JPH10163537A - Thermoelectric converter - Google Patents
Thermoelectric converterInfo
- Publication number
- JPH10163537A JPH10163537A JP8320247A JP32024796A JPH10163537A JP H10163537 A JPH10163537 A JP H10163537A JP 8320247 A JP8320247 A JP 8320247A JP 32024796 A JP32024796 A JP 32024796A JP H10163537 A JPH10163537 A JP H10163537A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric
- heat exchange
- thermoelectric element
- long groove
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 47
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 230000008602 contraction Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910002909 Bi-Te Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱電変換装置に関
する。[0001] The present invention relates to a thermoelectric converter.
【0002】[0002]
【従来の技術】従来、ペルチェ効果を利用して電気エネ
ルギーを熱に変換したり、ゼーベック効果を利用し熱を
電気エネルギーに変換する熱電変換装置がある。この熱
電変換装置は、温度調節器、可搬型の保冷庫あるいは小
型の除湿器等に使用されるペルチェ素子がよく知られて
いる。ペルチェ素子は、例えば図6、図7に示すよう
に、対向する略平板状の2つのアルミナセラミック等の
セラミック材料にて形成された熱交換基板11、12
と、この熱交換基板11、12間に圧接し並設されるP
型及びN型の1対の半導体にて形成される熱電素子2
と、熱交換基板11、12上に設けられて熱電素子のP
型及びN型のものを直列に連結し接合する電極3とを備
えて構成されている。2. Description of the Related Art Conventionally, there is a thermoelectric conversion device that converts electric energy into heat using the Peltier effect and converts heat into electric energy using the Seebeck effect. As the thermoelectric conversion device, a Peltier element used for a temperature controller, a portable cool box, a small dehumidifier, or the like is well known. As shown in FIGS. 6 and 7, for example, the Peltier elements are heat-exchange substrates 11 and 12 formed of two opposed substantially flat ceramic materials such as alumina ceramics.
And P which is pressed and arranged between the heat exchange substrates 11 and 12
Element 2 formed of a pair of semiconductors of N-type and N-type
And P of the thermoelectric element provided on the heat exchange substrates 11 and 12
And an electrode 3 that connects and joins the N-type and N-type in series.
【0003】上記のペルチェ素子は、熱交換基板11、
12上に接着剤等にて固定されている電極3上に、半田
等の接合材5にて熱電素子3を接合して製造されてい
る。そして、端子4、4間に直流電流を通電すると、一
方の熱交換基板11が低温に、他方の熱交換基板12が
高温になって、それぞれ、熱交換基板11は吸熱を、熱
交換基板12が放熱を行う。[0003] The above-mentioned Peltier device comprises a heat exchange substrate 11,
The thermoelectric element 3 is manufactured by bonding a bonding material 5 such as solder on the electrode 3 fixed on the electrode 12 with an adhesive or the like. When a DC current is applied between the terminals 4 and 4, one of the heat exchange boards 11 becomes low in temperature and the other heat exchange board 12 becomes high in temperature. Dissipates heat.
【0004】アルミナセラミック材料による上記の熱交
換基板11、12は、高温のものは熱膨張するとともに
低温のものは熱収縮している。そして、熱電素子2には
この熱膨張及び熱収縮によって応力が加わることとな
り、長期間の使用においては、この熱膨張と熱収縮とが
繰り返されて、熱電素子2と電極3との接合部分にクラ
ックを発生することがあった。その結果、このクラック
にて熱電素子2の導通が成されなくなって故障に至るこ
とが問題となっていた。そして、本発明者らはこの問題
対策として、図8に示すように、例えば熱電素子2と電
極3とのそれぞれの接合面P1、P2を球面とし、熱交
換基板11、12が熱膨張及び熱収縮しても熱電素子2
が摺動することにて応力の加わることのない構造を提案
している。The heat exchange substrates 11 and 12 made of an alumina ceramic material are thermally expanded at a high temperature and thermally contracted at a low temperature. Then, stress is applied to the thermoelectric element 2 due to the thermal expansion and thermal contraction. In a long-term use, the thermal expansion and thermal contraction are repeated, and the joint between the thermoelectric element 2 and the electrode 3 is formed. Cracks may occur. As a result, there has been a problem that the conduction of the thermoelectric element 2 is not established due to the crack, leading to a failure. As a countermeasure against this problem, the present inventors, as shown in FIG. Thermoelectric element 2 even if shrunk
Has proposed a structure in which no stress is applied by sliding.
