Comparative Example 3 A test material subjected to only the pretreatment was placed in an acidic titanium oxide suspension (STS-01 manufactured by Ishihara Sangyo Co., Ltd.) at 20 ° C.
Immersion for 3 minutes, rinse with deionized water,
It was dried by heating at a temperature of ° C.
【0026】比較例4 20℃で、15%硫酸水溶液中において、試験材を陽極
として、20Vで3分間直流電解して、約0.05μm
厚さの陽極酸化皮膜を形成した。つぎに陽極酸化処理し
た試験材を弱アルカリ性の酸化チタン懸濁液(多木化学
(株)製タイノックA−6)中に、20℃で、1分間浸
漬し、イオン交換水で水洗した後、100℃の温度で加
熱乾燥した。COMPARATIVE EXAMPLE 4 In a 15% aqueous sulfuric acid solution at 20 ° C., DC electrolysis was performed at 20 V for 3 minutes using a test material as an anode to obtain a solution of
An anodic oxide film having a thickness was formed. Next, the test material subjected to the anodization treatment was immersed in a weakly alkaline titanium oxide suspension (Tainock A-6, manufactured by Taki Kagaku Co., Ltd.) at 20 ° C. for 1 minute, washed with ion-exchanged water, It was dried by heating at a temperature of 100 ° C.
【0027】比較例5 20℃で、18%リン酸水溶液において、試験材を陽極
として、20Vで3分間直流電解して、約0.05μm
厚さの陽極酸化皮膜を形成した。つぎに陽極酸化した試
験材を弱アルカリ性の酸化チタン懸濁液(田中転写
(株)製TOゾル)中に、20℃で、1分間浸漬し、イ
オン交換水で水洗した後、250℃の温度で加熱乾燥し
た。Comparative Example 5 DC electrolysis was carried out at 20 V for 3 minutes in an 18% phosphoric acid aqueous solution at 20 ° C. using a test material as an anode to obtain about 0.05 μm
An anodic oxide film having a thickness was formed. Next, the anodized test material was immersed in a weakly alkaline titanium oxide suspension (TO sol manufactured by Tanaka Transfer Co., Ltd.) at 20 ° C. for 1 minute, washed with ion-exchanged water, and then washed at 250 ° C. And dried by heating.
【0028】上記の実施例1〜3、比較例1〜5で作製
した試験材を、容量8l の容器に入れ、4l の空気を真
空ポンプにより脱気した後、80ppm の一酸化窒素標準
ガスを注入した。(注:容器中の一酸化窒素濃度は40
ppm )つぎに、各試験材の表面で紫外線強度が1mW/cm2
になるようにブラックライトブルー蛍光灯の光を30分
間照射した後、各容器中の一酸化窒素濃度を検知管(ガ
ステック社製11L)で測定した。また、実施例1〜
3、比較例2〜5の試験材については、サンシャインカ
ーボンアーク式耐候試験機中で、各試験材を250時間
照射した後、上記と同様の方法で一酸化窒素濃度を測定
した。結果を表1に示す。The test materials prepared in Examples 1 to 3 and Comparative Examples 1 to 5 were placed in a container having a capacity of 8 l, and 4 l of air was degassed by a vacuum pump. Injected. (Note: The concentration of nitric oxide in the container is 40
ppm) Next, the UV intensity on the surface of each test material was 1 mW / cm 2
After irradiation with a black light blue fluorescent lamp for 30 minutes, the concentration of nitric oxide in each container was measured with a detector tube (11 L, manufactured by Gastech). Further, Examples 1 to
3. With respect to the test materials of Comparative Examples 2 to 5, each test material was irradiated for 250 hours in a sunshine carbon arc type weathering tester, and then the concentration of nitric oxide was measured in the same manner as described above. Table 1 shows the results.
