JPH10162335A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPH10162335A JPH10162335A JP32402696A JP32402696A JPH10162335A JP H10162335 A JPH10162335 A JP H10162335A JP 32402696 A JP32402696 A JP 32402696A JP 32402696 A JP32402696 A JP 32402696A JP H10162335 A JPH10162335 A JP H10162335A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film
- substrate
- magnetic
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気ディスク装置用など
に使用される磁気記録媒体に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium used for a magnetic disk drive or the like.
【0002】[0002]
【従来の技術】磁気ディスク媒体は、例えば、NiP無
電解めっきを施したAl−Mg系合金製の基板上にスパ
ッタリング法によりCr下地膜、Co系磁性膜、Cなど
を主成分とする保護層の順に成膜されるのが一般的であ
る。近年、耐衝撃性、表面平滑性などの見地から、Al
−Mg系合金基板に代わってガラス、シリコン、チタン
などの代替基板が使用され始めている。2. Description of the Related Art A magnetic disk medium is formed, for example, on a NiP electroless-plated Al-Mg alloy substrate by a sputtering method using a Cr undercoat film, a Co magnetic film, or a protective layer mainly composed of C or the like. Are generally formed in this order. In recent years, from the viewpoint of impact resistance and surface smoothness, Al
-Substitute substrates such as glass, silicon, titanium, etc. have begun to be used instead of Mg-based alloy substrates.
【0003】しかし、これらの代替基板においてはAl
−Mg系合金基板に比べ、十分な磁気特性とくに保磁力
を得ることが比較的困難である。これを解決する手段と
して、ガラスなどの基板上にあらかじめTi薄膜層を施
すなどして磁気特性を確保することが試みられてきた
が、十分な保磁力を得ることはできなかった(特開昭2
−29923号など)。However, in these alternative substrates, Al
-It is relatively difficult to obtain sufficient magnetic properties, especially coercive force, as compared to Mg-based alloy substrates. In order to solve this problem, attempts have been made to secure magnetic properties by previously applying a Ti thin film layer on a substrate such as glass, but it has not been possible to obtain a sufficient coercive force (Japanese Patent Application Laid-Open No. 2
No. 29923).
【0004】[0004]
【発明が解決しようとする課題】本発明はこのようなガ
ラス、シリコン、チタンなどの基板を用いて、しかも保
磁力の向上した磁気記録媒体を提供することを目的とす
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic recording medium using such a substrate made of glass, silicon, titanium or the like and having an improved coercive force.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するた
め、本発明では、ガラス、シリコン、チタンなどの基板
上に特殊な下地膜を設けることにより課題を解決しうる
ことを見いだし本発明を完成した。本発明の要旨は、非
磁性基板上に少なくとも下地膜、Co系磁性膜を形成し
た磁気記録媒体において、下地膜として、基板側からC
r系薄膜、Ti系薄膜、Cr系薄膜の順に設けたことを
特徴とする磁気記録媒体に存する。Means for Solving the Problems In order to achieve the above object, the present invention has been found to solve the problem by providing a special base film on a substrate made of glass, silicon, titanium or the like, and completed the present invention. did. The gist of the present invention is to provide a magnetic recording medium in which at least a base film and a Co-based magnetic film are formed on a non-magnetic substrate.
A magnetic recording medium characterized in that an r-based thin film, a Ti-based thin film, and a Cr-based thin film are provided in this order.
【0006】以下便宜上、基板側のCr系薄膜を第一C
r薄膜、Ti系薄膜上のCr系薄膜を第二Cr薄膜と呼
ぶことにする。本発明における非磁性基板としては、ア
ルミニウム合金基板以外の基板が好適に使用される。ア
ルミニウム合金基板以外の基板とは、例えば、ソーダガ
ラス、アルミノシリケート系ガラス、シリコン、チタ
ン、セラミックス、各種樹脂などが挙げられる。For convenience, a Cr-based thin film on the substrate side is referred to as a first C
The r-based thin film and the Cr-based thin film on the Ti-based thin film will be referred to as a second Cr thin film. As the non-magnetic substrate in the present invention, a substrate other than the aluminum alloy substrate is preferably used. Substrates other than the aluminum alloy substrate include, for example, soda glass, aluminosilicate glass, silicon, titanium, ceramics, various resins, and the like.
