JPH10153175A - 可変容量型圧縮機 - Google Patents
可変容量型圧縮機Info
- Publication number
- JPH10153175A JPH10153175A JP8312392A JP31239296A JPH10153175A JP H10153175 A JPH10153175 A JP H10153175A JP 8312392 A JP8312392 A JP 8312392A JP 31239296 A JP31239296 A JP 31239296A JP H10153175 A JPH10153175 A JP H10153175A
- Authority
- JP
- Japan
- Prior art keywords
- spool
- pressure
- chamber
- passage
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compressor (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
(57)【要約】
【課題】 外部冷媒回路上の冷媒循環阻止状態での動力
損失を軽減可能な可変容量型圧縮機を提供すること。 【解決手段】 電磁弁57は吸入通路32を開閉し、同
通路32の閉鎖状態において外部冷媒回路71上の冷媒
循環が阻止される。可動型吐出弁61は、スプール60
のスライド移動により、吐出弁として作用される作用位
置と、作用されない不作用位置との間を移動される。同
スプール60は、スプール用制御圧室66内の調圧によ
り動作される。容量制御弁49は、クランク室15の調
圧と同時にスプール用制御圧室66の調圧も行う。同容
量制御弁49は、電磁弁57により外部冷媒回路71上
の冷媒循環が阻止された時、吐出容量が最小となるよう
にクランク室15の調圧を行うとともに、可動型吐出弁
61が不作用位置に配置されるようにスプール用制御圧
室66の圧力を低下させる。
損失を軽減可能な可変容量型圧縮機を提供すること。 【解決手段】 電磁弁57は吸入通路32を開閉し、同
通路32の閉鎖状態において外部冷媒回路71上の冷媒
循環が阻止される。可動型吐出弁61は、スプール60
のスライド移動により、吐出弁として作用される作用位
置と、作用されない不作用位置との間を移動される。同
スプール60は、スプール用制御圧室66内の調圧によ
り動作される。容量制御弁49は、クランク室15の調
圧と同時にスプール用制御圧室66の調圧も行う。同容
量制御弁49は、電磁弁57により外部冷媒回路71上
の冷媒循環が阻止された時、吐出容量が最小となるよう
にクランク室15の調圧を行うとともに、可動型吐出弁
61が不作用位置に配置されるようにスプール用制御圧
室66の圧力を低下させる。
Description
【0001】
【発明の属する技術分野】本発明は、例えば、車両空調
システム等に適用される可変容量型圧縮機に関する。
システム等に適用される可変容量型圧縮機に関する。
【0002】
【従来の技術】この種の圧縮機においては、例えば、特
開平3−37378号公報に開示されたものが存在す
る。すなわち、ハウジングは複数のハウジング構成体が
接合されてなり、駆動軸を回転可能に保持する。吸入
室、吐出室及びクランク室はハウジング内に形成されて
いる。カムプレートは同クランク室に収容され、駆動軸
に一体回転可能でかつ傾動可能に支持されている。複数
のシリンダボアは、ハウジング内に形成されている。片
頭型のピストンは、同シリンダボアに収容されるととも
に、前記カムプレートに連結されている。弁形成体は、
吸入室及び吐出室が形成されたハウジング構成体と、シ
リンダボアが形成されたハウジング構成体との間に介在
されている。吐出孔は、同弁形成体において各シリンダ
ボアに対応して穿設され、同シリンダボアと吐出室とを
連通する。固定型吐出弁は、弁形成体において吐出孔に
対応して形成され、同吐出孔を開閉する。
開平3−37378号公報に開示されたものが存在す
る。すなわち、ハウジングは複数のハウジング構成体が
接合されてなり、駆動軸を回転可能に保持する。吸入
室、吐出室及びクランク室はハウジング内に形成されて
いる。カムプレートは同クランク室に収容され、駆動軸
に一体回転可能でかつ傾動可能に支持されている。複数
のシリンダボアは、ハウジング内に形成されている。片
頭型のピストンは、同シリンダボアに収容されるととも
に、前記カムプレートに連結されている。弁形成体は、
吸入室及び吐出室が形成されたハウジング構成体と、シ
リンダボアが形成されたハウジング構成体との間に介在
されている。吐出孔は、同弁形成体において各シリンダ
ボアに対応して穿設され、同シリンダボアと吐出室とを
連通する。固定型吐出弁は、弁形成体において吐出孔に
対応して形成され、同吐出孔を開閉する。
【0003】そして、駆動軸の回転運動が、カムプレー
トを介してピストンの往復直線運動に変換され、冷媒ガ
スを吸入室からシリンダボア内に吸入した後、固定型吐
出弁の作用により圧縮し、吐出孔を介して吐出室へ吐出
する。また、カムプレートの傾角を調節することでピス
トンのストロークが変更され、吐出容量が変更される。
トを介してピストンの往復直線運動に変換され、冷媒ガ
スを吸入室からシリンダボア内に吸入した後、固定型吐
出弁の作用により圧縮し、吐出孔を介して吐出室へ吐出
する。また、カムプレートの傾角を調節することでピス
トンのストロークが変更され、吐出容量が変更される。
【0004】電磁弁は吸入室において冷媒ガスの入口に
配設され、同吸入室と外部冷媒回路との連通を遮断可能
である。そして、冷房不要時や外部冷媒回路上の蒸発器
においてフロストが発生しそうな場合等には、同電磁弁
により外部冷媒回路から吸入室への冷媒ガスの流入を止
めることで、同外部冷媒回路上の冷媒循環阻止が達成さ
れる。従って、このような場合においても圧縮機の運転
は継続されて良く、前記駆動軸と同駆動軸を駆動する車
両エンジン等の外部駆動源との間には、高価かつ重量物
である電磁クラッチ等のクラッチ機構は介在されていな
い。
配設され、同吸入室と外部冷媒回路との連通を遮断可能
である。そして、冷房不要時や外部冷媒回路上の蒸発器
においてフロストが発生しそうな場合等には、同電磁弁
により外部冷媒回路から吸入室への冷媒ガスの流入を止
めることで、同外部冷媒回路上の冷媒循環阻止が達成さ
れる。従って、このような場合においても圧縮機の運転
は継続されて良く、前記駆動軸と同駆動軸を駆動する車
両エンジン等の外部駆動源との間には、高価かつ重量物
である電磁クラッチ等のクラッチ機構は介在されていな
い。
【0005】ところで、前記構成の圧縮機は、車両エン
ジンの動作時においては常に運転される。このため、前
述した外部冷媒回路上の冷媒循環阻止状態において、動
力損失や各摺動部分における潤滑が問題となる。従っ
て、同圧縮機は、冷媒循環が阻止されるとカムプレート
を最小傾角に変更して吐出容量を最小とし、動力損失を
軽減するようにしている。また、同圧縮機は冷媒循環阻
止状態において、吐出室、クランク室及び吸入室を経由
する循環通路を形成し、同通路内を流動される潤滑油を
含む冷媒ガスにより、各摺動部分を潤滑するようにして
いる。
ジンの動作時においては常に運転される。このため、前
述した外部冷媒回路上の冷媒循環阻止状態において、動
力損失や各摺動部分における潤滑が問題となる。従っ
て、同圧縮機は、冷媒循環が阻止されるとカムプレート
を最小傾角に変更して吐出容量を最小とし、動力損失を
軽減するようにしている。また、同圧縮機は冷媒循環阻
止状態において、吐出室、クランク室及び吸入室を経由
する循環通路を形成し、同通路内を流動される潤滑油を
含む冷媒ガスにより、各摺動部分を潤滑するようにして
いる。
【0006】
【発明が解決しようとする課題】ところが、冷媒ガスが
前記循環通路を循環するには、吐出室、クランク室及び
吸入室の各室間に、同冷媒ガスの流動を生起する差圧を
生じさせる必要がある。このため、前記圧縮機は、カム
プレートの最小傾角が零とはならないように規定し、冷
媒ガスの圧縮を冷媒循環阻止状態においても継続させる
ことで、各室間に差圧を生じさせている。従って、前述
した動力損失の問題が解消されたとは言い難いし、冷媒
ガスを圧縮する際にピストンに対して作用する圧縮反力
が、同ピストンをシリンダボアに対して押付けるため、
両者間の摺動抵抗の増大による摩耗劣化が問題となる。
前記循環通路を循環するには、吐出室、クランク室及び
吸入室の各室間に、同冷媒ガスの流動を生起する差圧を
生じさせる必要がある。このため、前記圧縮機は、カム
プレートの最小傾角が零とはならないように規定し、冷
媒ガスの圧縮を冷媒循環阻止状態においても継続させる
ことで、各室間に差圧を生じさせている。従って、前述
した動力損失の問題が解消されたとは言い難いし、冷媒
ガスを圧縮する際にピストンに対して作用する圧縮反力
が、同ピストンをシリンダボアに対して押付けるため、
両者間の摺動抵抗の増大による摩耗劣化が問題となる。
【0007】本発明は、上記従来技術に存在する問題点
に着目してなされたものであって、その目的は、外部冷
媒回路上の冷媒循環阻止状態での動力損失を軽減可能な
可変容量型圧縮機を提供することにある。
に着目してなされたものであって、その目的は、外部冷
媒回路上の冷媒循環阻止状態での動力損失を軽減可能な
可変容量型圧縮機を提供することにある。
【0008】
【課題を解決するための手段】上記目的を達成するため
に請求項1の発明では、外部冷媒回路上の冷媒循環を阻
止するための冷媒循環阻止手段と、同冷媒循環阻止手段
により外部冷媒回路上の冷媒循環が阻止された時、冷媒
ガスを、吐出室、クランク室及び吸入室を経由して循環
させる循環通路と、前記弁形成体に配設され、同弁形成
体上の少なくとも一つで全部ではない吐出孔に対応する
固定型吐出弁と、同固定型吐出弁が対応された吐出孔以
外の吐出孔に対応し、吐出弁として作用される作用位置
と、吐出弁として作用されない不作用位置との間を移動
可能な可動型吐出弁と、前記冷媒循環阻止手段により外
部冷媒回路上の冷媒循環が阻止された時、可動型吐出弁
を不作用位置に配置するアンロード手段とを備えた可変
容量型圧縮機である。
に請求項1の発明では、外部冷媒回路上の冷媒循環を阻
止するための冷媒循環阻止手段と、同冷媒循環阻止手段
により外部冷媒回路上の冷媒循環が阻止された時、冷媒
ガスを、吐出室、クランク室及び吸入室を経由して循環
させる循環通路と、前記弁形成体に配設され、同弁形成
体上の少なくとも一つで全部ではない吐出孔に対応する
固定型吐出弁と、同固定型吐出弁が対応された吐出孔以
外の吐出孔に対応し、吐出弁として作用される作用位置
と、吐出弁として作用されない不作用位置との間を移動
可能な可動型吐出弁と、前記冷媒循環阻止手段により外
部冷媒回路上の冷媒循環が阻止された時、可動型吐出弁
を不作用位置に配置するアンロード手段とを備えた可変
容量型圧縮機である。
【0009】請求項2の発明では、前記可動型吐出弁は
弁形成体に対して接離可能に構成され、前記アンロード
手段は、ハウジング内部に配設されるとともに可動型吐
出弁に連結され、弁形成体に対して近接・離間方向へ移
動可能なスプールと、同スプールの背面側に区画形成さ
れたスプール用制御圧室と、前記可動型吐出弁が弁形成
体から離間するように、スプールを付勢する付勢手段
と、前記スプール用制御圧室と吸入圧領域より高圧とな
る高圧領域とを接続するスプール用給気通路と、前記ス
プール用制御圧室と高圧領域より低圧な低圧領域とを接
続するスプール用抽気通路と、前記冷媒循環阻止手段に
より外部冷媒回路上の冷媒循環が阻止された時、高圧領
域からスプール用給気通路を介して導入される冷媒ガス
の量及び/又はスプール用抽気通路を介して導出される
冷媒ガスの量を調節することで、前記スプール用制御圧
室の圧力を低下させるスプール制御手段とを備えたもの
である。
弁形成体に対して接離可能に構成され、前記アンロード
手段は、ハウジング内部に配設されるとともに可動型吐
出弁に連結され、弁形成体に対して近接・離間方向へ移
動可能なスプールと、同スプールの背面側に区画形成さ
れたスプール用制御圧室と、前記可動型吐出弁が弁形成
体から離間するように、スプールを付勢する付勢手段
と、前記スプール用制御圧室と吸入圧領域より高圧とな
る高圧領域とを接続するスプール用給気通路と、前記ス
プール用制御圧室と高圧領域より低圧な低圧領域とを接
続するスプール用抽気通路と、前記冷媒循環阻止手段に
より外部冷媒回路上の冷媒循環が阻止された時、高圧領
域からスプール用給気通路を介して導入される冷媒ガス
の量及び/又はスプール用抽気通路を介して導出される
冷媒ガスの量を調節することで、前記スプール用制御圧
室の圧力を低下させるスプール制御手段とを備えたもの
である。
【0010】請求項3の発明では、前記カムプレートの
傾角調節は、クランク室の圧力を調節することで、同ク
ランク室の圧力とシリンダボア内の圧力とのピストンを
介した差を変更して行われ、高圧領域である吐出圧領域
と低圧領域である前記クランク室とを接続する容量変更
用給気通路と、前記クランク室と吸入圧領域とを接続す
る容量変更用抽気通路と、前記容量変更用給気通路上に
介在され、同通路の開度を調節することでクランク室の
圧力を調節し、前記冷媒循環阻止手段により外部冷媒回
