[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10152736A - Copper alloy material and its production - Google Patents

Copper alloy material and its production

Info

Publication number
JPH10152736A
JPH10152736A JP31327696A JP31327696A JPH10152736A JP H10152736 A JPH10152736 A JP H10152736A JP 31327696 A JP31327696 A JP 31327696A JP 31327696 A JP31327696 A JP 31327696A JP H10152736 A JPH10152736 A JP H10152736A
Authority
JP
Japan
Prior art keywords
copper alloy
aging treatment
cold rolling
strength
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31327696A
Other languages
Japanese (ja)
Inventor
Yoshinori Yamamoto
佳紀 山本
Takeshi Shimada
健 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP31327696A priority Critical patent/JPH10152736A/en
Publication of JPH10152736A publication Critical patent/JPH10152736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a copper alloy having high strength and high electric conductivity. SOLUTION: A copper alloy, having a composition in which 2.5wt.% Ni, 0.5wt.% Si, 0.5wt.% Zn, and 0.3wt.% P are added to Cu and the value of Ni/Si, by weight, is regulated to 4.5-5.5, is used. First, after heating to 850 deg.C and hot extrusion, cold rolling is performed (step 102). Subsequently, after heating to 800 deg.C, rapid cooling is performed to carry out solution heat treatment (step 103), and then cold rolling is done at 20-80% draft (step 104). Further, primary aging treatment is applied at 450 deg.C for 1hr (step 105), cold rolling is performed at 10-70% draft (step 106), and then secondary aging treatment is is carried out at 420 deg.C for 1hr. By this method, the copper alloy, having high strength and high electric conductivity, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器に用いら
れる銅合金、特に高強度及び高熱伝導性を備えた銅合金
材及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy used for electronic equipment, particularly to a copper alloy material having high strength and high thermal conductivity, and a method for producing the same.

【0002】[0002]

【従来の技術】電子機器用の金属材料は、製造工程中に
変形や破損の生じない強度、耐熱性、打ち抜きや加工に
対する加工性、発生する熱を外部に放出できる熱伝導
性、めっき性、はんだ付け性、耐蝕性等の特性のほか、
低価格であることが要求される。例えば、半導体装置に
用いられるリードフレームにおいては、素子の小型化・
高集積化に対応した特性、つまり、材料の薄板化に対応
して、より強度が高く、かつ熱の発生量が増加すること
から、十分な放熱性を確保しうる熱伝導性及び導電性を
備えた材料の開発が望まれている。
2. Description of the Related Art Metallic materials for electronic devices have strength, heat resistance, workability for punching and processing, heat conductivity capable of releasing generated heat to the outside, plating property, In addition to properties such as solderability and corrosion resistance,
Low prices are required. For example, in a lead frame used for a semiconductor device, miniaturization of an element
The characteristics corresponding to high integration, that is, the higher the strength and the higher the amount of heat generated in response to the thinning of the material, the higher the thermal conductivity and conductivity that can secure sufficient heat dissipation. There is a need for the development of materials with these.

【0003】このような要求に応えられる材料として、
高純度銅合金材が注目されており、種々の材料が開発さ
れている。その中でCu−Ni−Si合金(コルソン合
金)を基本とする合金は、引張強度が700MPaとい
う高い値を期待できることから、有望視されている。こ
のCu−Ni−Si合金は析出硬化型の合金である。通
常、800℃程度の高温から急冷する液体化処理と、3
00〜500℃程度に加熱保持する時効処理によって合
金元素をNi2 Siの化合物の形でCu母相中に析出さ
せ、転位の運動に対する障害物にすることで強度が向上
する。また、合金元素を積極的に析出させるため、固溶
状態にある合金に比較して熱伝導性及び導電性を良好に
保ちやすい。
[0003] Materials that can meet such demands include:
High-purity copper alloy materials have attracted attention, and various materials have been developed. Among them, an alloy based on a Cu-Ni-Si alloy (Corson alloy) is expected to have a high tensile strength of 700 MPa, and is therefore promising. This Cu-Ni-Si alloy is a precipitation hardening type alloy. Usually, a liquefaction process of rapidly cooling from a high temperature of about 800 ° C.
The alloy element is precipitated in the Cu matrix in the form of a Ni 2 Si compound by aging treatment by heating to about 500 to 500 ° C., and the strength is improved by making it an obstacle to dislocation movement. In addition, since the alloy element is positively precipitated, the thermal conductivity and the electrical conductivity are easily maintained better than the alloy in the solid solution state.