【0007】また、非磁性基板としては、Al−Mg系
合金等のアルミニウム合金にNiPめっきを施した基板
を用いてもよい。基板の表面は、表面粗さ(Ra)で5
Å以下の鏡面仕上げとされているのが好ましい。洗浄・
乾燥後、基板の表面には、各膜が設けられる。Further, as the non-magnetic substrate, a substrate obtained by subjecting an aluminum alloy such as an Al-Mg alloy to NiP plating may be used. The surface of the substrate has a surface roughness (Ra) of 5
鏡 It is preferable to have the following mirror finish. Washing·
After drying, each film is provided on the surface of the substrate.
【0008】基板表面、下地膜表面、磁性膜表面などに
は、機械的なテキスチャリング加工、あるいはレーザー
光線などを利用したテキスチャリング加工などを施して
もよく、これらのテキスチャリングの有無は本発明の効
果になんら影響を与えなるものではない。テキスチャリ
ング加工を行った場合には、通常、表面粗さ(Ra)が
5Åから50Å程度のものが使用される。The surface of the substrate, the surface of the base film, the surface of the magnetic film and the like may be subjected to mechanical texturing or texturing using a laser beam or the like. It has no effect on the effect. When the texturing process is performed, usually, a material having a surface roughness (Ra) of about 5 ° to 50 ° is used.
【0009】本発明においては、非磁性基板上に、第一
Cr薄膜、Ti系薄膜、第二Cr薄膜を順次に形成す
る。第一、第二Cr薄膜の材料としては、純Crの他、
Co層との結晶マッチングを向上させるなどの目的でC
rにV、Ti、Mo、Zr、Ta、W、Ge、Nb、C
uなどの第二、第三元素を添加したものや、酸化Crな
どが含まれる。In the present invention, a first Cr thin film, a Ti-based thin film, and a second Cr thin film are sequentially formed on a non-magnetic substrate. As materials for the first and second Cr thin films, in addition to pure Cr,
C for the purpose of improving the crystal matching with the Co layer
r is V, Ti, Mo, Zr, Ta, W, Ge, Nb, C
u and other second and third elements, and Cr oxide.
【0010】これら第二、第三元素の含有量はそれぞれ
の元素によって最適な量が異なるが、一般には1原子%
〜50原子%、好ましくは5原子%〜30原子%、さら
に好ましくは10原子%〜20原子%の範囲である。第
一Cr薄膜は下地膜や磁性膜の磁気特性(磁化容易軸の
配向方向)を結晶的に制御するために設けるもので、第
一Cr薄膜はCr主成分とすることにより体心立方格子
の結晶構造を有する層とする。The optimum content of the second and third elements differs depending on the respective elements.
To 50 at%, preferably 5 to 30 at%, more preferably 10 to 20 at%. The first Cr thin film is provided for crystallographically controlling the magnetic characteristics (the orientation direction of the axis of easy magnetization) of the base film and the magnetic film. The layer has a crystal structure.
【0011】第一Cr薄膜の結晶構造を体心立方格子と
することにより、その上に設けられるTi系薄膜は本
来、磁化容易軸が垂直配向であるのを面内配向に近づけ
る役をなすと思われる。第一Cr薄膜の膜厚は100Å
程度以上あれば磁化容易軸の面内配向化効果が得られる
が、通常10〜5000Å程度で使用することが現実的
である。望ましくは生産性等の観点から100〜100
0Å程度が好ましい。By making the crystal structure of the first Cr thin film into a body-centered cubic lattice, the Ti-based thin film provided thereon originally has the function of making the easy axis of magnetization a vertical orientation closer to an in-plane orientation. Seem. The thickness of the first Cr thin film is 100Å
If the degree is equal to or more than the above, an effect of in-plane orientation of the easy axis can be obtained, but it is practical to use usually about 10 to 5000 °. Desirably from 100 to 100 from the viewpoint of productivity and the like.