【0005】[0005]
【発明が解決しようとする課題】ところで、上記の球面
を有する熱電素子2は、電極3と接する面のみを球面形
状としたもので方向性を有したものである。従って、熱
交換基板11、12上に設置するときに球面状の形状を
確認しながら作業を行う必要があり、組立に手間を要す
るものであった。By the way, the thermoelectric element 2 having the above-mentioned spherical surface has only a surface in contact with the electrode 3 in a spherical shape and has directivity. Therefore, when installing on the heat exchange boards 11 and 12, it is necessary to perform the work while confirming the spherical shape, which requires time and labor for assembly.
【0006】本発明は、上記事由に鑑みてなしたもの
で、その目的とするところは、熱交換基板の膨張、収縮
においても熱電素子の電気的接合部分に応力が加わらな
い、組立のし易い熱電変換装置を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is not to apply stress to an electrical junction portion of a thermoelectric element even when a heat exchange substrate expands and contracts, and it is easy to assemble. A thermoelectric conversion device is provided.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の熱電変換装置は、対向する略平板状
の2つの熱交換基板と、この熱交換基板間に圧接し並設
されるP型及びN型の1対の半導体にて形成される熱電
素子と、前記熱交換基板上に設けられて熱電素子のP型
及びN型のものを直列に連結し接合する電極とを備える
熱電変換装置において、前記熱電素子は、球状に形成さ
れたものとしている。これにより、熱電素子が方向性の
無いものとなる。In order to achieve the above object, a thermoelectric conversion device according to a first aspect of the present invention has two substantially flat heat exchange substrates opposed to each other, and is arranged in pressure contact between the heat exchange substrates. A thermoelectric element formed of a pair of P-type and N-type semiconductors, and an electrode provided on the heat exchange substrate and connecting the P-type and N-type thermoelectric elements in series and joining them. In the thermoelectric device provided, the thermoelectric element is formed in a spherical shape. As a result, the thermoelectric element has no directionality.
【0008】また、請求項2記載の熱電変換装置は、請
求項1記載の電極は、前記熱電素子との当接部が凹状に
形成されたこととしている。これにより、熱電素子が所
定位置に保持し得るものとなる。According to a second aspect of the present invention, there is provided a thermoelectric conversion device, wherein the electrode according to the first aspect has a concave portion in contact with the thermoelectric element. Thereby, the thermoelectric element can be held at a predetermined position.
【0009】また、請求項3記載の熱電変換装置は、請
求項2記載の当接部を、前記熱交換基板の少なくとも一
方のものが中央から外縁に向けて長い長溝として形成し
ている。これにより、熱電素子の電極との少なくとも一
方の当接部が中央から外縁に向けて長い長溝にて保持さ
れる。According to a third aspect of the present invention, in the thermoelectric conversion device, at least one of the heat exchange substrates is formed as a long groove extending from the center toward the outer edge. Thereby, at least one contact portion with the electrode of the thermoelectric element is held by the long groove extending from the center to the outer edge.
【0010】また、請求項4記載の熱電変換装置は、請
求項3記載の長溝を、前記熱交換基板の外縁側のものを
中央側のものより長く形成している。これにより、外縁
側に配設される熱電素子が中央側の熱電素子よりも長い
長溝にて保持される。According to a fourth aspect of the present invention, in the thermoelectric conversion device, the long groove according to the third aspect is formed such that the outer peripheral side of the heat exchange substrate is longer than the central side. Thereby, the thermoelectric element provided on the outer edge side is held by the long groove longer than the thermoelectric element on the center side.
【0011】また、請求項5記載の熱電変換装置は、請
求項3又は4記載の長溝を、前記熱電素子とは該長溝の
短手方向側面矢視にて底面の一点で接触し得る幅寸法を
もって形成している。これにより、熱電素子が長溝の一
点にて保持される。According to a fifth aspect of the present invention, there is provided a thermoelectric conversion device, wherein the long groove according to the third or fourth aspect can contact the thermoelectric element at one point on the bottom surface as viewed in the lateral direction of the long groove. Is formed. Thereby, the thermoelectric element is held at one point of the long groove.