【0004】[0004]

【発明が解決しようとする課題】しかし、Cu−Ni−
Si合金によると、その製造に通常の単純な溶体化処理
及び時効化処理による製造工程をとった場合、強度面で
は700MPaという高い引張強度が得られるものの、
導電率が30〜40%IACSのレベルに止まってい
る。この導電率は、QFP(Quad Fiat Package)による
半導体装置のリードフレームに用いるには不満が残る。
このように導電率が高くならない理由は、析出しきれず
に固溶状態で残留する合金元素の量が多いためである。
そこで、十分な析出を生じさせるために、時効処理温度
を上昇させたり、処理時間を長くした場合、導電率は向
上するが、逆に析出物が粗大になり、強度が低下すると
いう問題がある。
However, Cu-Ni-
According to the Si alloy, when a production process using a normal simple solution treatment and aging treatment is employed for the production, although a high tensile strength of 700 MPa is obtained in terms of strength,
The conductivity remains at the level of 30-40% IACS. This conductivity remains unsatisfactory for use in a lead frame of a semiconductor device using a QFP (Quad Fiat Package).
The reason why the electrical conductivity does not increase as described above is that the amount of alloying elements remaining in a solid solution state without being completely precipitated is large.
Therefore, in order to cause sufficient precipitation, when the aging treatment temperature is raised or the treatment time is lengthened, the conductivity is improved, but on the contrary, the precipitate becomes coarse and the strength is reduced. .

【0005】そこで本発明は、高強度及び高導電率を併
せもった銅合金材及びその製造方法を提供することを目
的としている。
Accordingly, an object of the present invention is to provide a copper alloy material having both high strength and high electrical conductivity, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、重量比Ni/Siを4.5〜5.5にし
た1.0〜5.0wt%のNi、及び0.2〜1.0w
t%のSiと、0.3〜5.0wt%のZn、及び0.
003〜0.3wt%のPを含み、所定の溶体化処理
し、冷間圧延、及び時効処理によって50%IACS以
上の導電率と、700MPa以上の引張強度を有するよ
うに構成されたことを特徴とする銅合金材を提供する。
In order to achieve the above-mentioned object, the present invention relates to a method for producing Ni of 1.0 to 5.0 wt% in which the weight ratio of Ni / Si is 4.5 to 5.5, and 0.1. 2-1.0w
t% of Si, 0.3 to 5.0 wt% of Zn, and 0.1% of Zn.
It is characterized by containing 003 to 0.3 wt% of P, having a predetermined solution treatment, a cold rolling, and an aging treatment to have a conductivity of 50% IACS or more and a tensile strength of 700 MPa or more. The present invention provides a copper alloy material.

【0007】上記の目的を達成するために、本発明は、
重量比Ni/Siを4.5〜5.5にした1.0〜5.
0wt%のNi及び0.2〜1.0wt%のSiのほ
か、0.3〜5.0wt%のZn、0.003〜0.3
wt%のPがCuに添加された銅合金を700〜100
0℃に加熱して溶体化処理し、20〜80%の加工率で
冷間圧延し、400〜500℃及び0.5〜3時間の時
効処理を施し、10〜70%の加工率で冷間圧延し、3
50〜450℃及び0.5〜3時間の時効処理を施す銅
合金材の製造方法を提供する。
[0007] To achieve the above object, the present invention provides:
The weight ratio Ni / Si was adjusted to 4.5 to 5.5.
0 wt% Ni and 0.2-1.0 wt% Si, 0.3-5.0 wt% Zn, 0.003-0.3
700% to 100% of a copper alloy in which wt% of P is added to Cu.
Heat treatment to 0 ° C., solution rolling, cold rolling at a working rate of 20 to 80%, aging treatment at 400 to 500 ° C. for 0.5 to 3 hours, and cooling at a working rate of 10 to 70% Rolling between 3
Provided is a method for producing a copper alloy material subjected to aging treatment at 50 to 450 ° C. for 0.5 to 3 hours.