About 0 ° is preferable.
【0012】Ti系薄膜としては、通常は、純Ti(不
純物としての他の成分を含有するものを含む)が用いら
れるが、第一Cr薄膜や第二Cr薄膜との親和性を向上
させたり、他の目的で、第二、第三成分を含有させるこ
ともある。本発明において、第一Cr薄膜と第二Cr薄
膜との間に施されるTi系薄膜は、基板より発生する水
蒸気、酸素など各種の不純物ガスを吸着、遮断する役割
を担っており、磁性膜の劣化を防止する目的で設けられ
る。As the Ti-based thin film, pure Ti (including one containing another component as an impurity) is usually used. However, the affinity with the first Cr thin film and the second Cr thin film is improved. For the other purpose, the second and third components may be contained. In the present invention, the Ti-based thin film provided between the first Cr thin film and the second Cr thin film plays a role of adsorbing and blocking various impurity gases such as water vapor and oxygen generated from the substrate. It is provided for the purpose of preventing the deterioration of.
【0013】従来から用いられている金属基板に比べ、
これら代替基板はこの不純物ガスが発生しやすく、これ
が磁性薄膜の磁気特性を著しく劣化させる。Ti薄膜は
これを防ぐ働きをする。Ti薄膜の材料は純Tiが最も
好ましいが、第二、第三元素等を10原子%以下含有し
ていても効果に大きな影響はない。[0013] Compared to a conventionally used metal substrate,
These substitute substrates tend to generate this impurity gas, which significantly degrades the magnetic properties of the magnetic thin film. The Ti thin film functions to prevent this. The material of the Ti thin film is most preferably pure Ti, but the effect is not significantly affected even if the second and third elements are contained at 10 atomic% or less.
【0014】Ti薄膜層の膜厚は、100Å程度以上で
あれば効果が得られ、100〜2000Å程度で使用す
ることが工業的見地から好ましい。第二Cr薄膜はCo
薄膜の磁気特性を面内磁気記録媒体として適したものに
するためのものである。具体的にはこの第二Cr薄膜が
体心立方格子構造をとり、(111)面または(20
0)面に配向する。The effect can be obtained if the thickness of the Ti thin film layer is about 100 ° or more, and it is preferable from an industrial point of view to use it at about 100 to 2000 °. The second Cr thin film is Co
This is to make the magnetic properties of the thin film suitable for an in-plane magnetic recording medium. Specifically, the second Cr thin film has a body-centered cubic lattice structure, and has a (111) plane or a (20) plane.
0) Orient to the plane.
【0015】そしてその上に連続的に成膜されたCo薄
膜をエピタキシャル成長させ、その結晶構造を稠密六方
格子の(110)面または(111)面を強く配向させ
る。仮にこの第二Cr薄膜を施さないとTi薄膜の結晶
構造が稠密六方格子が(002)面に配向しやすい性質
を持っているため、Co薄膜の結晶構造も同じく(00
2)面に強力に配向しやすくなる。Then, a Co thin film continuously formed thereon is epitaxially grown, and its crystal structure is oriented strongly on the (110) plane or the (111) plane of a dense hexagonal lattice. If the second Cr thin film is not provided, the crystal structure of the Ti thin film has such a property that the dense hexagonal lattice is easily oriented to the (002) plane.
2) It becomes easy to orientate strongly on the surface.
【0016】このような結晶構造をとる場合Co系薄膜
は面内磁気記録よりもむしろ垂直磁気記録に適した磁気
特性を呈するため、面内(長手)磁気記録媒体としては
適さなくなる。第二Cr薄膜はこうしたTi薄膜の働き
のうち、このような面内磁気記録媒体に適さない性質
を、Cr膜がCo膜を(111)または(110)面に
配向させる働きを利用して緩和することを目的としてい
る。In such a crystal structure, the Co-based thin film exhibits magnetic characteristics suitable for perpendicular magnetic recording rather than in-plane magnetic recording, and thus is not suitable as an in-plane (longitudinal) magnetic recording medium. The second Cr thin film alleviates the properties of the Ti thin film that are not suitable for such a longitudinal magnetic recording medium by utilizing the function of the Cr film to orient the Co film in the (111) or (110) plane. It is intended to be.