【0012】[0012]
【発明の実施の形態】以下、本発明の熱電変換装置の第
1の実施の形態を図1乃至図4に基づいて、第2の実施
の形態を図5に基づいて、それぞれ説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the thermoelectric converter of the present invention will be described with reference to FIGS. 1 to 4, and a second embodiment will be described with reference to FIG.
【0013】[第1の実施の形態]図1は、第1の実施
の形態の、熱電変換装置であるペルチェ素子の要部であ
る熱電素子の設置状態を示す説明図である。図2は、同
上の電極を示す斜視図で、(a)は下面側電極、(b)
は上面側電極を示す。図3は、同上の電極パターンを示
す平面図で、(a)は下面側熱交換基板、(b)は上面
側熱交換基板を示す。図4は、同上の概略構成図であ
る。[First Embodiment] FIG. 1 is an explanatory view showing an installation state of a thermoelectric element which is a main part of a Peltier element which is a thermoelectric converter according to a first embodiment. 2A and 2B are perspective views showing the electrode of the above, wherein FIG.
Indicates an upper electrode. 3A and 3B are plan views showing the electrode patterns of the above, wherein FIG. 3A shows a lower surface side heat exchange substrate, and FIG. 3B shows an upper surface side heat exchange substrate. FIG. 4 is a schematic configuration diagram of the above.
【0014】この熱電変換装置は、電気エネルギーを熱
に変換して吸熱及び放熱を行うペルチェ素子で、対向す
る略平板状の2つの熱交換基板11、12と、この熱交
換基板11、12間に圧接し並設されるP型及びN型の
1対の半導体にて形成される熱電素子2と、熱交換基板
11、12上に設けられて熱電素子2のP型及びN型の
ものを直列に連結し接合する電極31、32とを備えて
いる。This thermoelectric conversion device is a Peltier element that converts electric energy into heat to absorb and radiate heat, and comprises two substantially flat heat exchange substrates 11 and 12 opposed to each other. A thermoelectric element 2 formed of a pair of P-type and N-type semiconductors which are pressed against and juxtaposed with each other, and P-type and N-type thermoelectric elements 2 provided on heat exchange substrates 11 and 12. And electrodes 31 and 32 connected and joined in series.
【0015】熱交換基板11、12は、後述する電極3
1、32を設けるとともに熱電素子2からの熱を外部へ
放出したり、あるいは外部からの熱を吸収し熱電素子2
へ伝達するためのもので、例えば、アルミナセラミック
等の熱伝達率の良好な材料により、焼結等にて、略四角
状に形成されている。この熱交換基板11、12は、図
4に示すように、外縁側の所定の箇所にて、例えばボル
ト6等の締め付け手段を用いてばね7を介して締め付け
るため、ボルト6が貫挿されるための貫挿穴hが形成さ
れ、周囲の空気との間にて熱交換が効率よく行われるよ
うに、適宜フィン形状をもって形成されている。熱交換
基板は、図4に示すように、ばね7などの弾性体の一端
が一方の熱交換基板11に当接して介在させることに
て、熱交換基板11、12によって後述する熱伝素子2
を所定の押圧力にて押圧するよう、所定の締め付けトル
クでボルト6が締め付けられる。そして、一方の熱交換
基板が低温に、他方の熱交換基板が高温になって、それ
ぞれ低温のものは吸熱を行うとともに高温のものが放熱
を行う。The heat exchange substrates 11 and 12 are provided with electrodes 3 to be described later.
1 and 32 and radiate heat from the thermoelectric element 2 to the outside, or absorb heat from the outside and
For example, it is formed in a substantially square shape by sintering or the like using a material having a good heat transfer coefficient such as alumina ceramic. As shown in FIG. 4, the heat exchange boards 11 and 12 are tightened at predetermined positions on the outer edge side by means of a spring 7 using a tightening means such as a bolt 6, so that the bolt 6 is inserted. Is formed in an appropriate fin shape so that heat can be efficiently exchanged with the surrounding air. As shown in FIG. 4, one end of an elastic body such as a spring 7 abuts on one of the heat exchange substrates 11 and is interposed between the heat exchange substrates 11 and 12, so that the heat exchange substrate
The bolt 6 is tightened with a predetermined tightening torque so as to be pressed with a predetermined pressing force. Then, one of the heat exchange substrates has a low temperature and the other has a high temperature. The low-temperature substrates absorb heat and the high-temperature substrates dissipate heat.