路上の冷媒循環が阻止された時には、同通路の開度を大
きくして吐出容量を最小とする容量制御弁とを備え、前
記スプール用抽気通路は容量制御弁を経由され、同容量
制御弁が前記スプール制御手段を構成する。
傾角調節は、クランク室の圧力を調節することで、同ク
ランク室の圧力とシリンダボア内の圧力とのピストンを
介した差を変更して行われ、高圧領域である吐出圧領域
と低圧領域である前記クランク室とを接続する容量変更
用給気通路と、前記クランク室と吸入圧領域とを接続す
る容量変更用抽気通路と、前記容量変更用給気通路上に
介在され、同通路の開度を調節することでクランク室の
圧力を調節し、前記冷媒循環阻止手段により外部冷媒回
路上の冷媒循環が阻止された時には、同通路の開度を大
きくして吐出容量を最小とする容量制御弁とを備え、前
記スプール用抽気通路は容量制御弁を経由され、同容量
制御弁が前記スプール制御手段を構成する。
【0011】請求項4の発明では、前記容量変更用給気
通路は、容量制御弁より吐出圧領域側に位置する部分が
スプール用制御圧室を経由され、同通路がスプール用給
気通路及びスプール用抽気通路を兼ねている。
通路は、容量制御弁より吐出圧領域側に位置する部分が
スプール用制御圧室を経由され、同通路がスプール用給
気通路及びスプール用抽気通路を兼ねている。
【0012】請求項5の発明では、前記カムプレートの
傾角調節は、クランク室の圧力を調節することで、同ク
ランク室の圧力とシリンダボア内の圧力とのピストンを
介した差を変更して行われ、吐出圧領域と高圧領域であ
る前記クランク室とを接続する容量変更用給気通路と、
前記クランク室と低圧領域である吸入圧領域とを接続す
る容量変更用抽気通路と、同容量変更用抽気通路上に介
在され、同通路の開度を調節することでクランク室の圧
力を変更し、前記冷媒循環阻止手段により外部冷媒回路
上の冷媒循環が阻止された時には、同通路の開度を小さ
くして吐出容量を最小とする容量制御弁とを備え、前記
スプール用給気通路は容量制御弁を経由され、同容量制
御弁が前記スプール制御手段を構成する。
傾角調節は、クランク室の圧力を調節することで、同ク
ランク室の圧力とシリンダボア内の圧力とのピストンを
介した差を変更して行われ、吐出圧領域と高圧領域であ
る前記クランク室とを接続する容量変更用給気通路と、
前記クランク室と低圧領域である吸入圧領域とを接続す
る容量変更用抽気通路と、同容量変更用抽気通路上に介
在され、同通路の開度を調節することでクランク室の圧
力を変更し、前記冷媒循環阻止手段により外部冷媒回路
上の冷媒循環が阻止された時には、同通路の開度を小さ
くして吐出容量を最小とする容量制御弁とを備え、前記
スプール用給気通路は容量制御弁を経由され、同容量制
御弁が前記スプール制御手段を構成する。
【0013】請求項6の発明では、前記容量変更用抽気
通路は、容量制御弁より吸入圧領域側に位置する部分が
スプール用制御圧室を経由され、同通路がスプール用給
気通路及びスプール用抽気通路を兼ねている。
通路は、容量制御弁より吸入圧領域側に位置する部分が
スプール用制御圧室を経由され、同通路がスプール用給
気通路及びスプール用抽気通路を兼ねている。
【0014】請求項7の発明では、前記駆動軸は、クラ
ッチ機構を介することなく外部駆動源に作動連結されて
いる。 (作用)上記構成の請求項1の発明においては、外部冷
媒回路上の冷媒循環が許容されると、例えば、アンロー
ド手段により可動型吐出弁が作用位置に配置され、同可
動型吐出弁及び固定型吐出弁の作用により、各シリンダ
ボア内に吸入された冷媒ガスが圧縮されて、吐出室に吐
出される。
ッチ機構を介することなく外部駆動源に作動連結されて
いる。 (作用)上記構成の請求項1の発明においては、外部冷
媒回路上の冷媒循環が許容されると、例えば、アンロー
ド手段により可動型吐出弁が作用位置に配置され、同可
動型吐出弁及び固定型吐出弁の作用により、各シリンダ
ボア内に吸入された冷媒ガスが圧縮されて、吐出室に吐
出される。
【0015】ここで、冷房不要時や外部冷媒回路上の蒸
発器においてフロストが発生しそうな場合等には、冷媒
循環阻止手段により外部冷媒回路上の冷媒循環が阻止さ
れる。そして、作用位置にある可動型吐出弁が、アンロ
ード手段により不作用位置に移動され、同弁は吐出弁と
して作用されない。従って、同弁が対応するシリンダボ
ア内においては、冷媒ガスの圧縮はなされない。つま
り、一部のシリンダボアにおいて圧縮仕事が休止され、
動力損失が軽減される。
発器においてフロストが発生しそうな場合等には、冷媒
循環阻止手段により外部冷媒回路上の冷媒循環が阻止さ
れる。そして、作用位置にある可動型吐出弁が、アンロ
ード手段により不作用位置に移動され、同弁は吐出弁と
して作用されない。従って、同弁が対応するシリンダボ
ア内においては、冷媒ガスの圧縮はなされない。つま
り、一部のシリンダボアにおいて圧縮仕事が休止され、
動力損失が軽減される。
【0016】しかし、可動型吐出弁が不作用位置に移動
され、吐出弁として作用しなくなった後も、固定型吐出
弁の吐出弁としての作用は持続される。従って、同弁が
対応するシリンダボア内の冷媒ガスは圧縮されて、吐出
室に吐出される。その結果、吐出室、クランク室及び吸
入室の各室間に差圧が生じ、同各室を経由する循環通路
内を、潤滑油を含む冷媒ガスが循環されて各摺動部分が
潤滑される。
され、吐出弁として作用しなくなった後も、固定型吐出
弁の吐出弁としての作用は持続される。従って、同弁が
対応するシリンダボア内の冷媒ガスは圧縮されて、吐出
室に吐出される。その結果、吐出室、クランク室及び吸
入室の各室間に差圧が生じ、同各室を経由する循環通路
内を、潤滑油を含む冷媒ガスが循環されて各摺動部分が
潤滑される。
【0017】さて、前述したように、外部冷媒回路上の
冷媒循環阻止が冷媒循環阻止手段により達成されるた
め、冷房不要時や、外部冷媒回路上の蒸発器においてフ
ロストが発生しそうな場合等においても、圧縮機の運転
は継続されて良い。従って、請求項7の発明において
は、駆動軸を外部駆動源に対してクラッチ機構を介する
ことなく連結しており、圧縮機は外部駆動源の動作時に
は常に運転される。
冷媒循環阻止が冷媒循環阻止手段により達成されるた
め、冷房不要時や、外部冷媒回路上の蒸発器においてフ
ロストが発生しそうな場合等においても、圧縮機の運転
は継続されて良い。従って、請求項7の発明において
は、駆動軸を外部駆動源に対してクラッチ機構を介する
ことなく連結しており、圧縮機は外部駆動源の動作時に
は常に運転される。
【0018】請求項2の発明においては、外部冷媒回路
上の冷媒循環が冷媒循環阻止手段により阻止されると、
スプール制御手段は、高圧領域からスプール用給気通路
を介して導入される冷媒ガスの量及び/又はスプール用
抽気通路を介して低圧領域へ導出される冷媒ガスの量を
調節して、スプール用制御圧室の圧力を所定値よりも低
下させる。従って、スプールが、付勢手段の付勢力との
釣り合いにより弁形成体から離間移動され、可動型吐出
弁は作用位置から不作用位置に移動配置される。
上の冷媒循環が冷媒循環阻止手段により阻止されると、
スプール制御手段は、高圧領域からスプール用給気通路
を介して導入される冷媒ガスの量及び/又はスプール用
抽気通路を介して低圧領域へ導出される冷媒ガスの量を
調節して、スプール用制御圧室の圧力を所定値よりも低
下させる。従って、スプールが、付勢手段の付勢力との
釣り合いにより弁形成体から離間移動され、可動型吐出
弁は作用位置から不作用位置に移動配置される。
【0019】請求項3の発明においては、冷媒循環阻止
手段により外部冷媒回路上の冷媒循環が阻止されると、
容量制御弁は容量変更用給気通路の開度を大きくするこ
とで、吐出圧領域からクランク室への高圧冷媒ガスの導
入量を多くして、同クランク室の圧力を高める。従っ
て、カムプレートが最小傾角に傾動されて、吐出容量が
最小となる。
手段により外部冷媒回路上の冷媒循環が阻止されると、
容量制御弁は容量変更用給気通路の開度を大きくするこ
とで、吐出圧領域からクランク室への高圧冷媒ガスの導
入量を多くして、同クランク室の圧力を高める。従っ
て、カムプレートが最小傾角に傾動されて、吐出容量が
最小となる。
【0020】ここで、スプール用制御圧室は、スプール
用給気通路を介して吐出圧領域に接続されている。従っ
て、吐出容量が最小となることで吐出圧領域の圧力が低
下され、同吐出圧領域からスプール用制御圧室に導入さ
れる冷媒ガスの量は少なくなる。また、スプール用抽気
通路が容量制御弁を経由されており、同容量制御弁が容
量変更用給気通路の開度を大きくすると、スプール用抽
気通路の開度も大きくなる。従って、スプール用制御圧
室からクランク室へ導出される冷媒ガスの量が多くな
り、同スプール用制御圧室の圧力は速やかに所定値より
も低くなる。その結果、可動型吐出弁は、作用位置から
不作用位置へ迅速に移動配置される。
用給気通路を介して吐出圧領域に接続されている。従っ
て、吐出容量が最小となることで吐出圧領域の圧力が低
下され、同吐出圧領域からスプール用制御圧室に導入さ
れる冷媒ガスの量は少なくなる。また、スプール用抽気
通路が容量制御弁を経由されており、同容量制御弁が容
量変更用給気通路の開度を大きくすると、スプール用抽
気通路の開度も大きくなる。従って、スプール用制御圧
室からクランク室へ導出される冷媒ガスの量が多くな
り、同スプール用制御圧室の圧力は速やかに所定値より
も低くなる。その結果、可動型吐出弁は、作用位置から
不作用位置へ迅速に移動配置される。
【0021】つまり、容量制御弁はスプール制御手段を
構成し、外部冷媒回路上の冷媒循環が阻止されると、高
圧領域からスプール用給気通路を介して導入される冷媒
ガスの量を少なくし、スプール用抽気通路を介して導出
される冷媒ガスの量を多くして、スプール用制御圧室の
圧力を所定値よりも低下させる。
構成し、外部冷媒回路上の冷媒循環が阻止されると、高
圧領域からスプール用給気通路を介して導入される冷媒
ガスの量を少なくし、スプール用抽気通路を介して導出
される冷媒ガスの量を多くして、スプール用制御圧室の
圧力を所定値よりも低下させる。
【0022】また、冷媒循環阻止手段により外部冷媒回
路上の冷媒循環が許容され、容量制御弁が容量変更用給
気通路の開度を小さくして、吐出容量を最小容量から非
最小容量とすると、スプール用抽気通路の開度も小さく
なる。従って、スプール用制御圧室からクランク室へ導
出される冷媒ガスの量が少なくなり、同スプール用制御
圧室の圧力は、スプール用給気通路を介した高圧領域か
らの冷媒ガスの導入量の増大により、速やかに所定値よ
りも高くなる。その結果、不作用位置にある可動型吐出
弁は、迅速に作用位置に移動される。
路上の冷媒循環が許容され、容量制御弁が容量変更用給
気通路の開度を小さくして、吐出容量を最小容量から非
最小容量とすると、スプール用抽気通路の開度も小さく
なる。従って、スプール用制御圧室からクランク室へ導
出される冷媒ガスの量が少なくなり、同スプール用制御
圧室の圧力は、スプール用給気通路を介した高圧領域か
らの冷媒ガスの導入量の増大により、速やかに所定値よ
りも高くなる。その結果、不作用位置にある可動型吐出
弁は、迅速に作用位置に移動される。
【0023】請求項4の発明においては、容量変更用給
気通路がスプール用給気通路及びスプール用抽気通路を
兼ねる。従って、スプール用給気通路及びスプール用抽
気通路を専用に設ける必要がない。
気通路がスプール用給気通路及びスプール用抽気通路を
兼ねる。従って、スプール用給気通路及びスプール用抽
気通路を専用に設ける必要がない。
【0024】請求項5の発明においては、冷媒循環阻止
手段により外部冷媒回路上の冷媒循環が阻止されると、
容量制御弁は容量変更用抽気通路の開度を小さくするこ
とで、クランク室から吸入圧領域への冷媒ガスの導出量
を少なくして、同クランク室の圧力を高める。従って、
カムプレートが最小傾角に傾動されて、吐出容量が最小
となる。
手段により外部冷媒回路上の冷媒循環が阻止されると、
容量制御弁は容量変更用抽気通路の開度を小さくするこ
とで、クランク室から吸入圧領域への冷媒ガスの導出量
を少なくして、同クランク室の圧力を高める。従って、
カムプレートが最小傾角に傾動されて、吐出容量が最小
となる。
【0025】ここで、前記スプール用給気通路は容量制
御弁を経由されており、同容量制御弁が容量変更用抽気
通路の開度を小さくすると、スプール用給気通路の開度
も小さくなる。従って、クランク室からスプール用制御
圧室へ導入される高圧冷媒ガスの量が少なくなり、スプ
ール用抽気通路を介した吸入圧領域への冷媒ガスの導出
により、同スプール用制御圧室の圧力は速やかに所定値
よりも低くなる。その結果、可動型吐出弁が迅速に不作
用位置に配置される。
御弁を経由されており、同容量制御弁が容量変更用抽気
通路の開度を小さくすると、スプール用給気通路の開度
も小さくなる。従って、クランク室からスプール用制御
圧室へ導入される高圧冷媒ガスの量が少なくなり、スプ
ール用抽気通路を介した吸入圧領域への冷媒ガスの導出
により、同スプール用制御圧室の圧力は速やかに所定値
よりも低くなる。その結果、可動型吐出弁が迅速に不作
用位置に配置される。
【0026】つまり、容量制御弁はスプール制御手段を
構成し、外部冷媒回路上の冷媒循環が冷媒循環阻止手段
により阻止されると、高圧領域からスプール用給気通路