【0029】[0029]
【表1】 《表注》注1:耐候性(耐久性)がきわめて劣り、実用
化不可[Table 1] << Table Note >> Note 1: Extremely poor weather resistance (durability), not practical
【0030】表1に示すように、本発明に従い、実施例
1〜3により作製された試験材は、いずれも一酸化窒素
を酸化して除去する効果が大きい。これに対して、酸化
チタンを吸着させない比較例1の試験材は一酸化窒素の
除去効果がほとんどなく、酸化チタゾルを塗布、焼成し
た比較例2の試験材は耐久性がきわめて劣るため実用化
が無理と判断され、前処理のみで陽極酸化皮膜を形成し
ない比較例3の試験材は、酸化チタンの吸着量が少ない
ため、一酸化窒素の除去効果が少なく且つ耐久性も劣っ
ている。比較例4、5の試験材は、多孔質陽極酸化皮膜
の厚みが薄過ぎるため耐食性が劣り、また酸化チタンの
吸着量が少ないため一酸化窒素の除去効果が少ない。As shown in Table 1, all of the test materials prepared in Examples 1 to 3 according to the present invention have a great effect of oxidizing and removing nitric oxide. On the other hand, the test material of Comparative Example 1 in which titanium oxide was not adsorbed had almost no effect of removing nitric oxide, and the test material of Comparative Example 2 in which titanium oxide was applied and calcined was extremely inferior in durability. The test material of Comparative Example 3, which was determined to be impossible and did not form an anodic oxide film only by the pretreatment, had a small adsorption amount of titanium oxide, and therefore had a small effect of removing nitrogen monoxide and was inferior in durability. The test materials of Comparative Examples 4 and 5 have poor corrosion resistance because the thickness of the porous anodic oxide film is too thin, and have a small effect of removing nitrogen monoxide because the amount of titanium oxide adsorbed is small.
【0031】実施例4 アルミニウム合金A6063押出材から、寸法100mm
×100mm×厚さ1mmの試験材を採取し、45℃で、1
0%水酸化ナトリウム水溶液中に3分間浸漬してエッチ
ング処理した後、水洗した。ついで20℃で、10%硝
酸溶液中に3分間浸漬して中和処理した後、水洗、乾燥
した。各試験材は上記の前処理を行った後、以下の方法
で処理された。Example 4 Dimensions of 100 mm from extruded aluminum alloy A6063
A test material having a size of 100 mm × 1 mm thick was collected,
After being immersed in a 0% aqueous sodium hydroxide solution for 3 minutes to perform an etching treatment, the substrate was washed with water. Then, the mixture was immersed in a 10% nitric acid solution at 20 ° C. for 3 minutes for neutralization treatment, washed with water and dried. Each test material was processed by the following method after performing the above pretreatment.
【0032】98℃の脱イオン水中に10分間浸漬し、
約2μm のベーマイト皮膜を形成した。ついで、ベーマ
イト処理した試験材を、弱アルカリ性の酸化チタン懸濁
液(多木化学(株)製タイノックA−6)中に、20℃
で、1分間浸漬し、イオン交換水で水洗した後、200
℃の温度で加熱乾燥した。Immersed in 98 ° C. deionized water for 10 minutes,
A boehmite film of about 2 μm was formed. The boehmite-treated test material was then placed in a weakly alkaline titanium oxide suspension (TAINOK A-6 manufactured by Taki Kagaku Co., Ltd.) at 20 ° C.
After immersing for 1 minute and washing with ion exchange water,
It was dried by heating at a temperature of ° C.
【0033】実施例5 実施例4と同一の前処理を行った試験材を、95℃の
0.5%トリエタノールアミン水溶液中に15分間浸漬
し、約3μm のベーマイト皮膜を形成した。ついで、ベ
ーマイト処理した試験材を、弱アルカリ性の酸化チタン
懸濁液(田中転写(株)製TOゾル)中に、20℃で、
1分間浸漬し、イオン交換水で水洗した後、250℃の
温度で加熱乾燥した。Example 5 A test material which had been subjected to the same pretreatment as in Example 4 was immersed in a 0.5% aqueous solution of triethanolamine at 95 ° C. for 15 minutes to form a boehmite film having a thickness of about 3 μm. Then, the boehmite-treated test material was placed in a weakly alkaline titanium oxide suspension (TO sol manufactured by Tanaka Transfer Co., Ltd.) at 20 ° C.