【0016】電極31、32は、後述する熱電素子2へ
直流電流を通電するためのもので、例えば、銅箔材料な
どによる薄板材料にて、熱交換基板11、12の対向面
に所定間隔にて、P型及びN型の1対の半導体による熱
電素子2を直列に配設して連結するパターン形状に形成
され、シリコン系接着剤等の、弾性を有するとともに熱
伝達率の良好な接着剤にて熱交換基板11、12の対向
面に接着されている。このものの電極31、32は、上
記のように熱交換基板をばねにて押圧して熱電素子を所
定位置に保持し得るように、エッチング加工等にて、例
えば、下面側の電極32は円形球面の凹状に、上面側の
電極31は長溝31a、すなわち長円状の凹状をもって
形成され、また、この長溝31aは、熱交換基板11,
12の中央から外縁に向けての熱収縮及び熱膨張におけ
る寸法変化を吸収するために、図3(b)に示すよう
に、中央から外縁に向けて長い長溝として形成されてい
る。また、さらに、この長溝31aの長さは、熱交換基
板11,12の外縁側のものほど大きい前記寸法変化を
効果的に吸収するために、外縁側のものを中央側のもの
より長くして、図1に示すように、長溝と熱電素子とが
該長溝の短手方向側面矢視にて溝の両縁と底面との三点
において接触する幅寸法w1をもって形成されている。
なお、この電極31の周縁側の始端と終端のものには、
外部配線との接続のための端子4、4が半田付け等にて
固着されている。The electrodes 31 and 32 are used to supply a DC current to the thermoelectric element 2 described later. For example, the electrodes 31 and 32 are made of a thin plate material such as a copper foil material and are arranged at predetermined intervals on the opposing surfaces of the heat exchange substrates 11 and 12. An adhesive having good elasticity and a good heat transfer coefficient, such as a silicon-based adhesive, formed in a pattern shape in which a pair of P-type and N-type semiconductor thermoelectric elements 2 are arranged and connected in series. Are bonded to opposing surfaces of the heat exchange substrates 11 and 12. The electrodes 31 and 32 are formed by etching or the like so that the thermoelectric element can be held at a predetermined position by pressing the heat exchange substrate with a spring as described above. The electrode 31 on the upper surface is formed in a long groove 31a, that is, an oval concave shape, and the long groove 31a is formed in the heat exchange substrate 11,
As shown in FIG. 3B, the groove 12 is formed as a long groove extending from the center to the outer edge in order to absorb a dimensional change in thermal contraction and thermal expansion from the center to the outer edge. Further, the length of the long groove 31a is made longer at the outer edge than at the center in order to effectively absorb the dimensional change which is larger at the outer edge of the heat exchange substrates 11 and 12. As shown in FIG. 1, the long groove and the thermoelectric element are formed with a width dimension w1 in which the long groove and the thermoelectric element contact each other at three points, that is, both edges of the groove and the bottom surface when viewed in the lateral direction of the long groove.
In addition, the electrode 31 at the start and end on the peripheral side includes:
Terminals 4 for connection to external wiring are fixed by soldering or the like.
【0017】熱電素子2は、例えばBi−Te系の半導
体素子で、例えば焼結等にて所定の大きさの球状に形成
されている。この熱電素子2は、直流電流を通電するこ
とにて前記の熱交換基板11、12の一方のものが発熱
するとともに他方のものが吸熱するように、熱交換基板
11、12間に、P型及びN型のものが交互に配設され
ることにて電極31、32によって直列に交互に連結さ
れる。なお、この熱電素子2と電極31、32との接合
は、球面側である電極32とは球面どうし、長溝側であ
る電極31とは三点による点接合となる。従って、電極
31との接合部には電気的及び熱的な接合を安定に行う
ために、導電と伝熱を兼ねて適宜導電性グリス等が塗布
される。The thermoelectric element 2 is, for example, a Bi-Te based semiconductor element, and is formed in a spherical shape having a predetermined size by, for example, sintering. The thermoelectric element 2 has a P-type between the heat exchange boards 11 and 12 so that one of the heat exchange boards 11 and 12 generates heat by passing a direct current and the other heatsink. And N-types are alternately arranged, and are alternately connected in series by the electrodes 31 and 32. The junction between the thermoelectric element 2 and the electrodes 31 and 32 is a point junction between the spherical surface side electrode 32 and the long groove side electrode 31 at three points. Therefore, in order to stably perform electric and thermal bonding, conductive grease or the like is applied to the bonding portion with the electrode 31 for both conductivity and heat transfer.