を介して導入される冷媒ガスの量を少なくして、スプー
ル用制御圧室の圧力を所定値よりも低下させる。
構成し、外部冷媒回路上の冷媒循環が冷媒循環阻止手段
により阻止されると、高圧領域からスプール用給気通路
を介して導入される冷媒ガスの量を少なくして、スプー
ル用制御圧室の圧力を所定値よりも低下させる。
【0027】また、冷媒循環阻止手段により外部冷媒回
路上の冷媒循環が許容され、容量制御弁が容量変更用抽
気通路の開度を大きくして、吐出容量を最小容量から非
最小容量とすると、吐出圧領域の圧力が高くなるととも
にスプール用給気通路の開度も大きくなる。従って、吐
出圧領域からスプール用制御圧室へ導入される冷媒ガス
の量が多くなり、同スプール用制御圧室の圧力は、速や
かに所定値よりも高くなる。その結果、不作用位置にあ
る可動型吐出弁は、迅速に作用位置に移動される。
路上の冷媒循環が許容され、容量制御弁が容量変更用抽
気通路の開度を大きくして、吐出容量を最小容量から非
最小容量とすると、吐出圧領域の圧力が高くなるととも
にスプール用給気通路の開度も大きくなる。従って、吐
出圧領域からスプール用制御圧室へ導入される冷媒ガス
の量が多くなり、同スプール用制御圧室の圧力は、速や
かに所定値よりも高くなる。その結果、不作用位置にあ
る可動型吐出弁は、迅速に作用位置に移動される。
【0028】請求項6の発明においては、容量変更用抽
気通路がスプール用給気通路及びスプール用抽気通路を
兼ねる。従って、スプール用給気通路及びスプール用抽
気通路を専用に設ける必要がない。
気通路がスプール用給気通路及びスプール用抽気通路を
兼ねる。従って、スプール用給気通路及びスプール用抽
気通路を専用に設ける必要がない。
【0029】
【発明の実施の形態】以下、本発明をクラッチレスタイ
プの可変容量型圧縮機において具体化した第1及び第2
実施形態について説明する。なお、第2実施形態におい
ては第1実施形態との相違点についてのみ説明し、同一
又は相当部材には同じ番号を付して説明を省略する。
プの可変容量型圧縮機において具体化した第1及び第2
実施形態について説明する。なお、第2実施形態におい
ては第1実施形態との相違点についてのみ説明し、同一
又は相当部材には同じ番号を付して説明を省略する。
【0030】(第1実施形態)図1に示すように、フロ
ントハウジング11はシリンダブロック12の前端に接
合固定されている。リヤハウジング13は、シリンダブ
ロック12の後端に弁形成体14を介して接合固定され
ている。フロントハウジング11、シリンダブロック1
2及びリヤハウジング13が、本実施形態のハウジング
構成体である。クランク室15は、フロントハウジング
11とシリンダブロック12とにより囲まれて区画形成
されている。駆動軸16は、クランク室15内を通るよ
うに、フロントハウジング11とシリンダブロック12
との間に回転可能に架設支持されている。プーリ17
は、フロントハウジング11の前壁面に、アンギュラベ
アリング18を介して回転可能に支持されている。同プ
ーリ17は、前記駆動軸16のフロントハウジング11
からの突出端部に連結されており、その外周部に巻き掛
けられたベルト19を介して外部駆動源としての車両エ
ンジンEに、電磁クラッチ等のクラッチ機構を介するこ
となく作動連結されている。
ントハウジング11はシリンダブロック12の前端に接
合固定されている。リヤハウジング13は、シリンダブ
ロック12の後端に弁形成体14を介して接合固定され
ている。フロントハウジング11、シリンダブロック1
2及びリヤハウジング13が、本実施形態のハウジング
構成体である。クランク室15は、フロントハウジング
11とシリンダブロック12とにより囲まれて区画形成
されている。駆動軸16は、クランク室15内を通るよ
うに、フロントハウジング11とシリンダブロック12
との間に回転可能に架設支持されている。プーリ17
は、フロントハウジング11の前壁面に、アンギュラベ
アリング18を介して回転可能に支持されている。同プ
ーリ17は、前記駆動軸16のフロントハウジング11
からの突出端部に連結されており、その外周部に巻き掛
けられたベルト19を介して外部駆動源としての車両エ
ンジンEに、電磁クラッチ等のクラッチ機構を介するこ
となく作動連結されている。
【0031】リップシール21は、駆動軸16の前端側
外周面とフロントハウジング11との間に介在され、同
駆動軸16を封止している。回転支持体22は、クラン
ク室15内において前記駆動軸16に止着されている。
スラストベアリング44は、回転支持体22とフロント
ハウジング11との間に介在されている。カムプレート
としての斜板23は、駆動軸16に対してその軸線L方
向へスライド可能かつ傾動可能に支持されている。支持
アーム24は回転支持体22に突設されており、そのガ
イド孔24aを以て前記斜板23に設けられたガイドピ
ン25の球状部25aに係合されている。
外周面とフロントハウジング11との間に介在され、同
駆動軸16を封止している。回転支持体22は、クラン
ク室15内において前記駆動軸16に止着されている。
スラストベアリング44は、回転支持体22とフロント
ハウジング11との間に介在されている。カムプレート
としての斜板23は、駆動軸16に対してその軸線L方
向へスライド可能かつ傾動可能に支持されている。支持
アーム24は回転支持体22に突設されており、そのガ
イド孔24aを以て前記斜板23に設けられたガイドピ
ン25の球状部25aに係合されている。
【0032】そして、前記斜板23は、支持アーム24
とガイドピン25との連係により、駆動軸16の軸線L
方向へ傾動可能かつ同駆動軸16と一体的に回転可能と
なっている。同斜板23の傾動は、ガイド孔24aと球
状部25aとの間のスライドガイド関係、駆動軸16の
スライド支持作用により案内される。斜板23の半径中
心部がシリンダブロック12側に移動されると、同斜板
23の傾角が減少される。サークリップ20は、斜板2
3とシリンダブロック12との間において駆動軸16に
固定され、斜板23が傾動して当接されることで、同斜
板23の零(0°)ではない最小傾角を規定する。傾角
減少バネ26は、前記回転支持体22と斜板23との間
に介在されている。同傾角減少バネ26は、斜板23を
傾角の減少方向に付勢する。傾角規制突部23aは斜板
23の前面に突設され、回転支持体22の後面に当接さ
れることで、斜板23の最大傾角を規定する。
とガイドピン25との連係により、駆動軸16の軸線L
方向へ傾動可能かつ同駆動軸16と一体的に回転可能と
なっている。同斜板23の傾動は、ガイド孔24aと球
状部25aとの間のスライドガイド関係、駆動軸16の
スライド支持作用により案内される。斜板23の半径中
心部がシリンダブロック12側に移動されると、同斜板
23の傾角が減少される。サークリップ20は、斜板2
3とシリンダブロック12との間において駆動軸16に
固定され、斜板23が傾動して当接されることで、同斜
板23の零(0°)ではない最小傾角を規定する。傾角
減少バネ26は、前記回転支持体22と斜板23との間
に介在されている。同傾角減少バネ26は、斜板23を
傾角の減少方向に付勢する。傾角規制突部23aは斜板
23の前面に突設され、回転支持体22の後面に当接さ
れることで、斜板23の最大傾角を規定する。
【0033】図2に示すように、シリンダボア12a
は、前記シリンダブロック12において同一円周上の複
数個所(五個所)に所定間隔で貫設形成され、同数の片
頭型のピストン36は、各シリンダボア12a内に収容
されている。前記斜板23はシュー37を介してピスト
ン36に連結されており、同斜板23の回転運動がピス
トン36の往復直線運動に変換される。
は、前記シリンダブロック12において同一円周上の複
数個所(五個所)に所定間隔で貫設形成され、同数の片
頭型のピストン36は、各シリンダボア12a内に収容
されている。前記斜板23はシュー37を介してピスト
ン36に連結されており、同斜板23の回転運動がピス
トン36の往復直線運動に変換される。
【0034】吸入圧領域を構成する吸入室38は、リヤ
ハウジング13内において外周部に区画形成されてい
る。吐出圧領域を構成する吐出室39は、リヤハウジン
グ13内において内周部に区画形成されている。吸入通
路32はリヤハウジング13に設けられ、吸入室38に
接続されている。
ハウジング13内において外周部に区画形成されてい
る。吐出圧領域を構成する吐出室39は、リヤハウジン
グ13内において内周部に区画形成されている。吸入通
路32はリヤハウジング13に設けられ、吸入室38に
接続されている。
【0035】吸入孔40は弁形成体14の外周部におい
て、前記シリンダボア12aに対応して同数が貫設形成
され、各シリンダボア12aと吸入室38とを接続す
る。吸入弁41は、弁形成体14において吸入孔40に
対応して形成され、同吸入孔40を開閉する。そして、
ピストン36の上死点位置から下死点位置への移動に伴
って、同吸入弁41の作用により、吸入室38から吸入
孔40を介して各シリンダボア12a内に冷媒ガスが吸
入される。
て、前記シリンダボア12aに対応して同数が貫設形成
され、各シリンダボア12aと吸入室38とを接続す
る。吸入弁41は、弁形成体14において吸入孔40に
対応して形成され、同吸入孔40を開閉する。そして、
ピストン36の上死点位置から下死点位置への移動に伴
って、同吸入弁41の作用により、吸入室38から吸入
孔40を介して各シリンダボア12a内に冷媒ガスが吸
入される。
【0036】前記シリンダボア12aと同数の吐出孔4
2は、弁形成体14の内周部に貫設され、各シリンダボ
ア12aと吐出室39とを接続する。少なくとも一つ
(本実施形態においては一つ)の固定型吐出弁43は弁
形成体14に設けられ、対応する吐出孔42を開閉す
る。そして、ピストン36の下死点位置から上死点位置
への移動に伴って、同固定型吐出弁43の作用により、
それが対応するシリンダボア12a内の冷媒ガスが所定
の圧力にまで圧縮され、吐出孔42を介して吐出室39
に吐出される。
2は、弁形成体14の内周部に貫設され、各シリンダボ
ア12aと吐出室39とを接続する。少なくとも一つ
(本実施形態においては一つ)の固定型吐出弁43は弁
形成体14に設けられ、対応する吐出孔42を開閉す
る。そして、ピストン36の下死点位置から上死点位置
への移動に伴って、同固定型吐出弁43の作用により、
それが対応するシリンダボア12a内の冷媒ガスが所定
の圧力にまで圧縮され、吐出孔42を介して吐出室39
に吐出される。
【0037】通路46は駆動軸16内に形成され、その
入口46aは駆動軸16の前端側においてリップシール
21付近で、出口46bは、駆動軸16の後端側をラジ
アルベアリング30を介して支持するシリンダブロック
12の収容孔27内で、それぞれ開口されている。
入口46aは駆動軸16の前端側においてリップシール
21付近で、出口46bは、駆動軸16の後端側をラジ
アルベアリング30を介して支持するシリンダブロック
12の収容孔27内で、それぞれ開口されている。
【0038】容量変更用抽気通路47は、シリンダブロ
ック12及び弁形成体14に形成され、クランク室15
の一部である収容孔27と吸入圧領域としての吸入室3
8とを接続する。容量変更用給気通路48は、吐出圧領
域としての吐出室39とクランク室15とを接続し、同
通路48上には感圧弁である容量制御弁49が介在され
ている。同容量制御弁49について説明すると、弁室5
0は容量変更用給気通路48の一部を構成し、同弁室5
0内にはポート50aが形成されている。弁体51は弁
室50内に収容されており、バネ56によりポート50
aに接触する方向へ付勢されている。収容室52は弁室
50に対して区画されており、同収容室52を感圧部材
であるダイヤフラム53により区画することで、感圧室
52a及び大気に開放された大気室52bが形成されて
いる。前記弁体51とダイヤフラム53とは、ロッド5
4を介して連結されている。検圧通路55は吸入室38
と感圧室52aとを接続し、同感圧室52aに吸入室3
8内の冷媒ガスを導入する。
ック12及び弁形成体14に形成され、クランク室15
の一部である収容孔27と吸入圧領域としての吸入室3
8とを接続する。容量変更用給気通路48は、吐出圧領
域としての吐出室39とクランク室15とを接続し、同
通路48上には感圧弁である容量制御弁49が介在され
ている。同容量制御弁49について説明すると、弁室5
0は容量変更用給気通路48の一部を構成し、同弁室5
0内にはポート50aが形成されている。弁体51は弁
室50内に収容されており、バネ56によりポート50
aに接触する方向へ付勢されている。収容室52は弁室
50に対して区画されており、同収容室52を感圧部材
であるダイヤフラム53により区画することで、感圧室
52a及び大気に開放された大気室52bが形成されて
いる。前記弁体51とダイヤフラム53とは、ロッド5
4を介して連結されている。検圧通路55は吸入室38
と感圧室52aとを接続し、同感圧室52aに吸入室3
8内の冷媒ガスを導入する。
【0039】従って、ダイヤフラム53が吸入室38内
の圧力の高低により動作され、弁体51によりポート5
0aの開度、つまり、容量変更用給気通路48の開度が
調節される。このため、クランク室15への高圧冷媒ガ
スの導入量が変更され、同クランク室15内の圧力が変