【0008】この方法によれば、NiとSiは析出物の
析出を容易にし、固溶状態で残る元素量を低減させるの
で、強度及び導電率が向上する。また、Zn及びPは導
電率を確保しながら、Znでは、はんだ付け時の界面剥
離を改善してめっき性を向上させるように作用し、Pは
脱酸剤として機能し、合金鋳造時のSiの酸化による悪
影響を防止するように作用する。更に、20〜80%の
加工率による冷間圧延は、時効処理における析出物の発
生を十分にしながら粗大化を防止する。この冷間圧延に
続く時効処理は、400〜500℃で十分な析出が得ら
れ、必要な強度及び導電率を得ることができる。この時
効処理に続く10〜70%の加工率による冷間圧延は、
次の時効処理(第2次時効処理)における析出物の発生
を容易にし、十分な強度が得られるように作用する。3
50〜450℃で0.5〜3時間の時効処理は、析出物
の粗大化を抑制しながら十分な析出が可能になり、必要
な強度及び導電率を得ることができる。
According to this method, Ni and Si facilitate precipitation of precipitates and reduce the amount of elements remaining in a solid solution state, so that strength and conductivity are improved. Further, Zn and P act to improve interfacial peeling at the time of soldering to improve plating properties while ensuring electrical conductivity, and P acts as a deoxidizing agent, while Si acts at the time of alloy casting. Acts to prevent adverse effects due to oxidation of Furthermore, cold rolling at a working ratio of 20 to 80% prevents coarsening while sufficiently generating precipitates during aging treatment. In the aging treatment subsequent to the cold rolling, sufficient precipitation is obtained at 400 to 500 ° C., and necessary strength and electrical conductivity can be obtained. Cold rolling at a working rate of 10 to 70% following the aging treatment is as follows:
It facilitates the generation of precipitates in the next aging treatment (secondary aging treatment) and acts to obtain sufficient strength. 3
The aging treatment at 50 to 450 ° C. for 0.5 to 3 hours enables sufficient precipitation while suppressing coarsening of precipitates, and can obtain necessary strength and electrical conductivity.

【0009】[0009]

【発明の実施の形態】本発明は、高強度及び高導電率を
併せもたせるため、粗大析出物が生じない条件のもと
で、Ni2 Siの化合物ができるだけ多量に析出するよ
うにしている。Ni及びSiの量は、添加量が多くなる
と析出しきれない固溶元素量が増大し、少ないと析出硬
化による高強度化が図れない。以下に実施例を示して具
体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, in order to provide both high strength and high electrical conductivity, the Ni 2 Si compound is deposited as much as possible under the condition that no coarse precipitates are formed. As for the amounts of Ni and Si, when the added amount is large, the amount of solid solution elements that cannot be precipitated increases, and when the amount is small, high strength due to precipitation hardening cannot be achieved. Hereinafter, specific examples will be described with reference to examples.

【0010】[0010]

【実施例】図1は本発明による銅合金材の製造方法の工
程を示すフローチャートである。図1を参照して本発明
を説明する。本発明者らは、表1の組成により試料を作
成した。本発明による組成がA及びBであり、比較用組
成(従来例)としてC,D,Eの3種を作成した。
FIG. 1 is a flow chart showing the steps of a method for manufacturing a copper alloy material according to the present invention. The present invention will be described with reference to FIG. The present inventors prepared samples using the compositions shown in Table 1. The compositions according to the present invention were A and B, and three kinds of compositions C, D and E were prepared as comparative compositions (conventional examples).