【0018】以上説明した熱電変換装置の組立は、ま
ず、下側の円形球状の電極32を有する熱交換基板12
の電極上の所定の位置に、熱電素子2のP型及びN型の
ものを、上側の熱交換基板11、12との間にて直列に
連結し接合されるように所定箇所に配設する。次いで、
上側の熱交換基板11を熱電素子2の上面に裁置したの
ち、貫挿穴hにばね7を介在させるとともにボルト6を
貫挿し、所定の締め付けトルクにて締め付ける。そし
て、図示していない、端子に直流電流を通電すると、一
方の熱交換基板が低温に、他方の熱交換基板が高温にな
って、それぞれ低温のものは吸熱を、高温のものが放熱
を行う。そして、電極31、32と熱電素子2とは、熱
交換基板11、12を介してばね7にて所定の押圧力に
て押圧されて接合しているので、熱交換基板11,12
の熱収縮及び熱膨張においても球状に形成された熱電素
子2が回動し、従って応力の加わらないこととなる。The above-described assembling of the thermoelectric conversion device is performed by firstly mounting the heat exchange substrate 12 having the lower circular spherical electrode 32.
The P-type and N-type thermoelectric elements 2 are arranged at predetermined positions on the electrodes so as to be connected and joined in series between the upper and lower heat exchange substrates 11 and 12. . Then
After placing the upper heat exchange board 11 on the upper surface of the thermoelectric element 2, the spring 7 is interposed in the through hole h and the bolt 6 is inserted, and tightened with a predetermined tightening torque. When a DC current is applied to the terminals (not shown), one of the heat exchange boards becomes low in temperature and the other heat exchange board becomes high in temperature. . The electrodes 31 and 32 and the thermoelectric element 2 are joined by being pressed with a predetermined pressing force by the spring 7 via the heat exchange substrates 11 and 12, so that the heat exchange substrates 11 and 12 are joined.
The thermoelectric element 2 formed in a spherical shape also rotates due to the thermal contraction and thermal expansion of, so that no stress is applied.
【0019】以上説明した熱電変換装置によると、熱電
素子2が球状に形成されており、従って方向性の無いも
のとなるので熱交換基板12上への配設が容易となり、
以て、組立のし易いものとなる。また、熱電素子2が所
定位置に保持し得るものとなるので、より組立がし易く
なる。また、熱電素子2が少なくとも一方が長溝31a
の凹所にて保持されるので、大きな熱収縮及び熱膨張に
おける寸法変化が長溝31aの寸法余裕にて吸収でき、
以て、長寿命が達成される。また、外縁側に配設される
熱電素子が中央側の熱電素子よりも長い長溝にて保持さ
れるので、熱交換基板11,12の熱収縮及び熱膨張に
よる寸法変位の大きさに合わせて溝の長さを設定するこ
とにて電極を形成して熱電素子2をより多く配設出来
る。According to the above-described thermoelectric conversion device, the thermoelectric element 2 is formed in a spherical shape, and hence has no directionality, so that the thermoelectric element 2 can be easily disposed on the heat exchange substrate 12,
Thus, it is easy to assemble. Further, since the thermoelectric element 2 can be held at a predetermined position, assembly becomes easier. Further, at least one of the thermoelectric elements 2 has a long groove 31a.
, The dimensional change due to large thermal contraction and thermal expansion can be absorbed by the dimensional margin of the long groove 31a,
Thus, a long life is achieved. Further, since the thermoelectric elements disposed on the outer edge side are held by long grooves longer than the thermoelectric elements on the center side, the grooves are adjusted in accordance with the size of dimensional displacement due to thermal contraction and thermal expansion of the heat exchange substrates 11 and 12. By setting the length, the electrodes can be formed and more thermoelectric elements 2 can be arranged.
【0020】[第2の実施の形態]図5は、第2の実施
の形態の熱電変換装置である、ペルチェ素子の熱電素子
の設置状態を示す説明図である。[Second Embodiment] FIG. 5 is an explanatory diagram showing the installation state of a thermoelectric device of a Peltier device, which is a thermoelectric converter of a second embodiment.