After immersing for 1 minute, washing with ion-exchanged water, and drying by heating at a temperature of 250 ° C.
【0034】実施例4〜5で作製された試験材につい
て、実施例1と同一の方法に従って、一酸化窒素の除去
効果を評価した。その結果、検出された一酸化窒素濃度
は、実施例4の試験材については5ppm 、実施例5の試
験材については10ppm であり、いずれも優れた一酸化
窒素の酸化、除去効果をそなえていた。耐候試験後の一
酸化窒素の酸化、除去効果もほとんど低下しなかった。With respect to the test materials produced in Examples 4 and 5, the effect of removing nitric oxide was evaluated in the same manner as in Example 1. As a result, the detected nitric oxide concentration was 5 ppm for the test material of Example 4 and 10 ppm for the test material of Example 5, all of which had excellent nitric oxide oxidation and removal effects. . The effect of oxidizing and removing nitric oxide after the weathering test hardly decreased.
【0035】[0035]
【発明の効果】本発明によれば、耐久性に優れた光触媒
機能を有するアルミニウム材が提供される。当該アルミ
ニウム材は、大気環境中の窒素酸化物や硫黄酸化物、水
中の有機塩素化合物などの汚染物質の除去に有用な浄化
材として有用である。本発明による酸化チタン固定のた
めの下地は、アルミニウム材に通常形成される陽極酸化
皮膜、ベーマイト皮膜であるから、現状の表面処理設備
の僅かな改造により対処することが可能となる。According to the present invention, there is provided an aluminum material having a photocatalytic function having excellent durability. The aluminum material is useful as a purifying material useful for removing pollutants such as nitrogen oxides and sulfur oxides in the air environment and organic chlorine compounds in water. Since the base for fixing titanium oxide according to the present invention is an anodic oxide film or a boehmite film usually formed on an aluminum material, it can be dealt with by slightly modifying the existing surface treatment equipment.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/58 C02F 1/72 101 1/72 101 C23C 28/04 C23C 28/04 C25D 11/04 302 C25D 11/04 302 11/18 308 11/18 308 B01D 53/36 J ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/58 C02F 1/72 101 1/72 101 C23C 28/04 C23C 28/04 C25D 11/04 302 C25D 11/04 302 11 / 18 308 11/18 308 B01D 53/36 J
Claims (8)
成され、該多孔質酸化アルミニウム皮膜に光触媒作用を
そなえた半導体組成物が固定していることを特徴とする
光触媒機能を有するアルミニウム材。1. An aluminum material having a photocatalytic function, wherein a porous aluminum oxide film is formed on a surface, and a semiconductor composition having a photocatalytic action is fixed to the porous aluminum oxide film.
成され、該多孔質酸化アルミニウム皮膜に酸化チタンが
固定していることを特徴とする光触媒機能を有するアル
ミニウム材。2. An aluminum material having a photocatalytic function, wherein a porous aluminum oxide film is formed on the surface, and titanium oxide is fixed on the porous aluminum oxide film.
極酸化皮膜であることを特徴とする請求項1〜2記載の
光触媒機能を有するアルミニウム材。3. The aluminum material having a photocatalytic function according to claim 1, wherein the porous aluminum oxide film is a porous anodic oxide film.
0μmであることを特徴とする請求項3記載の光触媒機
能を有するアルミニウム材。4. The porous anodic oxide film having a thickness of 0.1 to 5
The aluminum material having a photocatalytic function according to claim 3, wherein the thickness is 0 µm.
ーマイト皮膜であることを特徴とする請求項1〜2記載
の光触媒機能を有するアルミニウム材。5. The aluminum material having a photocatalytic function according to claim 1, wherein the porous aluminum oxide film is a porous boehmite film.
5μmであることを特徴とする請求項5記載の光触媒機
能を有するアルミニウム材。6. The porous boehmite film having a thickness of 0.1 to 0.1.