更される。その結果、前記ピストン36の前後に作用す
る同クランク室15の圧力とシリンダボア12a内の圧
力との差が調整される。従って、斜板23の傾斜角が変
更されて、ピストン36のストロークが変更され、吐出
容量が調整される。
の圧力の高低により動作され、弁体51によりポート5
0aの開度、つまり、容量変更用給気通路48の開度が
調節される。このため、クランク室15への高圧冷媒ガ
スの導入量が変更され、同クランク室15内の圧力が変
更される。その結果、前記ピストン36の前後に作用す
る同クランク室15の圧力とシリンダボア12a内の圧
力との差が調整される。従って、斜板23の傾斜角が変
更されて、ピストン36のストロークが変更され、吐出
容量が調整される。
【0040】冷媒循環阻止手段としての電磁弁57は、
リヤハウジング13において前記吸入通路32上に介在
され、ソレノイド57aの消磁により弁体57bが同通
路32を閉鎖し、ソレノイド57aの励磁により弁体5
7bが同通路32を開放する。
リヤハウジング13において前記吸入通路32上に介在
され、ソレノイド57aの消磁により弁体57bが同通
路32を閉鎖し、ソレノイド57aの励磁により弁体5
7bが同通路32を開放する。
【0041】前記構成の圧縮機は、吸入通路32と吐出
室39とが外部冷媒回路71により接続されている。凝
縮器72、膨張弁73及び蒸発器74は、同外部冷媒回
路71上に介在されている。
室39とが外部冷媒回路71により接続されている。凝
縮器72、膨張弁73及び蒸発器74は、同外部冷媒回
路71上に介在されている。
【0042】蒸発器温度センサ81、車室温度センサ8
2、エアコンスイッチ83、車室温度設定器84及び前
記電磁弁57のソレノイド57aは、制御コンピュータ
85に接続されている。同制御コンピュータ85は、各
センサ81,82による検出値、エアコンスイッチ83
のオン・オフ信号、車室温度設定器84による設定温度
信号等の入力値に基づいて電磁弁57(ソレノイド57
a)の励磁・消磁を行う。
2、エアコンスイッチ83、車室温度設定器84及び前
記電磁弁57のソレノイド57aは、制御コンピュータ
85に接続されている。同制御コンピュータ85は、各
センサ81,82による検出値、エアコンスイッチ83
のオン・オフ信号、車室温度設定器84による設定温度
信号等の入力値に基づいて電磁弁57(ソレノイド57
a)の励磁・消磁を行う。
【0043】次に、本実施形態の特徴点について説明す
る。バネ収容孔58は、シリンダブロック12から弁形
成体14にかけてその中央部に穿設されており、吐出室
39に開口されている。円筒状をなすスプール支持部5
9は、吐出室39内においてリヤハウジング13の内壁
面中央部に突設されている。有底円筒状をなすスプール
60は、スプール支持部59に嵌入支持されている。同
スプール60は、スプール支持部59に案内されること
で、弁形成体14に対して近接・離間方向へスライド移
動可能である。
る。バネ収容孔58は、シリンダブロック12から弁形
成体14にかけてその中央部に穿設されており、吐出室
39に開口されている。円筒状をなすスプール支持部5
9は、吐出室39内においてリヤハウジング13の内壁
面中央部に突設されている。有底円筒状をなすスプール
60は、スプール支持部59に嵌入支持されている。同
スプール60は、スプール支持部59に案内されること
で、弁形成体14に対して近接・離間方向へスライド移
動可能である。
【0044】可動型吐出弁61は、前記スプール60の
前面側において、その開度を規定するためのリテーナ6
2とともに固定されている。同可動型吐出弁61は、ス
プール60のスライド移動に連動して、弁形成体14の
裏面中央部に接触した作用位置と、同弁形成体14から
離間した不作用位置との間を移動される。開閉部61a
は、可動型吐出弁61の外周部に複数(四つ)が放射形
成され、前記固定型吐出弁43が対応されない残りの吐
出孔42に接離可能に対応する。同開閉部61aは、可
動型吐出弁61が作用位置にある状態では固定型吐出弁
43と同等の作用を奏し、シリンダボア12a内に吸入
された冷媒ガスは圧縮されて吐出室39へ吐出される。
同開閉部61aは、可動型吐出弁61が不作用位置にあ
る状態では、吐出孔42を常時開放して吐出弁としての
作用を奏しない。つまり、シリンダボア12a内に吸入
された冷媒ガスは、圧縮されることなく吐出室39に排
出される。
前面側において、その開度を規定するためのリテーナ6
2とともに固定されている。同可動型吐出弁61は、ス
プール60のスライド移動に連動して、弁形成体14の
裏面中央部に接触した作用位置と、同弁形成体14から
離間した不作用位置との間を移動される。開閉部61a
は、可動型吐出弁61の外周部に複数(四つ)が放射形
成され、前記固定型吐出弁43が対応されない残りの吐
出孔42に接離可能に対応する。同開閉部61aは、可
動型吐出弁61が作用位置にある状態では固定型吐出弁
43と同等の作用を奏し、シリンダボア12a内に吸入
された冷媒ガスは圧縮されて吐出室39へ吐出される。
同開閉部61aは、可動型吐出弁61が不作用位置にあ
る状態では、吐出孔42を常時開放して吐出弁としての
作用を奏しない。つまり、シリンダボア12a内に吸入
された冷媒ガスは、圧縮されることなく吐出室39に排
出される。
【0045】ガイドピン63は、吐出室39内において
リヤハウジング13と弁形成体14との間で架設配置さ
れるとともに、前記可動型吐出弁61及びリテーナ62
の一部に若干の遊びを持って挿通されている。従って、
同可動型吐出弁61及びリテーナ62は、ガイドピン6
3により自身の軸線を中心とした回動が規制され、軸線
方向への移動のみが許容されている。
リヤハウジング13と弁形成体14との間で架設配置さ
れるとともに、前記可動型吐出弁61及びリテーナ62
の一部に若干の遊びを持って挿通されている。従って、
同可動型吐出弁61及びリテーナ62は、ガイドピン6
3により自身の軸線を中心とした回動が規制され、軸線
方向への移動のみが許容されている。
【0046】バネ座64は前記バネ収容孔58内に固定
されている。付勢手段としてのバネ65は、同バネ座6
4と可動型吐出弁61の前面との間に介装されている。
同バネ65は、可動型吐出弁61が不作用位置に配置さ
れるように、スプール60を後方側へ付勢する。
されている。付勢手段としてのバネ65は、同バネ座6
4と可動型吐出弁61の前面との間に介装されている。
同バネ65は、可動型吐出弁61が不作用位置に配置さ
れるように、スプール60を後方側へ付勢する。
【0047】スプール用制御圧室66は、前記スプール
60の背面側においてスプール支持部59に囲まれるこ
とで区画形成されている。シールリング67はスプール
60の外周面に嵌合固定され、スプール支持部59の内
周面に対して環状領域で圧接されることで、スプール用
制御圧室66を吐出室39からシールしている。
60の背面側においてスプール支持部59に囲まれるこ
とで区画形成されている。シールリング67はスプール
60の外周面に嵌合固定され、スプール支持部59の内
周面に対して環状領域で圧接されることで、スプール用
制御圧室66を吐出室39からシールしている。
【0048】ここで、前記容量変更用給気通路48は、
容量制御弁49(ポート50a)より吐出室39側に位
置する部分が、スプール用制御圧室66を経由してい
る。つまり、同通路48において、高圧領域としての吐
出室39とスプール用制御圧室66とを接続する第1通
路48aが、本実施形態のスプール用給気通路をなし、
同スプール用制御圧室66と低圧領域としてのクランク
室15とを接続する第2通路48bが、スプール用抽気
通路をなしている。
容量制御弁49(ポート50a)より吐出室39側に位
置する部分が、スプール用制御圧室66を経由してい
る。つまり、同通路48において、高圧領域としての吐
出室39とスプール用制御圧室66とを接続する第1通
路48aが、本実施形態のスプール用給気通路をなし、
同スプール用制御圧室66と低圧領域としてのクランク
室15とを接続する第2通路48bが、スプール用抽気
通路をなしている。
【0049】次に、上記構成の圧縮機の作用について説
明する。制御コンピュータ85は、エアコンスイッチ8
3がオン状態の下で、車室温度センサ82の検出値が車
室温度設定器84の設定温度以上である場合に、電磁弁
57を励磁する。従って、吸入通路32が開放され、外
部冷媒回路71から吸入室38への冷媒ガスの導入が許
容される。その結果、前記容量制御弁49は、感圧室5
2aに導入される吸入室38内の冷媒ガスの圧力(吸入
圧)に基づいて吐出容量制御を行う。
明する。制御コンピュータ85は、エアコンスイッチ8
3がオン状態の下で、車室温度センサ82の検出値が車
室温度設定器84の設定温度以上である場合に、電磁弁
57を励磁する。従って、吸入通路32が開放され、外
部冷媒回路71から吸入室38への冷媒ガスの導入が許
容される。その結果、前記容量制御弁49は、感圧室5
2aに導入される吸入室38内の冷媒ガスの圧力(吸入
圧)に基づいて吐出容量制御を行う。
【0050】例えば、冷房負荷が大きいと吸入圧が設定
値よりも高くなり、容量制御弁49は容量変更用給気通
路48の開度を小さくするように動作される。従って、
クランク室15の圧力は、通路46及び容量変更用抽気
通路47を介して吸入室38に放圧されて低下され、斜
板23の傾角が最大傾角側に変更されてピストン36の
ストローク量が大きくなる。その結果、吐出容量が大き
くなって、吸入圧が低下される。
値よりも高くなり、容量制御弁49は容量変更用給気通
路48の開度を小さくするように動作される。従って、
クランク室15の圧力は、通路46及び容量変更用抽気
通路47を介して吸入室38に放圧されて低下され、斜
板23の傾角が最大傾角側に変更されてピストン36の
ストローク量が大きくなる。その結果、吐出容量が大き
くなって、吸入圧が低下される。
【0051】冷房負荷が小さいと吸入圧が設定値よりも
低くなり、容量制御弁49は容量変更用給気通路48の
開度を大きくするように動作される。従って、クランク
室15の圧力は高圧冷媒ガスの導入により上昇され、斜
板23の傾角が最小傾角側に変更されてピストン36の
ストローク量が小さくなる。その結果、吐出容量が小さ
くなって、吸入圧が上昇される。
低くなり、容量制御弁49は容量変更用給気通路48の
開度を大きくするように動作される。従って、クランク
室15の圧力は高圧冷媒ガスの導入により上昇され、斜
板23の傾角が最小傾角側に変更されてピストン36の
ストローク量が小さくなる。その結果、吐出容量が小さ
くなって、吸入圧が上昇される。
【0052】以上のように、前記容量制御弁49は、バ
ネ56やダイヤフラム53等の諸元により設定された吸
入圧を維持すべく、斜板23の傾角を変更して吐出容量
を変更する。
ネ56やダイヤフラム53等の諸元により設定された吸
入圧を維持すべく、斜板23の傾角を変更して吐出容量
を変更する。
【0053】この時、容量制御弁49が吐出容量を最小
に制御しなければ、第2通路48bの開度は最大とはな
らず、スプール用制御圧室66から同第2通路48bを
介してクランク室15へ導出される冷媒ガスの量は少な
い。また、吐出容量は最小ではないため吐出室39の圧
力は高く、同吐出室39から第1通路48aを介してス
プール用制御圧室66に導入される冷媒ガスの量は多
い。従って、スプール制御圧室66の圧力は所定値より
も高く維持され、スプール60がバネ65の付勢力との
釣り合いにより弁形成体14に近接されて、可動型吐出
弁61が作用位置に配置される。従って、全てのシリン
ダボア12a内において冷媒ガスの圧縮が行われ、必要
量の高圧冷媒ガスが外部冷媒回路71に対して確実に供
給される。
に制御しなければ、第2通路48bの開度は最大とはな
らず、スプール用制御圧室66から同第2通路48bを
介してクランク室15へ導出される冷媒ガスの量は少な
い。また、吐出容量は最小ではないため吐出室39の圧
力は高く、同吐出室39から第1通路48aを介してス
プール用制御圧室66に導入される冷媒ガスの量は多
い。従って、スプール制御圧室66の圧力は所定値より
も高く維持され、スプール60がバネ65の付勢力との
釣り合いにより弁形成体14に近接されて、可動型吐出
弁61が作用位置に配置される。従って、全てのシリン
ダボア12a内において冷媒ガスの圧縮が行われ、必要
量の高圧冷媒ガスが外部冷媒回路71に対して確実に供
給される。
【0054】また、容量制御弁49が吐出容量を最小に
制御すると、吐出室39の圧力は低くなり、同吐出室3
9から第1通路48aを介してスプール用制御圧室66
に導入される冷媒ガスの量は少なくなる。また、第2通
路48bの開度が最大となり、スプール用制御圧室66
から同第2通路48bを介してクランク室15へ導出さ
れる冷媒ガスの量が多くなる。従って、スプール用制御
圧室66の圧力が所定値よりも低くなり、スプール60
がバネ65の付勢力との釣り合いにより弁形成体14か
ら離間されて、可動型吐出弁61が不作用位置に配置さ
れる。従って、同可動型吐出弁61が対応されたシリン
ダボア12aにおいては、冷媒ガスの圧縮がなされな
い。しかし、固定型吐出弁43が対応されたシリンダボ
ア12a内においては、冷媒ガスの圧縮が継続して行わ