【0021】このペルチェ素子は、電極31の形状のみ
が第1の実施の形態と異なるもので、他の構成部材は第
1の実施の形態のものと同一であり、同一部分の詳細な
説明は省略する。This Peltier element is different from the first embodiment only in the shape of the electrode 31, and the other components are the same as those in the first embodiment. Omitted.
【0022】このものの電極31は、熱交換基板11、
12の成型時の内部応力ひずみ等にて熱収縮及び熱膨張
にてひねり方向の寸法変化が生じた場合においても安定
した圧接状態を維持するために、第1の実施の形態のも
のの長溝31aと熱電素子2とが長溝31aの短手方向
側面矢視にて底面の一点において接触する幅寸法をもっ
て形成している。詳しくは、このものの電極31は、長
溝31aが、図1に示す幅寸法W1より大きい幅寸法W
2をもって形成されている。従って、電極31と熱電素
子2とは見かけ上1点にて接触して押圧され接合してい
る。その結果、電極31と熱電素子2との接合部分が、
熱交換基板11,12の熱収縮及び熱膨張においても、
球状に形成された熱電素子2が長溝31aの幅方向の寸
法余裕にて回動することにてひねり方向の寸法変化を吸
収でき、ひねり方向の寸法変化があっても熱電素子2に
過大な応力の加わらないこととなる。The electrode 31 of the heat exchange substrate 11
In order to maintain a stable press-contact state even when a dimensional change in the twist direction occurs due to thermal shrinkage and thermal expansion due to internal stress strain or the like at the time of molding of No. 12, the long groove 31a of the first embodiment is used. The thermoelectric element 2 is formed so as to have a width dimension at which the thermoelectric element 2 comes into contact at one point of the bottom surface as viewed in the direction of the lateral side of the long groove 31a. Specifically, the electrode 31 has a long groove 31a having a width W larger than the width W1 shown in FIG.
2 are formed. Therefore, the electrode 31 and the thermoelectric element 2 are apparently in contact at one point and are pressed and joined. As a result, the joint between the electrode 31 and the thermoelectric element 2
In the heat contraction and thermal expansion of the heat exchange substrates 11 and 12,
Since the thermoelectric element 2 formed in a spherical shape rotates with a margin in the width direction of the long groove 31a, the dimensional change in the twist direction can be absorbed, and even if there is a dimensional change in the twist direction, excessive stress is applied to the thermoelectric element 2. Will not be added.
【0023】以上説明した熱電変換装置によると、熱電
素子2が長溝31aの一点にて保持されるので、熱収縮
及び熱膨張における熱交換基板11、12のひねり方向
の寸法変化が吸収でき、以て、より長寿命が達成され
る。According to the thermoelectric conversion device described above, since the thermoelectric element 2 is held at one point of the long groove 31a, the dimensional change in the twist direction of the heat exchange substrates 11, 12 due to thermal contraction and thermal expansion can be absorbed. Thus, a longer life is achieved.
【0024】なお、以上説明した熱電変換装置におい
て、電極は凹状を有するとともに一方を長溝のものと
し、さらに熱交換基板の外縁側のものを中央側のものよ
り長い長さにて形成したものとして説明したが、本発明
はそのもののみに限定するものでなく、凹所の無いもの
を圧接状態にて保持するのみであっても良く、また、凹
所が長溝でないものであっても良い。In the thermoelectric converter described above, it is assumed that the electrode has a concave shape and one of the electrodes has a long groove, and the outer edge of the heat exchange substrate is formed to have a longer length than that of the center. Although the present invention has been described, the present invention is not limited to itself, and it is possible to simply hold a non-concave member in a pressed state, or the concave portion may not be a long groove.
【0025】[0025]
【発明の効果】請求項1記載の熱電変換装置は、熱電素
子が方向性の無いものとなるので、熱交換基板上への配
設が容易となり、以て、組立のし易いものとなる。According to the first aspect of the present invention, since the thermoelectric element has no directionality, it is easy to dispose the thermoelectric element on the heat exchange board, and therefore, it is easy to assemble.
【0026】また、請求項2記載の熱電変換装置は、請
求項1記載のものの効果に加え、熱電素子が所定位置に
保持し得るものとなるので、より組立がし易くなる。In addition, the thermoelectric conversion device according to the second aspect has the effect of the first aspect, and the thermoelectric element can be held at a predetermined position, so that the assembly becomes easier.