6. The aluminum material having a photocatalytic function according to claim 5, wherein the thickness is 5 μm.
ミニウム皮膜を形成し、該多孔質酸化アルミニウム皮膜
に光触媒作用をそなえた半導体組成物を吸着させること
を特徴とする光触媒機能を有するアルミニウム材の製造
方法。7. A method for producing an aluminum material having a photocatalytic function, wherein a porous aluminum oxide film is formed on a surface of an aluminum material, and a semiconductor composition having a photocatalytic action is adsorbed on the porous aluminum oxide film. Method.
ミニウム皮膜を形成し、該多孔質酸化アルミニウム皮膜
に酸化チタンゾルを化学吸着させることを特徴とする光
触媒機能を有するアルミニウム材の製造方法。8. A method for producing an aluminum material having a photocatalytic function, comprising forming a porous aluminum oxide film on the surface of an aluminum material and chemically adsorbing titanium oxide sol on the porous aluminum oxide film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8353954A JPH10174883A (en) | 1996-12-18 | 1996-12-18 | Aluminum material having photocatalytic function and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8353954A JPH10174883A (en) | 1996-12-18 | 1996-12-18 | Aluminum material having photocatalytic function and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10174883A true JPH10174883A (en) | 1998-06-30 |
Family
ID=18434338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8353954A Pending JPH10174883A (en) | 1996-12-18 | 1996-12-18 | Aluminum material having photocatalytic function and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10174883A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002273208A (en) * | 2001-03-22 | 2002-09-24 | Japan Science & Technology Corp | Discharge electrode formed by supporting photocatalyst, discharge reaction apparatus using the same and gas decomposition method using discharge reaction apparatus |
KR100372849B1 (en) * | 2000-09-28 | 2003-05-09 | 유병로 | Advanced apparatus for treating wastewater using the electrolysis and coagulation |
JP2005103505A (en) * | 2003-10-02 | 2005-04-21 | Denka Himaku Kogyo Kk | Method for manufacturing magnesium metallic material having photocatalytically active surface |
JP2005103504A (en) * | 2003-10-02 | 2005-04-21 | Denka Himaku Kogyo Kk | Magnesium metallic material having photocatalytically active surface and its manufacturing method |
JP2005126315A (en) * | 2003-09-30 | 2005-05-19 | Hitachi Ltd | Hydrogen storage and supply device, its system, and distributed power and car using the same |
JP2006263625A (en) * | 2005-03-24 | 2006-10-05 | Univ Kinki | Production method of functional coating on aluminum based material and aluminum based material having the same |
JP2011110438A (en) * | 2009-11-24 | 2011-06-09 | Toyota Central R&D Labs Inc | Aluminum product having air purification performance and method for manufacturing the same |
CN109759039A (en) * | 2017-11-09 | 2019-05-17 | 东莞东阳光科研发有限公司 | A kind of loaded photocatalyst and preparation method thereof |
CN110433787A (en) * | 2019-08-08 | 2019-11-12 | 清远市简一陶瓷有限公司 | A kind of nano-titania photocatalyst and preparation method thereof |
JPWO2021193742A1 (en) * | 2020-03-25 | 2021-09-30 |
-
1996
- 1996-12-18 JP JP8353954A patent/JPH10174883A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100372849B1 (en) * | 2000-09-28 | 2003-05-09 | 유병로 | Advanced apparatus for treating wastewater using the electrolysis and coagulation |
JP2002273208A (en) * | 2001-03-22 | 2002-09-24 | Japan Science & Technology Corp | Discharge electrode formed by supporting photocatalyst, discharge reaction apparatus using the same and gas decomposition method using discharge reaction apparatus |
JP2005126315A (en) * | 2003-09-30 | 2005-05-19 | Hitachi Ltd | Hydrogen storage and supply device, its system, and distributed power and car using the same |
JP4578867B2 (en) * | 2003-09-30 | 2010-11-10 | 株式会社日立製作所 | Hydrogen storage / supply device and system thereof, distributed power source using the same, and automobile |