れ、圧縮済みの冷媒ガスが外部冷媒回路71に供給され
なくなることはない。言い換えれば、可動型吐出弁61
と固定型吐出弁43とが併用されているため、最小吐出
容量時においても圧縮機としての基本機能が保持され
る。
制御すると、吐出室39の圧力は低くなり、同吐出室3
9から第1通路48aを介してスプール用制御圧室66
に導入される冷媒ガスの量は少なくなる。また、第2通
路48bの開度が最大となり、スプール用制御圧室66
から同第2通路48bを介してクランク室15へ導出さ
れる冷媒ガスの量が多くなる。従って、スプール用制御
圧室66の圧力が所定値よりも低くなり、スプール60
がバネ65の付勢力との釣り合いにより弁形成体14か
ら離間されて、可動型吐出弁61が不作用位置に配置さ
れる。従って、同可動型吐出弁61が対応されたシリン
ダボア12aにおいては、冷媒ガスの圧縮がなされな
い。しかし、固定型吐出弁43が対応されたシリンダボ
ア12a内においては、冷媒ガスの圧縮が継続して行わ
れ、圧縮済みの冷媒ガスが外部冷媒回路71に供給され
なくなることはない。言い換えれば、可動型吐出弁61
と固定型吐出弁43とが併用されているため、最小吐出
容量時においても圧縮機としての基本機能が保持され
る。
【0055】さて、図3に示すように、冷房負荷がない
状態に近づいてゆくと、蒸発器74における温度がフロ
スト発生をもたらす温度に近づいてゆく。制御コンピュ
ータ85は、蒸発器温度がフロスト判定温度以下になる
と電磁弁57を消磁する。同フロスト判定温度は、蒸発
器74においてフロストが発生しそうな状況を反映す
る。また、制御コンピュータ85は、エアコンスイッチ
83がオフ状態に切換操作されると電磁弁57を消磁す
る。
状態に近づいてゆくと、蒸発器74における温度がフロ
スト発生をもたらす温度に近づいてゆく。制御コンピュ
ータ85は、蒸発器温度がフロスト判定温度以下になる
と電磁弁57を消磁する。同フロスト判定温度は、蒸発
器74においてフロストが発生しそうな状況を反映す
る。また、制御コンピュータ85は、エアコンスイッチ
83がオフ状態に切換操作されると電磁弁57を消磁す
る。
【0056】このように、電磁弁57を消磁すると吸入
通路32が閉鎖され、外部冷媒回路71から吸入室38
への冷媒ガスの導入が停止されて、同外部冷媒回路71
上の冷媒循環が阻止される。従って、容量制御弁49の
感圧室52aに導入される吸入圧が設定値よりも大きく
低下され、弁体51がポート50a、つまり、容量制御
用給気通路48の第2通路48bを最大に開いた弁開度
位置に移行する。このため、吐出室39の高圧冷媒ガス
が、多量にクランク室15へ供給され、同クランク室1
5の圧力が高くなる。その結果、斜板23が最小傾角に
傾動されて吐出容量が最小となり、前述したように可動
型吐出弁61が作用位置から不作用位置に移動配置され
る。
通路32が閉鎖され、外部冷媒回路71から吸入室38
への冷媒ガスの導入が停止されて、同外部冷媒回路71
上の冷媒循環が阻止される。従って、容量制御弁49の
感圧室52aに導入される吸入圧が設定値よりも大きく
低下され、弁体51がポート50a、つまり、容量制御
用給気通路48の第2通路48bを最大に開いた弁開度
位置に移行する。このため、吐出室39の高圧冷媒ガス
が、多量にクランク室15へ供給され、同クランク室1
5の圧力が高くなる。その結果、斜板23が最小傾角に
傾動されて吐出容量が最小となり、前述したように可動
型吐出弁61が作用位置から不作用位置に移動配置され
る。
【0057】斜板23の最小傾角は零ではないため、ピ
ストン36は微量ながら往復直線運動を継続している。
固定型吐出弁43は、可動型吐出弁61が不作用位置に
配置された後も吐出弁としての作用を継続し、同弁43
が対応するシリンダボア12a内においては冷媒ガスの
圧縮がなされる。従って、同シリンダボア12aから吐
出室39へ吐出された冷媒ガスは、冷媒循環阻止状態に
ある外部冷媒回路71には排出されず、容量変更用給気
通路48を介してクランク室15へ流入される。クラン
ク室15内の冷媒ガスは、通路46及び抽気通路47を
介して吸入室38へ流入される。吸入室38内の冷媒ガ
スは、シリンダボア12a内へ吸入されて、再度吐出室
39へ吐出される。
ストン36は微量ながら往復直線運動を継続している。
固定型吐出弁43は、可動型吐出弁61が不作用位置に
配置された後も吐出弁としての作用を継続し、同弁43
が対応するシリンダボア12a内においては冷媒ガスの
圧縮がなされる。従って、同シリンダボア12aから吐
出室39へ吐出された冷媒ガスは、冷媒循環阻止状態に
ある外部冷媒回路71には排出されず、容量変更用給気
通路48を介してクランク室15へ流入される。クラン
ク室15内の冷媒ガスは、通路46及び抽気通路47を
介して吸入室38へ流入される。吸入室38内の冷媒ガ
スは、シリンダボア12a内へ吸入されて、再度吐出室
39へ吐出される。
【0058】つまり、吸入通路32が電磁弁57により
閉鎖された状態では、吐出室39→容量変更用給気通路
48→クランク室15→通路46→収容孔27→容量変
更用抽気通路47→吸入室38→シリンダボア12a→
吐出室39を経由する循環通路が圧縮機内に形成され
る。そして、固定型吐出弁43が対応するシリンダボア
12a内においては冷媒ガスの圧縮がなされるため、吐
出室39、クランク室15及び吸入室38の各室間では
圧力差が生じている。従って、冷媒ガスが前記循環通路
を循環し、冷媒ガスとともに流動する潤滑油が圧縮機内
の各摺動部を潤滑する。
閉鎖された状態では、吐出室39→容量変更用給気通路
48→クランク室15→通路46→収容孔27→容量変
更用抽気通路47→吸入室38→シリンダボア12a→
吐出室39を経由する循環通路が圧縮機内に形成され
る。そして、固定型吐出弁43が対応するシリンダボア
12a内においては冷媒ガスの圧縮がなされるため、吐
出室39、クランク室15及び吸入室38の各室間では
圧力差が生じている。従って、冷媒ガスが前記循環通路
を循環し、冷媒ガスとともに流動する潤滑油が圧縮機内
の各摺動部を潤滑する。
【0059】エアコンスイッチ83がオン状態にあっ
て、斜板23が最小傾角位置にある状態において、例え
ば、車室温度が上昇して冷房負荷が増大すると、車室温
度センサ82により検出された車室温度が車室温度設定
器84の設定温度を越える。制御コンピュータ85は、
この車室温度の変位に基づいて電磁弁57を励磁し、吸
入通路32が開放される。この時、吸入圧は設定値より
も高く、容量制御弁49は容量変更用給気通路48の第
2通路48bの開度を小さくして斜板23を最大傾角側
に傾動させる。従って、前述したように、不作用位置に
ある可動型吐出弁61が作用位置に配置される。
て、斜板23が最小傾角位置にある状態において、例え
ば、車室温度が上昇して冷房負荷が増大すると、車室温
度センサ82により検出された車室温度が車室温度設定
器84の設定温度を越える。制御コンピュータ85は、
この車室温度の変位に基づいて電磁弁57を励磁し、吸
入通路32が開放される。この時、吸入圧は設定値より
も高く、容量制御弁49は容量変更用給気通路48の第
2通路48bの開度を小さくして斜板23を最大傾角側
に傾動させる。従って、前述したように、不作用位置に
ある可動型吐出弁61が作用位置に配置される。
【0060】車両エンジンEが停止すれば、圧縮機の運
転も停止、つまり斜板23の回転も停止し、電磁弁57
への通電も停止される。このため、吸入通路32が閉鎖
されて吸入室38の圧力が低下され、容量制御弁49に
より容量制御用給気通路48の第2通路48bが最大に
開く。従って、斜板23の傾角は最小となり、可動型吐
出弁61は作用位置から不作用位置に移動配置される。
圧縮機の運転停止状態が続けば、圧縮機内の圧力が均一
化するが、斜板23の傾角は傾角減少バネ26の付勢力
によって小さい傾角に保持される。そして、車両エンジ
ンEの起動によって圧縮機の運転が開始されると、斜板
23は、負荷トルクの最も少ない最小傾角状態から回転
を開始し、しかも、可動型吐出弁61が対応されたシリ
ンダボア12a内においては圧縮仕事がなされていな
い。従って、圧縮機の起動時のショックが効果的に軽減
される。
転も停止、つまり斜板23の回転も停止し、電磁弁57
への通電も停止される。このため、吸入通路32が閉鎖
されて吸入室38の圧力が低下され、容量制御弁49に
より容量制御用給気通路48の第2通路48bが最大に
開く。従って、斜板23の傾角は最小となり、可動型吐
出弁61は作用位置から不作用位置に移動配置される。
圧縮機の運転停止状態が続けば、圧縮機内の圧力が均一
化するが、斜板23の傾角は傾角減少バネ26の付勢力
によって小さい傾角に保持される。そして、車両エンジ
ンEの起動によって圧縮機の運転が開始されると、斜板
23は、負荷トルクの最も少ない最小傾角状態から回転
を開始し、しかも、可動型吐出弁61が対応されたシリ
ンダボア12a内においては圧縮仕事がなされていな
い。従って、圧縮機の起動時のショックが効果的に軽減
される。
【0061】上記構成の本実施形態においては、次のよ
うな効果を奏する。 (1)電磁弁57の消磁により外部冷媒回路71上の冷
媒循環が阻止されると、可動型吐出弁61が不作用位置
に配置される。従って、同可動型吐出弁61が対応する
シリンダボア12aにおいては圧縮仕事がなされず、動
力損失を効果的に軽減できる。また、同可動型吐出弁6
1が対応されたシリンダボア12a内のピストン36に
は、圧縮反力がほとんど作用せず、同ピストン36がシ
リンダボア12aに押付けられることがない。従って、
最小吐出容量状態において、同ピストン36のシリンダ
ボア12aとの間の摺動抵抗が小さくなり、その摩耗劣
化を防止できる。
うな効果を奏する。 (1)電磁弁57の消磁により外部冷媒回路71上の冷
媒循環が阻止されると、可動型吐出弁61が不作用位置
に配置される。従って、同可動型吐出弁61が対応する
シリンダボア12aにおいては圧縮仕事がなされず、動
力損失を効果的に軽減できる。また、同可動型吐出弁6
1が対応されたシリンダボア12a内のピストン36に
は、圧縮反力がほとんど作用せず、同ピストン36がシ
リンダボア12aに押付けられることがない。従って、
最小吐出容量状態において、同ピストン36のシリンダ
ボア12aとの間の摺動抵抗が小さくなり、その摩耗劣
化を防止できる。
【0062】(2)容量制御弁49は、電磁弁57の消
磁により外部冷媒回路71上の冷媒循環が阻止されると
吐出容量を最小とする。従って、前記(1)がさらに効
果的に奏される。
磁により外部冷媒回路71上の冷媒循環が阻止されると
吐出容量を最小とする。従って、前記(1)がさらに効
果的に奏される。
【0063】(3)容量制御弁49は、電磁弁57の消
磁により外部冷媒回路71上の冷媒循環が阻止される
と、吐出容量を最小とする。吐出容量が最小なると吐出
室39の圧力が低下され、同吐出室39からスプール用
給気通路(第1通路48a)を介してスプール用制御圧
室66に導入される冷媒ガスの量が少なくなる。つま
り、同容量制御弁49はスプール制御手段を構成し、外
部冷媒回路71上の冷媒循環阻止に応じてスプール用制
御圧室66の圧力を低下させる。このため、外部冷媒回
路71上の冷媒循環阻止に応じてスプール用制御圧室6
6の圧力を低下させるために、専用のスプール制御手段
を備える必要がなくなる。その結果、同可動型吐出弁6
1のアンロード機構を簡単かつ安価に構成できる。
磁により外部冷媒回路71上の冷媒循環が阻止される
と、吐出容量を最小とする。吐出容量が最小なると吐出
室39の圧力が低下され、同吐出室39からスプール用
給気通路(第1通路48a)を介してスプール用制御圧
室66に導入される冷媒ガスの量が少なくなる。つま
り、同容量制御弁49はスプール制御手段を構成し、外
部冷媒回路71上の冷媒循環阻止に応じてスプール用制
御圧室66の圧力を低下させる。このため、外部冷媒回
路71上の冷媒循環阻止に応じてスプール用制御圧室6
6の圧力を低下させるために、専用のスプール制御手段
を備える必要がなくなる。その結果、同可動型吐出弁6
1のアンロード機構を簡単かつ安価に構成できる。
【0064】(4)スプール用抽気通路(第2通路48
b)は、スプール用制御圧室66とクランク室15とを
接続する。従って、電磁弁57の消磁により外部冷媒回
路71上の冷媒循環が阻止されると、スプール用制御圧
室66の冷媒ガスは第2通路48bを介してクランク室
15に導出される。その結果、同スプール用制御圧室6
6の圧力は速やかに所定値よりも低下され、可動型吐出
弁61の作用位置から不作用位置への移動が迅速になさ
れる。
b)は、スプール用制御圧室66とクランク室15とを
接続する。従って、電磁弁57の消磁により外部冷媒回
路71上の冷媒循環が阻止されると、スプール用制御圧
室66の冷媒ガスは第2通路48bを介してクランク室
15に導出される。その結果、同スプール用制御圧室6
6の圧力は速やかに所定値よりも低下され、可動型吐出
弁61の作用位置から不作用位置への移動が迅速になさ
れる。
【0065】(5)スプール用抽気通路(第2通路48
b)は、容量制御弁49を経由されている。従って、同
容量制御弁49はスプール制御手段として、スプール用
制御圧室66から第2通路48bを介してクランク室1
5へ導出される冷媒ガスの量も調節する。つまり、外部