【0027】また、請求項3記載の熱電変換装置は、請
求項2記載のものの効果に加え、熱電素子が少なくとも
一方が長溝の凹所にて保持されるので、大きな熱収縮及
び熱膨張における寸法変化が吸収でき、以て、長寿命が
達成される。According to the third aspect of the present invention, in addition to the effects of the second aspect, at least one of the thermoelectric elements is held in the recess of the long groove. Changes can be absorbed, and a long life is achieved.
【0028】また、請求項4記載の熱電変換装置は、請
求項3記載のものの効果に加え、外縁側に配設される熱
電素子が中央側の熱電素子よりも長い長溝にて保持され
るので、熱交換基板の熱収縮及び熱膨張による寸法変位
の大きさに合わせて溝の長さを設定することにて電極を
形成し熱電素子をより多く配設出来る。In the thermoelectric converter according to the fourth aspect, in addition to the effect of the third aspect, the thermoelectric element disposed on the outer edge side is held by a long groove longer than the thermoelectric element on the center side. By setting the length of the groove in accordance with the size of the dimensional displacement due to the thermal contraction and thermal expansion of the heat exchange substrate, the electrodes can be formed and more thermoelectric elements can be arranged.
【0029】また、請求項5記載の熱電変換装置は、請
求項3又は4記載のものの効果に加え、熱電素子が長溝
の一点にて保持されるので、熱収縮及び熱膨張における
熱交換基板のひねり方向の寸法変化が吸収でき、以て、
より長寿命が達成される。In the thermoelectric conversion device according to the fifth aspect, in addition to the effect of the third or fourth aspect, the thermoelectric element is held at one point of the long groove, so that the heat exchange substrate in the heat shrinkage and the thermal expansion is removed. The dimensional change in the twist direction can be absorbed, and
Longer life is achieved.
【図1】本発明の第1の実施の形態の熱電変換装置であ
るペルチェ素子の要部である熱電素子の設置状態を示す
説明図である。FIG. 1 is an explanatory diagram showing an installation state of a thermoelectric element which is a main part of a Peltier element which is a thermoelectric conversion device according to a first embodiment of the present invention.
【図2】同上の電極を示す斜視図で、(a)は下面側電
極、(b)は上面側電極を示す。FIGS. 2A and 2B are perspective views showing the same electrode, wherein FIG. 2A shows a lower electrode and FIG. 2B shows an upper electrode.
【図3】同上の電極パターンを示す平面図で、(a)は
下面側熱交換基板、(b)は上面側熱交換基板を示す。FIGS. 3A and 3B are plan views showing the electrode patterns of the above, wherein FIG. 3A shows a lower surface side heat exchange substrate and FIG. 3B shows an upper surface side heat exchange substrate.
【図4】同上の概略構成図である。FIG. 4 is a schematic configuration diagram of the above.
【図5】第2の実施の形態の熱電変換装置である、ペル
チェ素子の熱電素子の設置状態を示す説明図である。FIG. 5 is an explanatory diagram showing an installation state of a thermoelectric device of a Peltier device, which is a thermoelectric conversion device according to a second embodiment.
【図6】従来例の構成図である。FIG. 6 is a configuration diagram of a conventional example.
【図7】従来例の熱電素子の設置状態を示す説明図であ
る。FIG. 7 is an explanatory view showing an installation state of a conventional thermoelectric element.
【図8】他の従来例の熱電素子の設置状態を示す説明図
である。FIG. 8 is an explanatory diagram showing an installation state of another conventional thermoelectric element.
11、12 熱交換基板 2 熱電素子 31、32 電極 31a 長溝 11, 12 heat exchange substrate 2 thermoelectric element 31, 32 electrode 31a long groove
Claims (5)
と、この熱交換基板間に圧接し並設されるP型及びN型
の1対の半導体にて形成される熱電素子と、前記熱交換
基板上に設けられて熱電素子のP型及びN型のものを直
列に連結し接合する電極とを備える熱電変換装置におい
て、 前記熱電素子は、球状に形成されたものであることを特
徴とする熱電変換装置。1. A thermoelectric element formed of a pair of substantially flat heat-exchange substrates facing each other, a pair of P-type and N-type semiconductors arranged in pressure contact with each other between the heat-exchange substrates, and A thermoelectric conversion device comprising an electrode provided on a heat exchange substrate and connecting and joining P-type and N-type thermoelectric elements in series, wherein the thermoelectric element is formed in a spherical shape. Thermoelectric conversion device.