JP2005103504A (en) * | 2003-10-02 | 2005-04-21 | Denka Himaku Kogyo Kk | Magnesium metallic material having photocatalytically active surface and its manufacturing method |
JP2005103505A (en) * | 2003-10-02 | 2005-04-21 | Denka Himaku Kogyo Kk | Method for manufacturing magnesium metallic material having photocatalytically active surface |
JP2006263625A (en) * | 2005-03-24 | 2006-10-05 | Univ Kinki | Production method of functional coating on aluminum based material and aluminum based material having the same |
JP4719919B2 (en) * | 2005-03-24 | 2011-07-06 | 学校法人近畿大学 | Method for producing functional coating on aluminum-based material and aluminum-based material having the functional coating |
JP2011110438A (en) * | 2009-11-24 | 2011-06-09 | Toyota Central R&D Labs Inc | Aluminum product having air purification performance and method for manufacturing the same |
CN109759039A (en) * | 2017-11-09 | 2019-05-17 | 东莞东阳光科研发有限公司 | A kind of loaded photocatalyst and preparation method thereof |
CN109759039B (en) * | 2017-11-09 | 2023-05-09 | 东莞东阳光科研发有限公司 | Supported photocatalyst and preparation method thereof |
CN110433787A (en) * | 2019-08-08 | 2019-11-12 | 清远市简一陶瓷有限公司 | A kind of nano-titania photocatalyst and preparation method thereof |
JPWO2021193742A1 (en) * | 2020-03-25 | 2021-09-30 | ||
WO2021193742A1 (en) * | 2020-03-25 | 2021-09-30 | 本田技研工業株式会社 | Functional material and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review | |
EP2223895A1 (en) | Tubular titanium oxide particles and use of the same | |
Ito et al. | Preparation of highly photocatalytic nanocomposite films consisting of TiO2 particles and Zn electrodeposited on steel | |
KR101504569B1 (en) | Method for producing surface-treated metal titanium material or titanium alloy material, and surface-treated material | |
JPH10174883A (en) | Aluminum material having photocatalytic function and its production | |
Muzakkar et al. | Chalcogenide material as high photoelectrochemical performance Se doped TiO2/Ti electrode: Its application for Rhodamine B degradation | |
CA1058552A (en) | Electrodes | |
EP3452216A1 (en) | Modified porous coatings and a modular device for air treatment containing modified porous coatings. | |
Deguchi et al. | Photocatalytically highly active nanocomposite films consisting of TiO2 particles and ZnO whiskers formed on steel plates | |
CN108455709B (en) | Preparation method of indium trioxide modified titanium dioxide nanotube array electrode | |
CN111139509A (en) | Preparation method of bismuth modified titanium dioxide nanotube array electrode | |
WO2008001405A2 (en) | Metal or metalized fabrics coated with nanostructured titanium dioxide | |
US9468920B2 (en) | Ultra-porous photocatalytic material, method for the manufacture and the uses thereof | |
JP3678227B2 (en) | Photocatalytic coating composition for metal substrate, photocatalytic metal material obtained using the same, and method for producing photocatalytic metal material | |
JP3389187B2 (en) | Film type photocatalyst | |
KR100523591B1 (en) | Electrode and its manufacturing method using rare earth element | |
KR100744635B1 (en) | Method for preparing of oxide semiconductive electrode for electrochemical device | |
JPH11253818A (en) | Photocatalyst and photocatalytic device | |
JP3645985B2 (en) | Deodorizing and deodorizing material and method for producing the same | |
JP2003112053A (en) | Active radical generating agent and method by using the same | |
JP2003089525A (en) | Method for forming titanium oxide layer on surface of base material | |
JP2000279822A (en) | Method and apparatus for cleaning air | |
JP4173928B2 (en) | Method of forming ceramic composite coating by anodic spark discharge | |
JP2001170495A (en) | Method of producing titanium or titanium-based alloy having photocatalytic activity | |
JP2001199725A (en) | Method for producing titanium oxide |