冷媒回路71上の冷媒循環が阻止されると、スプール用
制御圧室66から第2通路48bを介してクランク室1
5へ導出される冷媒ガスの量が多くなる。従って、スプ
ール用制御圧室66の圧力がさらに速やかに低下され、
可動型吐出弁61が作用位置から不作用位置へさらに迅
速に移動される。また、外部冷媒回路71上の冷媒循環
が許容されると、スプール用制御圧室66から第2通路
48bを介してクランク室15へ導出される冷媒ガスの
量が少なくなる。従って、スプール用制御圧室66の圧
力が速やかに上昇され、可動型吐出弁61が不作用位置
から作用位置へ迅速に移動されて、圧縮機本来の機能が
速やかに発揮される。以上のように、外部冷媒回路71
上の冷媒循環状態の変更に対する、可動型吐出弁61の
応答性が向上される。
b)は、容量制御弁49を経由されている。従って、同
容量制御弁49はスプール制御手段として、スプール用
制御圧室66から第2通路48bを介してクランク室1
5へ導出される冷媒ガスの量も調節する。つまり、外部
冷媒回路71上の冷媒循環が阻止されると、スプール用
制御圧室66から第2通路48bを介してクランク室1
5へ導出される冷媒ガスの量が多くなる。従って、スプ
ール用制御圧室66の圧力がさらに速やかに低下され、
可動型吐出弁61が作用位置から不作用位置へさらに迅
速に移動される。また、外部冷媒回路71上の冷媒循環
が許容されると、スプール用制御圧室66から第2通路
48bを介してクランク室15へ導出される冷媒ガスの
量が少なくなる。従って、スプール用制御圧室66の圧
力が速やかに上昇され、可動型吐出弁61が不作用位置
から作用位置へ迅速に移動されて、圧縮機本来の機能が
速やかに発揮される。以上のように、外部冷媒回路71
上の冷媒循環状態の変更に対する、可動型吐出弁61の
応答性が向上される。
【0066】(6)容量変更用給気通路48は、容量制
御弁49より吐出室39側においてスプール用制御圧室
66を経由し、同通路48の第1通路48aがスプール
用給気通路を、第2通路48bがスプール用抽気通路を
それぞれ兼ねる。従って、可動型吐出弁61のアンロー
ド機構のために専用の通路を形成する必要がなく、同機
構を簡単かつ安価に構成できる。
御弁49より吐出室39側においてスプール用制御圧室
66を経由し、同通路48の第1通路48aがスプール
用給気通路を、第2通路48bがスプール用抽気通路を
それぞれ兼ねる。従って、可動型吐出弁61のアンロー
ド機構のために専用の通路を形成する必要がなく、同機
構を簡単かつ安価に構成できる。
【0067】(7)駆動軸15は、車両エンジンEに対
して、高価かつ重量物である電磁クラッチ等のクラッチ
機構を介することなく作動連結されている。従って、圧
縮機の低コスト化、軽量化を図り得る。また、電磁クラ
ッチのオン・オフによる体感フィーリングの悪化も同時
に解決できる。
して、高価かつ重量物である電磁クラッチ等のクラッチ
機構を介することなく作動連結されている。従って、圧
縮機の低コスト化、軽量化を図り得る。また、電磁クラ
ッチのオン・オフによる体感フィーリングの悪化も同時
に解決できる。
【0068】(第2実施形態)図4は第2実施形態を示
す。上記第1実施形態においては、クランク室15の調
圧を、吐出室39からの高圧冷媒ガスの導入量を調節す
ることで行っている。しかし、本実施形態においては、
吸入室38への冷媒ガスの導出量を調節することで、同
クランク室15の調圧を行う点が異なる。
す。上記第1実施形態においては、クランク室15の調
圧を、吐出室39からの高圧冷媒ガスの導入量を調節す
ることで行っている。しかし、本実施形態においては、
吸入室38への冷媒ガスの導出量を調節することで、同
クランク室15の調圧を行う点が異なる。
【0069】すなわち、容量変更用給気通路91は、吐
出室39とクランク室15の一部である収容孔27とを
接続する。容量変更用抽気通路92はクランク室15と
吸入室38とを接続し、同通路92上には容量制御弁9
3が介在されている。同容量制御弁93は、上記第1実
施形態の容量制御弁49とは、吸入圧の設定値に対する
高低に応じた弁体51の動作が逆になる。
出室39とクランク室15の一部である収容孔27とを
接続する。容量変更用抽気通路92はクランク室15と
吸入室38とを接続し、同通路92上には容量制御弁9
3が介在されている。同容量制御弁93は、上記第1実
施形態の容量制御弁49とは、吸入圧の設定値に対する
高低に応じた弁体51の動作が逆になる。
【0070】つまり、吸入圧が設定値より高いと、弁体
51はポート50aから離間され、容量変更用抽気通路
92の開度を大きくする。従って、クランク室15の圧
力は、同容量変更用抽気通路92を介して吸入室38に
放圧されて低下され、斜板23は最大傾角側に傾動され
る。
51はポート50aから離間され、容量変更用抽気通路
92の開度を大きくする。従って、クランク室15の圧
力は、同容量変更用抽気通路92を介して吸入室38に
放圧されて低下され、斜板23は最大傾角側に傾動され
る。
【0071】吸入圧が設定値より低いと、弁体51はポ
ート50aに近接され、容量変更用抽気通路92の開度
を小さくする。従って、クランク室15の圧力は、容量
変更用給気通路91を介した高圧冷媒ガスの導入により
上昇され、斜板23は最小傾角側に傾動される。
ート50aに近接され、容量変更用抽気通路92の開度
を小さくする。従って、クランク室15の圧力は、容量
変更用給気通路91を介した高圧冷媒ガスの導入により
上昇され、斜板23は最小傾角側に傾動される。
【0072】本実施形態において前記容量制御用抽気通
路92は、容量制御弁93(ポート50a)より吸入室
38側に位置する部分が、スプール用制御圧室66を経
由されている。従って、同通路92において、高圧領域
としてのクランク室15とスプール用制御圧室66とを
接続する第1通路92aが、本実施形態のスプール用給
気通路をなし、同スプール用制御圧室66と低圧領域と
しての吸入室38とを接続する第2通路92bが、スプ
ール用抽気通路をなしている。
路92は、容量制御弁93(ポート50a)より吸入室
38側に位置する部分が、スプール用制御圧室66を経
由されている。従って、同通路92において、高圧領域
としてのクランク室15とスプール用制御圧室66とを
接続する第1通路92aが、本実施形態のスプール用給
気通路をなし、同スプール用制御圧室66と低圧領域と
しての吸入室38とを接続する第2通路92bが、スプ
ール用抽気通路をなしている。
【0073】ここで、例えば、容量制御弁93が吐出容
量を非最小とすると、第1通路92aが開放され、クラ
ンク室15から同第1通路92aを介した高圧冷媒ガス
の導入により、スプール制御圧室66の圧力が所定値よ
りも高くなる。従って、スプール60が、バネ65の付
勢力との釣り合いにより弁形成体14に近接され、可動
型吐出弁61が作用位置に配置される。
量を非最小とすると、第1通路92aが開放され、クラ
ンク室15から同第1通路92aを介した高圧冷媒ガス
の導入により、スプール制御圧室66の圧力が所定値よ
りも高くなる。従って、スプール60が、バネ65の付
勢力との釣り合いにより弁形成体14に近接され、可動
型吐出弁61が作用位置に配置される。
【0074】また、前記容量制御弁93が吐出容量を最
小とすると、第1通路92aが閉鎖され、クランク室1
5から同第1通路92aを介した高圧冷媒ガスの導入が
停止される。従って、スプール用制御圧室66の圧力
は、第2通路92bを介した吸入室38への冷媒ガスの
導出により、所定値よりも低くなる。従って、スプール
60が、バネ65の付勢力との釣り合いにより弁形成体
14から離間され、可動型吐出弁61が不作用位置に配
置される。
小とすると、第1通路92aが閉鎖され、クランク室1
5から同第1通路92aを介した高圧冷媒ガスの導入が
停止される。従って、スプール用制御圧室66の圧力
は、第2通路92bを介した吸入室38への冷媒ガスの
導出により、所定値よりも低くなる。従って、スプール
60が、バネ65の付勢力との釣り合いにより弁形成体
14から離間され、可動型吐出弁61が不作用位置に配
置される。
【0075】前述したように本実施形態においては、電
磁弁57が消磁されると、吐出容量を最小とすべく容量
変更用抽気通路92が閉じられ、同通路92が上述した
冷媒ガスの循環通路を構成することは不可能となる。従
って、絞り94aを有した抜き通路94が、クランク室
15と吸入室38とを接続して循環通路を構成し、潤滑
油を含む冷媒ガスの内部循環時においては、同通路94
がクランク室15内の冷媒ガスを吸入室38に導く役目
をなす。なお、容量変更用給気通路91は収容孔27に
接続されるため、前記通路46の入口46aと出口46
bとの位置関係は上記第1実施形態とは逆になる。
磁弁57が消磁されると、吐出容量を最小とすべく容量
変更用抽気通路92が閉じられ、同通路92が上述した
冷媒ガスの循環通路を構成することは不可能となる。従
って、絞り94aを有した抜き通路94が、クランク室
15と吸入室38とを接続して循環通路を構成し、潤滑
油を含む冷媒ガスの内部循環時においては、同通路94
がクランク室15内の冷媒ガスを吸入室38に導く役目
をなす。なお、容量変更用給気通路91は収容孔27に
接続されるため、前記通路46の入口46aと出口46
bとの位置関係は上記第1実施形態とは逆になる。
【0076】上記構成の本実施形態においても、第1実
施形態の効果(1),(2),(4)及び(7)と同様
な効果を奏する他、次のような効果も奏する。 (1)スプール用給気通路(第1通路92a)は、容量
制御弁93を経由している。従って、同容量制御弁93
はスプール制御手段として、クランク室15から第1通
路92aを介してスプール用制御圧室66へ導入される
冷媒ガスの量を調節する。つまり、外部冷媒回路71上
の冷媒循環が阻止されると、第1通路92aを閉鎖し
て、クランク室15からスプール用制御圧室66への冷
媒ガスの導入を停止させる。従って、スプール用制御圧
室66の圧力は、吐出室39の圧力低下を待つことなく
速やかに所定値よりも低下され、可動型吐出弁61が作
用位置から不作用位置へ迅速に移動される。また、外部
冷媒回路71上の冷媒循環が許容されると、第1通路9
2aの開度が大きくなって、クランク室15から第1通
路92aを介してスプール用制御圧室66へ導入される
冷媒ガスの量が多くなる。従って、スプール用制御圧室
66の圧力が速やかに上昇され、可動型吐出弁61が不
作用位置から作用位置へ迅速に移動されて、圧縮機本来
の機能が速やかに発揮される。以上のように、外部冷媒
回路71上の冷媒循環状態の変更に対する、可動型吐出
弁61の応答性が向上される。
施形態の効果(1),(2),(4)及び(7)と同様
な効果を奏する他、次のような効果も奏する。 (1)スプール用給気通路(第1通路92a)は、容量
制御弁93を経由している。従って、同容量制御弁93
はスプール制御手段として、クランク室15から第1通
路92aを介してスプール用制御圧室66へ導入される
冷媒ガスの量を調節する。つまり、外部冷媒回路71上
の冷媒循環が阻止されると、第1通路92aを閉鎖し
て、クランク室15からスプール用制御圧室66への冷
媒ガスの導入を停止させる。従って、スプール用制御圧
室66の圧力は、吐出室39の圧力低下を待つことなく
速やかに所定値よりも低下され、可動型吐出弁61が作
用位置から不作用位置へ迅速に移動される。また、外部
冷媒回路71上の冷媒循環が許容されると、第1通路9
2aの開度が大きくなって、クランク室15から第1通
路92aを介してスプール用制御圧室66へ導入される
冷媒ガスの量が多くなる。従って、スプール用制御圧室
66の圧力が速やかに上昇され、可動型吐出弁61が不
作用位置から作用位置へ迅速に移動されて、圧縮機本来
の機能が速やかに発揮される。以上のように、外部冷媒
回路71上の冷媒循環状態の変更に対する、可動型吐出
弁61の応答性が向上される。
【0077】(2)容量変更用抽気通路92は、容量制
御弁93より吸入室38側においてスプール用制御圧室
66を経由し、同通路92の第1通路92aがスプール
用給気通路を、第2通路92bがスプール用抽気通路を
それぞれ兼ねる。従って、可動型吐出弁61のアンロー
ド機構のために専用の通路を形成する必要がなく、同機
構を簡単かつ安価に構成できる。
御弁93より吸入室38側においてスプール用制御圧室
66を経由し、同通路92の第1通路92aがスプール
用給気通路を、第2通路92bがスプール用抽気通路を
それぞれ兼ねる。従って、可動型吐出弁61のアンロー
ド機構のために専用の通路を形成する必要がなく、同機
構を簡単かつ安価に構成できる。
【0078】なお、本発明は上記実施形態に限定される
ものではなく、例えば、次のような態様でも実施でき
る。 (1)上記第1実施形態において、スプール用給気通路
及びスプール用抽気通路を、容量変更用給気通路48か
ら完全に独立して設け、同スプール用抽気通路上に、そ
の開度を調節する専用の外部制御弁を設けてスプール制
御手段としても良い。また、上記第2実施形態におい
て、スプール用給気通路及びスプール用抽気通路を、容
量変更用抽気通路92から完全に独立して設け、同スプ
ール用給気通路上に、その開度を調節する専用の外部制
御弁を設けてスプール制御手段としても良い。このよう