凹状に形成されたことを特徴とする請求項1記載の熱電
変換装置。2. The thermoelectric conversion device according to claim 1, wherein a contact portion of the electrode with the thermoelectric element is formed in a concave shape.
とも一方のものが中央から外縁に向けて長い長溝として
形成されたことを特徴とする請求項2記載の熱電変換装
置。3. The thermoelectric conversion device according to claim 2, wherein at least one of the heat exchange substrates is formed as a long groove extending from a center toward an outer edge of the contact portion.
ものを中央側のものより長く形成されたことを特徴とす
る請求項3記載の熱電変換装置。4. The thermoelectric conversion device according to claim 3, wherein the long groove is formed so that the one on the outer edge side of the heat exchange substrate is longer than the one on the center side.
短手方向側面矢視にて底面の一点で接触し得る幅寸法を
もって形成されたことを特徴とする請求項3又は4記載
の熱電変換装置。5. The long groove according to claim 3 or 4, wherein the long groove is formed to have a width dimension capable of contacting the thermoelectric element at one point of a bottom surface as viewed from the side in the lateral direction of the long groove. Thermoelectric converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8320247A JPH10163537A (en) | 1996-11-29 | 1996-11-29 | Thermoelectric converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8320247A JPH10163537A (en) | 1996-11-29 | 1996-11-29 | Thermoelectric converter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10163537A true JPH10163537A (en) | 1998-06-19 |
Family
ID=18119375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8320247A Pending JPH10163537A (en) | 1996-11-29 | 1996-11-29 | Thermoelectric converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10163537A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006005154A (en) * | 2004-06-17 | 2006-01-05 | Okano Electric Wire Co Ltd | Thermoelectric conversion module |
JP2008235702A (en) * | 2007-03-22 | 2008-10-02 | Toyota Motor Corp | Thermoelectric power generation unit |
JP2014179372A (en) * | 2013-03-13 | 2014-09-25 | Kitagawa Kogyo Co Ltd | Thermoelectric conversion module |
-
1996
- 1996-11-29 JP JP8320247A patent/JPH10163537A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006005154A (en) * | 2004-06-17 | 2006-01-05 | Okano Electric Wire Co Ltd | Thermoelectric conversion module |
JP2008235702A (en) * | 2007-03-22 | 2008-10-02 | Toyota Motor Corp | Thermoelectric power generation unit |
WO2008123330A1 (en) * | 2007-03-22 | 2008-10-16 | Toyota Jidosha Kabushiki Kaisha | Thermoelectric power generating apparatus |
JP2014179372A (en) * | 2013-03-13 | 2014-09-25 | Kitagawa Kogyo Co Ltd | Thermoelectric conversion module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5933327A (en) | Wire bond attachment of a integrated circuit package to a heat sink | |
JP3010181B2 (en) | Heat receiving part structure of heat dissipation device | |
JP2006508542A (en) | Integrated thermoelectric module | |
JP2001156219A5 (en) | ||
EP0989794A3 (en) | Surface mount thermal connections | |
JP2005509278A (en) | Power semiconductor module | |
TW390001B (en) | Mounting arrangement for securing an integrated circuit package to a heat sink | |
JPH05259334A (en) | Semiconductor device | |
JPH10163537A (en) | Thermoelectric converter | |
JP2002289630A (en) | Power semiconductor module | |
JP2007035974A (en) | Thermoelectric converter | |
JP3938079B2 (en) | Power module substrate manufacturing method | |
JPH077187A (en) | Thermoelectric converter | |
JPH0333082Y2 (en) | ||
JP2003318455A (en) | Peltier element and its manufacturing method | |
JP2001308397A (en) | Peltier module | |
JPH08204241A (en) | Thermoelectric conversion system | |
JPH06169108A (en) | Thermoelectric element | |
JPH0333083Y2 (en) | ||
WO2024070581A1 (en) | Electric power conversion unit | |
JPH07176797A (en) | Thermoelectric converter | |
JPH1117234A (en) | Thermoelectric transducer | |
JP4124528B2 (en) | Electronic control unit | |
JP3536759B2 (en) | Thermoelectric module | |
JPH06827Y2 (en) | Small stud type insulated heat sink for semiconductors |