【0011】[0011]

【表1】 [Table 1]

【0012】Ni2.5wt%、Si0.5wt%、Z
n0.5wt%、P0.03wt%の組成を持つ銅合金
を無酸素銅を母材にして高周波溶解炉で溶製し、直径3
0mm、長さ250mmのインゴットに鋳造した(ステ
ップ101)。このインゴットを850℃に加熱して熱
間押し出し加工し、幅20mm、厚さ8mmの板状にし
た。この後、中間焼鈍をはさみながら厚さ0.58mm
まで冷間圧延した(ステップ102)。ついで、800
℃に加熱後、水中に入れて急冷し、溶体化した(ステッ
プ103)。溶体化後の材料を厚さ0.38mmに冷間
圧延し(ステップ104)、450℃で1時間時効処理
(第1次時効処理)した(ステップ105)。
Ni 2.5 wt%, Si 0.5 wt%, Z
A copper alloy having a composition of n0.5 wt% and P0.03 wt% is melted in an induction melting furnace using oxygen-free copper as a base material, and has a diameter of 3
It was cast into an ingot of 0 mm and length of 250 mm (step 101). This ingot was heated to 850 ° C. and hot-extruded to form a plate having a width of 20 mm and a thickness of 8 mm. Thereafter, the thickness is 0.58 mm while sandwiching intermediate annealing.
Cold-rolled until step 102. Then, 800
After heating to ° C., it was quenched in water to form a solution (step 103). The solution after solution cooling was cold-rolled to a thickness of 0.38 mm (step 104), and was aged at 450 ° C. for 1 hour (first aging treatment) (step 105).

【0013】溶体化処理と時効処理の間で冷間圧延を行
うことにより、溶体化材の結晶格子内に適度な格子欠陥
が導入される。この格子欠陥は析出物形成の核として機
能し、析出物を微細な形状でより均一かつ多量に発生さ
せることができる。冷間圧延の加工率を高くすると、よ
り多量の格子欠陥が導入されるため、多量の析出物が形
成されやすくなるが、析出の進行が速くなるため、粗大
化も急速に進行する。したがって、冷間圧延の加工率は
20〜80%にするのが好ましい。
By performing cold rolling between the solution treatment and the aging treatment, appropriate lattice defects are introduced into the crystal lattice of the solution-treated material. This lattice defect functions as a nucleus for the formation of precipitates, and the precipitates can be generated in a more uniform and large amount in a fine shape. When the working ratio of the cold rolling is increased, a larger amount of lattice defects is introduced, so that a large amount of precipitates are easily formed. However, since the precipitation proceeds quickly, the coarsening proceeds rapidly. Therefore, the working ratio of the cold rolling is preferably set to 20 to 80%.

【0014】1時間時効処理においては、微細な形状の
析出物をできるだけ多く発生させることが重要である。
このためには温度及び保持時間が重要で、ここでは温度
を400〜500℃、保持時間を30分〜3時間にして
いる。これより低温及び短時間では十分な量の析出が生
ぜず、逆に、高温及び長時間になると粗大な形状の析出
物が発生する。
In the one-hour aging treatment, it is important to generate as many precipitates as possible in a fine shape.
For this purpose, the temperature and the holding time are important. Here, the temperature is set to 400 to 500 ° C., and the holding time is set to 30 minutes to 3 hours. At lower temperatures and shorter times, a sufficient amount of precipitation does not occur, and conversely, at higher temperatures and longer times, coarse precipitates are generated.