にすれば、最小吐出容量時以外にも、任意に可動型吐出
弁61を不作用位置に配置させることが可能となる。
ものではなく、例えば、次のような態様でも実施でき
る。 (1)上記第1実施形態において、スプール用給気通路
及びスプール用抽気通路を、容量変更用給気通路48か
ら完全に独立して設け、同スプール用抽気通路上に、そ
の開度を調節する専用の外部制御弁を設けてスプール制
御手段としても良い。また、上記第2実施形態におい
て、スプール用給気通路及びスプール用抽気通路を、容
量変更用抽気通路92から完全に独立して設け、同スプ
ール用給気通路上に、その開度を調節する専用の外部制
御弁を設けてスプール制御手段としても良い。このよう
にすれば、最小吐出容量時以外にも、任意に可動型吐出
弁61を不作用位置に配置させることが可能となる。
【0079】(2)上記実施形態においては、スプール
用制御圧室66の圧力を変更することで可動型吐出弁6
1を動作させていた。しかし、これに限定されるもので
はなく、同可動型吐出弁61を、電磁機構等のアクチュ
エータにより動作させるように構成しても良い。このよ
うにすれば、最小吐出容量時以外にも、任意に可動型吐
出弁61を不作用位置に配置させることが可能となる。
用制御圧室66の圧力を変更することで可動型吐出弁6
1を動作させていた。しかし、これに限定されるもので
はなく、同可動型吐出弁61を、電磁機構等のアクチュ
エータにより動作させるように構成しても良い。このよ
うにすれば、最小吐出容量時以外にも、任意に可動型吐
出弁61を不作用位置に配置させることが可能となる。
【0080】(3)上記実施形態において可動型吐出弁
61は、弁形成体14に対して接離されることで、作用
位置と不作用位置との間を移動されていた。これを変更
し、同可動型吐出弁61が、自身の軸線を中心として回
動することで、作用位置と不作用位置との間を移動され
るように構成しても良い。
61は、弁形成体14に対して接離されることで、作用
位置と不作用位置との間を移動されていた。これを変更
し、同可動型吐出弁61が、自身の軸線を中心として回
動することで、作用位置と不作用位置との間を移動され
るように構成しても良い。
【0081】(4)スプール用制御圧室66と高圧領域
(例えば、吐出室39やクランク室15等)とを、スプ
ール用給気通路により接続するのみの構成とすること。
そして、スプール60を、吐出容量の変更による高圧領
域の圧力変化のみにより動作させること。つまり、吐出
容量が最小となれば、高圧領域の圧力が低下され、スプ
ール用制御圧室66の圧力が所定値よりも低くなる。従
って、スプール60がバネ65の付勢力との釣り合いに
より弁形成体14から離間移動され、可動型吐出弁61
が作用位置から不作用位置に配置される。この状態から
吐出容量が増大されると高圧領域の圧力が上昇され、ス
プール用制御圧室66の圧力が所定値よりも高くなる。
従って、スプール60がバネ65の付勢力との釣り合い
により弁形成体14に近接移動され、可動型吐出弁61
が不作用位置から作用位置に配置される。このようにす
れば、可動型吐出弁61のアンロード機構のために、ス
プール用給気通路以外の通路構成を必要とせず、同機構
を簡単かつ安価に構成できる。また、同スプール用給気
通路は、例えば、上記第1実施形態のように容量制御弁
を経由されないため、ハウジング内におけるその取り廻
しに自由度がある。
(例えば、吐出室39やクランク室15等)とを、スプ
ール用給気通路により接続するのみの構成とすること。
そして、スプール60を、吐出容量の変更による高圧領
域の圧力変化のみにより動作させること。つまり、吐出
容量が最小となれば、高圧領域の圧力が低下され、スプ
ール用制御圧室66の圧力が所定値よりも低くなる。従
って、スプール60がバネ65の付勢力との釣り合いに
より弁形成体14から離間移動され、可動型吐出弁61
が作用位置から不作用位置に配置される。この状態から
吐出容量が増大されると高圧領域の圧力が上昇され、ス
プール用制御圧室66の圧力が所定値よりも高くなる。
従って、スプール60がバネ65の付勢力との釣り合い
により弁形成体14に近接移動され、可動型吐出弁61
が不作用位置から作用位置に配置される。このようにす
れば、可動型吐出弁61のアンロード機構のために、ス
プール用給気通路以外の通路構成を必要とせず、同機構
を簡単かつ安価に構成できる。また、同スプール用給気
通路は、例えば、上記第1実施形態のように容量制御弁
を経由されないため、ハウジング内におけるその取り廻
しに自由度がある。
【0082】(5)前記(4)において、スプール用制
御圧室66と低圧領域(例えば、吐出室39に対してク
ランク室15や、クランク室15に対して吸入室38
等)とを、スプール用抽気通路により接続すること。つ
まり、高圧領域の圧力変化にともなう、同高圧領域から
の冷媒ガスの導入量の変化と、スプール用抽気通路を介
した低圧領域への冷媒ガスの導出量との兼ね合いによ
り、スプール用制御圧室66内の圧力を調節すること。
このようにすれば、吐出容量が最小となった場合、スプ
ール用制御圧室66の圧力は、スプール用抽気通路を介
して速やかに所定値よりも低下され、可動型吐出弁61
の作用位置から不作用位置への移動が迅速になされる。
御圧室66と低圧領域(例えば、吐出室39に対してク
ランク室15や、クランク室15に対して吸入室38
等)とを、スプール用抽気通路により接続すること。つ
まり、高圧領域の圧力変化にともなう、同高圧領域から
の冷媒ガスの導入量の変化と、スプール用抽気通路を介
した低圧領域への冷媒ガスの導出量との兼ね合いによ
り、スプール用制御圧室66内の圧力を調節すること。
このようにすれば、吐出容量が最小となった場合、スプ
ール用制御圧室66の圧力は、スプール用抽気通路を介
して速やかに所定値よりも低下され、可動型吐出弁61
の作用位置から不作用位置への移動が迅速になされる。
【0083】(6)給気通路48及び抽気通路91の両
方に容量制御弁49,92を設けた圧縮機において具体
化すること。つまり、クランク室15の調圧を、吐出室
39からの高圧冷媒ガスの導入量を調節するとともに、
吸入室38への冷媒ガスの導出量を調節することで行う
ようにすること。この場合、スプール用制御圧室66内
の調圧を、上記第1実施形態のように行っても良いし、
第2実施形態のように行っても良い。さらには、第1及
び第2実施形態を合わせた方法、つまり、スプール用制
御圧室66の圧力の変更を、同室66への冷媒ガスの導
入量及び導出量の両方を調節することで行うように構成
しても良い。
方に容量制御弁49,92を設けた圧縮機において具体
化すること。つまり、クランク室15の調圧を、吐出室
39からの高圧冷媒ガスの導入量を調節するとともに、
吸入室38への冷媒ガスの導出量を調節することで行う
ようにすること。この場合、スプール用制御圧室66内
の調圧を、上記第1実施形態のように行っても良いし、
第2実施形態のように行っても良い。さらには、第1及
び第2実施形態を合わせた方法、つまり、スプール用制
御圧室66の圧力の変更を、同室66への冷媒ガスの導
入量及び導出量の両方を調節することで行うように構成
しても良い。
【0084】(7)上記実施形態においては、クランク
室15内の圧力を調節することで容量制御を行う圧縮機
において具体化されていた。しかし、これに限定される
ものではなく、シリンダボア12a内の圧力を調節する
ことで容量制御を行う圧縮機において具体化しても良
い。この場合、容量変更用制御圧室をクランク室15と
別個に設け、同制御圧室の調圧により、シリンダボア1
2a内に流入される冷媒ガスの圧力を調節する。
室15内の圧力を調節することで容量制御を行う圧縮機
において具体化されていた。しかし、これに限定される
ものではなく、シリンダボア12a内の圧力を調節する
ことで容量制御を行う圧縮機において具体化しても良
い。この場合、容量変更用制御圧室をクランク室15と
別個に設け、同制御圧室の調圧により、シリンダボア1
2a内に流入される冷媒ガスの圧力を調節する。
【0085】(8)ワッブルタイプの可変容量型圧縮機
において具体化すること。 (9)クラッチ付きの可変容量型圧縮機において具体化
すること。 上記実施形態から把握できる請求項に記載以外の技術的
思想について記載すると、前記冷媒循環阻止手段57に
より外部冷媒回路71上の冷媒循環が阻止された時、カ
ムプレート23を最小傾角に傾動させて吐出容量を最小
とする容量制御手段49を備え、同容量制御手段49が
前記スプール制御手段を構成する請求項2に記載の可変
容量型圧縮機。
において具体化すること。 (9)クラッチ付きの可変容量型圧縮機において具体化
すること。 上記実施形態から把握できる請求項に記載以外の技術的
思想について記載すると、前記冷媒循環阻止手段57に
より外部冷媒回路71上の冷媒循環が阻止された時、カ
ムプレート23を最小傾角に傾動させて吐出容量を最小
とする容量制御手段49を備え、同容量制御手段49が
前記スプール制御手段を構成する請求項2に記載の可変
容量型圧縮機。
【0086】このようにすれば、可動型吐出弁61を、
冷媒循環阻止に応じて不作用位置に配置させるための専
用のスプール制御手段を必要としない。従って、可動型
吐出弁61のアンロード機構を簡単かつ安価に構成でき
る。
冷媒循環阻止に応じて不作用位置に配置させるための専
用のスプール制御手段を必要としない。従って、可動型
吐出弁61のアンロード機構を簡単かつ安価に構成でき
る。
【0087】
【発明の効果】上記構成の請求項1及び2の発明によれ
ば、例えば、冷房不要時や、外部冷媒回路の蒸発器にお
いてフロストが発生しそうな場合には、冷媒循環阻止手
段により外部冷媒回路上の冷媒循環が阻止される。この
際、アンロード手段により可動型吐出弁が不作用位置に
配置され、同弁が対応されたシリンダボア内での冷媒ガ
スの圧縮はなされず、動力損失が軽減される。
ば、例えば、冷房不要時や、外部冷媒回路の蒸発器にお
いてフロストが発生しそうな場合には、冷媒循環阻止手
段により外部冷媒回路上の冷媒循環が阻止される。この
際、アンロード手段により可動型吐出弁が不作用位置に
配置され、同弁が対応されたシリンダボア内での冷媒ガ
スの圧縮はなされず、動力損失が軽減される。
【0088】また、外部冷媒回路上の冷媒循環が阻止さ
れるため、冷房不要時や、外部冷媒回路の蒸発器におい
てフロストが発生しそうな場合においても、圧縮機の運
転は継続されて良い。従って、請求項7の発明において
は、駆動軸が外部駆動源に対して、高価かつ重量物であ
る電磁クラッチ等のクラッチ機構を介することなく作動
連結されている。従って、圧縮機の低コスト化、軽量化
を図り得る。また、電磁クラッチのオン・オフによる体
感フィーリングの悪化も同時に解決できる。
れるため、冷房不要時や、外部冷媒回路の蒸発器におい
てフロストが発生しそうな場合においても、圧縮機の運
転は継続されて良い。従って、請求項7の発明において
は、駆動軸が外部駆動源に対して、高価かつ重量物であ
る電磁クラッチ等のクラッチ機構を介することなく作動
連結されている。従って、圧縮機の低コスト化、軽量化
を図り得る。また、電磁クラッチのオン・オフによる体
感フィーリングの悪化も同時に解決できる。
【0089】請求項3及び5の発明によれば、容量制御
弁がスプール制御手段を構成する。このため、外部冷媒
回路上の冷媒循環阻止に応じてスプール用制御圧室の圧
力を低下させるために、専用のスプール制御手段を備え
る必要がない。従って、可動型吐出弁のアンロード機構
を簡単かつ安価に構成できる。また、容量制御弁は、外
部冷媒回路上の冷媒循環が阻止されると、吐出容量を最
小とする。従って、前述した動力損失の軽減が、さらに
効果的に奏される。
弁がスプール制御手段を構成する。このため、外部冷媒
回路上の冷媒循環阻止に応じてスプール用制御圧室の圧
力を低下させるために、専用のスプール制御手段を備え
る必要がない。従って、可動型吐出弁のアンロード機構
を簡単かつ安価に構成できる。また、容量制御弁は、外
部冷媒回路上の冷媒循環が阻止されると、吐出容量を最
小とする。従って、前述した動力損失の軽減が、さらに
効果的に奏される。
【0090】請求項4の発明によれば、容量変更用給気
通路がスプール用給気通路及びスプール用抽気通路を兼
ねる。従って、スプール制御圧室の圧力を調節するため
に専用の通路を形成する必要がなく、アンロード機構を
簡単かつ安価に構成できる。
通路がスプール用給気通路及びスプール用抽気通路を兼
ねる。従って、スプール制御圧室の圧力を調節するため
に専用の通路を形成する必要がなく、アンロード機構を
簡単かつ安価に構成できる。
【0091】請求項6の発明によれば、容量変更用抽気
通路がスプール用給気通路及びスプール用抽気通路を兼
ねる。従って、スプール制御圧室の圧力を調節するため
に専用の通路を形成する必要がなく、アンロード機構を
簡単かつ安価に構成できる。
通路がスプール用給気通路及びスプール用抽気通路を兼
ねる。従って、スプール制御圧室の圧力を調節するため
に専用の通路を形成する必要がなく、アンロード機構を
簡単かつ安価に構成できる。
【図1】 クラッチレスタイプの可変容量型圧縮機の縦
断面図。
断面図。
【図2】 図1のA−A線に対応する断面図。
【図3】 圧縮機の動作を説明する図。
【図4】 第2実施形態を示す圧縮機の縦断面図。
11…ハウジング構成体としてのフロントハウジング、