【0017】即ち、第一Cr薄膜を設けることにより、
Ti系薄膜の垂直配向を弱め、Ti系薄膜により基板か
らの脱ガスの悪影響を排し、第二Cr薄膜によりCo薄
膜の結晶構造を面内配向とし、基板上に高保磁力の優れ
た面内(長手)磁気記録媒体を供することができる。第
二Cr薄膜の膜厚は、目的とする媒体磁気特性にあわせ
て任意に設定できるが、通常100〜1000Å程度に
調整される。That is, by providing the first Cr thin film,
Weakens the vertical orientation of the Ti-based thin film, eliminates the adverse effects of outgassing from the substrate with the Ti-based thin film, makes the crystal structure of the Co thin film in-plane with the second Cr thin film, and provides an excellent in-plane high coercivity on the substrate. (Longitudinal) magnetic recording media can be provided. The thickness of the second Cr thin film can be arbitrarily set in accordance with the target magnetic properties of the medium, but is usually adjusted to about 100 to 1000 °.
【0018】Co系磁性薄膜の材料としては、通常用い
られる磁気ディスク用材料がすべて含まれる。例えば、
CoNiCr、CoCr、CoCrTa、CoCrP
t、CoCrPtTa、CoCrPtB、CoNiP
t、CoNiCrBTa、CoSmなどの合金である。The materials for the Co-based magnetic thin film include all commonly used materials for magnetic disks. For example,
CoNiCr, CoCr, CoCrTa, CoCrP
t, CoCrPtTa, CoCrPtB, CoNiP
t, an alloy such as CoNiCrBTa or CoSm.
【0019】これら媒体の最上部には任意の保護層を施
しても構わない。保護層の材料としてはアモルファスカ
ーボン膜や水素化カーボン膜などのC膜、あるいはSi
O2、Zr2O3など、通常用いられる保護層材料がす
べて含まれる。また、保護層が2層以上の膜から構成さ
れていてもかまわない。さらに保護層の上部にはフッ素
系液体潤滑剤などのような任意の潤滑剤を塗布するのが
一般的である。An optional protective layer may be provided on the uppermost portion of these media. As a material of the protective layer, a C film such as an amorphous carbon film or a hydrogenated carbon film, or a Si film is used.
All commonly used protective layer materials such as O2 and Zr2O3 are included. Further, the protective layer may be composed of two or more layers. Further, an arbitrary lubricant such as a fluorine-based liquid lubricant is generally applied to the upper part of the protective layer.
【0020】非磁性基板上に下地膜、Co系磁性膜を形
成する成膜方法は、直流スパッタリング法、高周波スパ
ッタリング法、真空蒸着法などの物理的蒸着法であれば
よい。さらに、基板に対して一定の電圧を印加しながら
成膜しても、発明の効果にはなんら影響はない。この場
合、基板への電圧印加はあらかじめ成膜した導電性の膜
に対して電圧を印加することとなる。基板バイアス電圧
の値は目的とする媒体の特性にあわせて任意に設定がで
きるが、通常、数百ボルト程度である。A film forming method for forming a base film and a Co-based magnetic film on a non-magnetic substrate may be a physical vapor deposition method such as a direct current sputtering method, a high frequency sputtering method, and a vacuum evaporation method. Further, even if a film is formed while applying a constant voltage to the substrate, the effect of the invention is not affected at all. In this case, a voltage is applied to the substrate by applying a voltage to the conductive film formed in advance. The value of the substrate bias voltage can be set arbitrarily according to the characteristics of the target medium, but is usually about several hundred volts.