12…同じくシリンダブロック、12a…シリンダボ
ア、13…ハウジング構成体としてのリヤハウジング、
14…弁形成体、15…低圧領域としてのクランク室、
16…駆動軸、23…カムプレートとしての斜板、38
…吸入圧領域としての吸入室、39…高圧領域としての
吐出室、42…吐出孔、43…固定型吐出弁、47…ア
ンロード手段及び循環通路を構成する容量変更用抽気通
路、48…同じく容量変更用給気通路、48a…スプー
ル用給気通路としての第1通路、48b…スプール用抽
気通路としての第2通路、49…アンロード手段を構成
する容量制御弁、57…冷媒循環阻止手段としての電磁
弁、60…スプール、61…可動型吐出弁、65…付勢
手段としてのバネ、66…スプール用制御圧室、71…
外部冷媒回路。
12…同じくシリンダブロック、12a…シリンダボ
ア、13…ハウジング構成体としてのリヤハウジング、
14…弁形成体、15…低圧領域としてのクランク室、
16…駆動軸、23…カムプレートとしての斜板、38
…吸入圧領域としての吸入室、39…高圧領域としての
吐出室、42…吐出孔、43…固定型吐出弁、47…ア
ンロード手段及び循環通路を構成する容量変更用抽気通
路、48…同じく容量変更用給気通路、48a…スプー
ル用給気通路としての第1通路、48b…スプール用抽
気通路としての第2通路、49…アンロード手段を構成
する容量制御弁、57…冷媒循環阻止手段としての電磁
弁、60…スプール、61…可動型吐出弁、65…付勢
手段としてのバネ、66…スプール用制御圧室、71…
外部冷媒回路。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 昌彦 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内
Claims (7)
- 【請求項1】 複数のハウジング構成体が接合されてな
るハウジングには駆動軸が回転可能に保持され、同ハウ
ジング内には、吸入室、吐出室及びカムプレートを収容
するクランク室が区画形成されるとともに、ピストンを
収容する複数のシリンダボアが形成され、同吸入室及び
吐出室が形成されたハウジング構成体とシリンダボアが
形成されたハウジング構成体との間には、各シリンダボ
アに対応した複数の吐出孔を有する弁形成体が介在され
ており、前記カムプレートにより駆動軸の回転運動をピ
ストンの往復直線運動に変換することで、冷媒ガスを吸
入室からシリンダボア内に吸入して圧縮した後、吐出孔
を介して吐出室へ吐出し、さらには、カムプレートの傾
角を調節することで吐出容量を変更可能な可変容量型圧
縮機において、 外部冷媒回路上の冷媒循環を阻止するための冷媒循環阻
止手段と、 同冷媒循環阻止手段により外部冷媒回路上の冷媒循環が
阻止された時、冷媒ガスを、吐出室、クランク室及び吸
入室を経由して循環させる循環通路と、 前記弁形成体に配設され、同弁形成体上の少なくとも一
つで全部ではない吐出孔に対応する固定型吐出弁と、 同固定型吐出弁が対応された吐出孔以外の吐出孔に対応
し、吐出弁として作用される作用位置と、吐出弁として
作用されない不作用位置との間を移動可能な可動型吐出
弁と、 前記冷媒循環阻止手段により外部冷媒回路上の冷媒循環
が阻止された時、可動型吐出弁を不作用位置に配置する
アンロード手段とを備えた可変容量型圧縮機。 - 【請求項2】 前記可動型吐出弁は弁形成体に対して接
離可能に構成され、前記アンロード手段は、 ハウジング内部に配設されるとともに可動型吐出弁に連
結され、弁形成体に対して近接・離間方向へ移動可能な
スプールと、 同スプールの背面側に区画形成されたスプール用制御圧
室と、 前記可動型吐出弁が弁形成体から離間するように、スプ
ールを付勢する付勢手段と、 前記スプール用制御圧室と吸入圧領域より高圧となる高
圧領域とを接続するスプール用給気通路と、 前記スプール用制御圧室と高圧領域より低圧な低圧領域
とを接続するスプール用抽気通路と、 前記冷媒循環阻止手段により外部冷媒回路上の冷媒循環
が阻止された時、高圧領域からスプール用給気通路を介
して導入される冷媒ガスの量及び/又はスプール用抽気
通路を介して導出される冷媒ガスの量を調節すること
で、前記スプール用制御圧室の圧力を低下させるスプー
ル制御手段とを備えた請求項1に記載の可変容量型圧縮
機。 - 【請求項3】 前記カムプレートの傾角調節は、クラン
ク室の圧力を調節することで、同クランク室の圧力とシ
リンダボア内の圧力とのピストンを介した差を変更して
行われ、 高圧領域である吐出圧領域と低圧領域である前記クラン
ク室とを接続する容量変更用給気通路と、 前記クランク室と吸入圧領域とを接続する容量変更用抽
気通路と、 前記容量変更用給気通路上に介在され、同通路の開度を
調節することでクランク室の圧力を調節し、前記冷媒循
環阻止手段により外部冷媒回路上の冷媒循環が阻止され
た時には、同通路の開度を大きくして吐出容量を最小と
する容量制御弁とを備え、 前記スプール用抽気通路は容量制御弁を経由され、同容
量制御弁が前記スプール制御手段を構成する請求項2に
記載の可変容量型圧縮機。 - 【請求項4】 前記容量変更用給気通路は、容量制御弁
より吐出圧領域側に位置する部分がスプール用制御圧室
を経由され、同通路がスプール用給気通路及びスプール
用抽気通路を兼ねる請求項3に記載の可変容量型圧縮
機。 - 【請求項5】 前記カムプレートの傾角調節は、クラン
ク室の圧力を調節することで、同クランク室の圧力とシ
リンダボア内の圧力とのピストンを介した差を変更して
行われ、 吐出圧領域と高圧領域である前記クランク室とを接続す
る容量変更用給気通路と、 前記クランク室と低圧領域である吸入圧領域とを接続す
る容量変更用抽気通路と、 同容量変更用抽気通路上に介在され、同通路の開度を調
節することでクランク室の圧力を変更し、前記冷媒循環
阻止手段により外部冷媒回路上の冷媒循環が阻止された
時には、同通路の開度を小さくして吐出容量を最小とす
る容量制御弁とを備え、 前記スプール用給気通路は容量制御弁を経由され、同容
量制御弁が前記スプール制御手段を構成する請求項2に
記載の可変容量型圧縮機。 - 【請求項6】 前記容量変更用抽気通路は、容量制御弁
より吸入圧領域側に位置する部分がスプール用制御圧室
を経由され、同通路がスプール用給気通路及びスプール
用抽気通路を兼ねる請求項5に記載の可変容量型圧縮
機。 - 【請求項7】 前記駆動軸は、クラッチ機構を介するこ
となく外部駆動源に作動連結されている請求項1〜6の
いずれかに記載の可変容量型圧縮機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31239296A JP3765137B2 (ja) | 1996-11-22 | 1996-11-22 | 可変容量型圧縮機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31239296A JP3765137B2 (ja) | 1996-11-22 | 1996-11-22 | 可変容量型圧縮機 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10153175A true JPH10153175A (ja) | 1998-06-09 |
JP3765137B2 JP3765137B2 (ja) | 2006-04-12 |
Family
ID=18028706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31239296A Expired - Fee Related JP3765137B2 (ja) | 1996-11-22 | 1996-11-22 | 可変容量型圧縮機 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3765137B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6241483B1 (en) | 1998-11-12 | 2001-06-05 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Variable displacement compressor |
US6318971B1 (en) | 1999-03-18 | 2001-11-20 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Variable displacement compressor |
-
1996
- 1996-11-22 JP JP31239296A patent/JP3765137B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6241483B1 (en) | 1998-11-12 | 2001-06-05 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Variable displacement compressor |
US6318971B1 (en) | 1999-03-18 | 2001-11-20 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Variable displacement compressor |
Also Published As
Publication number | Publication date |
---|---|
JP3765137B2 (ja) | 2006-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6244159B1 (en) | Variable displacement type swash plate compressor and displacement control valve | |
US6230507B1 (en) | Hybrid compressor and control method | |
US6361283B1 (en) | Displacement control valve | |
US5890876A (en) | Control valve in variable displacement compressor | |
US6358017B1 (en) | Control valve for variable displacement compressor | |
US6227812B1 (en) | Refrigerant circuit and compressor | |
US6234763B1 (en) | Variable displacement compressor | |
KR100302821B1 (ko) | 가변용량압축기용제어밸브및그제조방법 | |
EP1835177A2 (en) | Displacement control valve of variable displacement compressor | |
US8439652B2 (en) | Suction throttle valve for variable displacement type compressor | |
JP2000199479A (ja) | 可変容量型圧縮機 | |
JP3726759B2 (ja) | 容量可変型圧縮機の制御装置 | |
US6672844B2 (en) | Apparatus and method for controlling variable displacement compressor | |
JPH09228956A (ja) | 可変容量型圧縮機 | |
JP3254872B2 (ja) | クラッチレス片側ピストン式可変容量圧縮機 | |
US6203284B1 (en) | Valve arrangement at the discharge chamber of a variable displacement compressor | |
JP2003083243A (ja) | 容量可変型圧縮機の容量制御装置 | |
EP1070845A1 (en) | Crank pressure control mechanism of variable displacement compressor | |
JPH1037863A (ja) | 可変容量型圧縮機 | |
EP1586772B1 (en) | Control device for variable capacity compressor | |
JPH09228957A (ja) | クラッチレス可変容量圧縮機 | |
JPH10153175A (ja) | 可変容量型圧縮機 | |
US5890878A (en) | Valve structure in compressor | |
JPH10153171A (ja) | 両頭ピストン式可変容量型圧縮機 | |
JPH10103249A (ja) | 制御弁 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060117 |
|
LAPS | Cancellation because of no payment of annual fees |