【0021】成膜はそれぞれ成膜条件を適宜選択した
り、下地膜層成膜後、一旦大気中に取り出し、再び製膜
装置に挿入し、排気、基板加熱後、Co系磁性層を成膜
することもできるが、本発明の磁気記録媒体は、第一C
r薄膜、Ti薄膜、第二Cr薄膜、Co系磁性層を連続
スパッタ成膜することにより製造が可能であり、この場
合には、インライン装置による大量生産を図り製品のコ
ストダウンが可能である。In the film formation, the film formation conditions are appropriately selected, and after forming the base film layer, the film is once taken out into the atmosphere, inserted again into the film forming apparatus, evacuated and heated, and then the Co-based magnetic layer is formed. Although the magnetic recording medium of the present invention can
It can be manufactured by continuous sputtering of an r thin film, a Ti thin film, a second Cr thin film, and a Co-based magnetic layer. In this case, mass production can be achieved by an in-line apparatus and the cost of the product can be reduced.
【0022】なお、上記Co系磁性薄膜の成膜後は、通
常、引き続きインライン装置でアモルファスカーボン保
護膜や水素化カーボン保護膜を成膜し、その後、液体潤
滑剤などを塗布するのが一般的である。なお、成膜時に
は樹脂基板などの耐熱性のない基板を除いて、基板を予
め加熱した後成膜することが優れた磁気特性が得られる
ため好ましい。After the formation of the Co-based magnetic thin film, generally, an amorphous carbon protective film or a hydrogenated carbon protective film is continuously formed by an in-line apparatus, and thereafter, a liquid lubricant or the like is applied. It is. Note that it is preferable to form a film after preheating the substrate except for a substrate having no heat resistance, such as a resin substrate, at the time of film formation because excellent magnetic characteristics can be obtained.
【0023】[0023]
【実施例】アルミノシリケート系のガラスでできた直径
65mm、厚さ0.645mmの磁気ディスク用の基板
を用意し、この上に高周波マグネトロンスパッタリング
法を用いて媒体を形成した。このときスパッタリング装
置内の真空度はあらかじめ1.5×10-6torrまで
排気しておいた。また、成膜時の基板温度を約250
℃、アルゴンガス分圧を5.0×10-3torrとした。EXAMPLE A substrate for a magnetic disk having a diameter of 65 mm and a thickness of 0.645 mm made of aluminosilicate glass was prepared, and a medium was formed thereon using a high-frequency magnetron sputtering method. At this time, the degree of vacuum in the sputtering apparatus was exhausted to 1.5 × 10 −6 torr in advance. Further, the substrate temperature during film formation is about 250
C. and the argon gas partial pressure was 5.0 × 10 −3 torr.
【0024】実施例として、基板上に第一Cr薄膜、T
i薄膜、第二Cr薄膜、Co系磁性薄膜の順に形成した
媒体、比較例として、第一Cr薄膜を形成せずにTi薄
膜、第二Cr薄膜、Co系磁性薄膜の順に形成したもの
を作製した。ここでCo系磁性薄膜の材料としてCo76
Cr12Pt12合金を用いた。実施例、比較例の層構成、
および磁気特性を表1に示した。As an example, a first Cr thin film, T
A medium formed in the order of an i-thin film, a second Cr thin film, and a Co-based magnetic thin film. As a comparative example, a medium formed by forming a Ti thin film, a second Cr thin film, and a Co-based magnetic thin film without forming a first Cr thin film. did. Here, Co 76 is used as the material of the Co-based magnetic thin film.
Cr 12 Pt 12 alloy was used. Examples, layer configurations of comparative examples,
And the magnetic properties are shown in Table 1.
【0025】[0025]
【表1】 [Table 1]
【0026】比較例と実施例の保磁力Hcを残留磁束密
度Brtに対してプロットすると図1のようになる。極端
に小さいBrt値の領域では保磁力が低くなっているが
これは熱揺らぎの影響によるもので一般的な現象であ
る。図中の比較例データから明らかなように基板にガラ
スを用いてもTi下地薄膜を施した上に第二Cr薄膜、C
o系磁性薄膜を成膜することにより高い保磁力が得られ
る。FIG. 1 is a plot of the coercive force Hc of the comparative example and the example with respect to the residual magnetic flux density Brt. In a region having an extremely small Brt value, the coercive force is low, which is a general phenomenon due to the influence of thermal fluctuation. As is evident from the comparative example data in the figure, even if glass was used for the substrate, a Ti base thin film was applied, and a second Cr thin film and C
A high coercive force can be obtained by forming an o-based magnetic thin film.
【0027】しかし、図中実施例のようにTi薄膜の下
に更に第一Cr薄膜を設けたところ、媒体の保磁力値は
一層増大した。特に残留磁束密度Brtが70G・μm
以上の領域で効果が大きいことがわかった。However, when the first Cr thin film was further provided under the Ti thin film as in the embodiment in the figure, the coercive force value of the medium was further increased. In particular, the residual magnetic flux density Brt is 70 Gm
It was found that the effect was great in the above region.
【0028】[0028]
【発明の効果】本発明によれば、ガラス、シリコン、チ
タン基板を用いた場合でも十分に高い保磁力を得ること
が可能となる。According to the present invention, a sufficiently high coercive force can be obtained even when a glass, silicon, or titanium substrate is used.
【図1】 比較例と実施例の保磁力Hcを残留磁束密度
Brtに対してプロットしたグラフFIG. 1 shows the coercive force Hc of a comparative example and an example as a function of residual magnetic flux density.
Graph plotted against Brt
Claims (2)
系磁性膜を形成した磁気記録媒体において、下地膜とし
て、基板側からCr系薄膜、Ti系薄膜、Cr系薄膜の
順に設けたことを特徴とする磁気記録媒体。1. A non-magnetic substrate comprising at least a base film, Co
1. A magnetic recording medium comprising a magnetic recording medium on which a Cr-based thin film, a Ti-based thin film, and a Cr-based thin film are provided in this order from the substrate side as a base film.
徴とする請求項1に記載の磁気記録媒体。2. The magnetic recording medium according to claim 1, wherein the non-magnetic substrate is a glass substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32402696A JPH10162335A (en) | 1996-12-04 | 1996-12-04 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32402696A JPH10162335A (en) | 1996-12-04 | 1996-12-04 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10162335A true JPH10162335A (en) | 1998-06-19 |
Family
ID=18161329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32402696A Pending JPH10162335A (en) | 1996-12-04 | 1996-12-04 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10162335A (en) |
-
1996
- 1996-12-04 JP JP32402696A patent/JPH10162335A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3143611B2 (en) | Ultrathin nucleation layer for magnetic thin film media and method of making the layer | |
US6086974A (en) | Horizontal magnetic recording media having grains of chemically-ordered FEPT of COPT | |
US6007623A (en) | Method for making horizontal magnetic recording media having grains of chemically-ordered FePt or CoPt | |
US20040185307A1 (en) | Perpendicular magnetic recording medium and method for manufacturing the same | |
JP4207140B2 (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
JPS60157715A (en) | Magnetic recording medium | |
KR100418640B1 (en) | Magnetic recording medium and its manufacturing method | |
US6042939A (en) | Magnetic recording medium and method of manufacturing the same | |
US4663193A (en) | Process for manufacturing magnetic recording medium | |
US20020098389A1 (en) | High coercivity chp structural Co-based aloy longitudinal recording media and method for its fabrication | |
US5496606A (en) | Magnetic recording medium | |
JP2004213869A (en) | Vertical magnetic recording medium and its manufacturing method | |
US4645690A (en) | Method of manufacturing a magnetic media | |
JP4491768B2 (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
JPH11213371A (en) | Magnetic recording medium | |
JPH10162335A (en) | Magnetic recording medium | |
US20080037407A1 (en) | Method for Manufacturing Perpendicular Magnetic Recording Medium, Perpendicular Magnetic Recording Medium, and Magnetic Recording/Reproducing Apparatus | |
US6826825B2 (en) | Method for manufacturing a magnetic recording medium | |
JPH10233014A (en) | Magnetic recording medium | |
JPH03235218A (en) | Production of magnetic recording medium | |
JPH11232630A (en) | Magnetic record medium | |
JP2000348323A (en) | Magnetic recording medium, production of same and magnetic memory device | |
JPH0528483A (en) | Production of metallic thin film tape magnetic recording medium | |
JP2000030234A (en) | Magnetic recording medium | |
JPH1011735A (en) | Magnetic recording medium |