【0015】この1時間時効処理の後、厚みが0.25
mmになるまで冷間圧延(ステップ106)する。この
冷間圧延は、加工率を10〜70%で行うのが望まし
い。10%未満では、この後に行われる第2次時効処理
における析出物の発生が不十分になり、70%を越える
と析出の進行が速くなる。この冷間圧延の後、420℃
で1時間時効処理した(ステップ107)。この2回目
の時効処理(第2次時効処理)は、ステップ105の第
1次時効処理で析出されずに残った固溶状態の元素をで
きるだけ多く析出させることが重要である。そこで、第
2次時効処理の温度を350〜450℃、保持時間を3
0分〜3時間にしている。以上のようにして製作した試
料をNo.1とする。
After the aging treatment for one hour, the thickness becomes 0.25
mm (step 106). This cold rolling is desirably performed at a working ratio of 10 to 70%. If it is less than 10%, the generation of precipitates in the subsequent secondary aging treatment will be insufficient, and if it exceeds 70%, the progress of precipitation will be fast. After this cold rolling, 420 ° C
For one hour (step 107). In this second aging treatment (secondary aging treatment), it is important to precipitate as much as possible of the solid solution elements remaining without being precipitated in the first aging treatment in step 105. Therefore, the temperature of the second aging treatment is set to 350 to 450 ° C., and the holding time is set to 3
0 minutes to 3 hours. The sample manufactured as described above was designated as No. Let it be 1.

【0016】表1に示した各組成にし、また加工条件
(冷間加工率及び時効処理条件)を代えて上記した製造
工程にしたがって本発明品の試料(No.2,3及びN
o.8)及び比較品(No.4,5,6,7及びNo.
9,10,11)を製作した。これらの全てについて、
引張強さと導電率を測定したところ、表2に示す結果を
得た。
Samples (Nos. 2, 3 and N) of the products of the present invention were prepared according to the above-mentioned manufacturing process by changing the compositions shown in Table 1 and changing the processing conditions (the cold working ratio and the aging treatment conditions).
o. 8) and comparative products (No. 4, 5, 6, 7 and No. 8).
9, 10, 11). For all of these,
When the tensile strength and the electrical conductivity were measured, the results shown in Table 2 were obtained.

【0017】[0017]

【表2】 [Table 2]

【0018】表2から明らかなように、試料No.1〜
3及びNo.8は、720MPa以上の強度が得られ、
導電率は52%IACS以上が得られた。この結果、Q
FPによる半導体装置のリードフレームに用いることが
可能になった。これに対し、試料No.4〜7及びN
o.9〜11の比較例は、引張強度及び導電率が低く、
半導体装置のリードフレームに用いることができない。
As is clear from Table 2, Sample No. 1 to
3 and No. 3 8, a strength of 720 MPa or more is obtained,
A conductivity of 52% IACS or more was obtained. As a result, Q
It can be used for a lead frame of a semiconductor device using FP. On the other hand, the sample No. 4-7 and N
o. Comparative Examples 9 to 11 have low tensile strength and low electrical conductivity,
It cannot be used for a lead frame of a semiconductor device.

【0019】本発明による銅合金は、高い強度と高い導
電率が得られるため、リードフレームに用いた場合、よ
り小型化、多ピン化、高速化を目的とした半導体装置へ
の対応が可能になり、特に、QFP等の多ピンリードフ
レームに用いるのに適している。ここで、表1に示した
各元素の組成比について説明する。
Since the copper alloy according to the present invention has high strength and high electrical conductivity, when it is used for a lead frame, it is possible to cope with a semiconductor device for the purpose of downsizing, multi-pin, and high-speed. In particular, it is suitable for use in a multi-pin lead frame such as a QFP. Here, the composition ratio of each element shown in Table 1 will be described.

【0020】Ni及びSiの添加量が低いと、析出硬化
による高強度化が不十分になる。逆に、Ni及びSiの
添加量が多くなると、析出しきれない固溶元素量が増加
する。また、Ni/Siの重量比を規定する理由は、N
2 Siの析出が十分におきたとき、余剰分として存在
するNiもしくはSiの量を少なくする為である。更
に、Znは、はんだ付け時の界面剥離を改善する効果が
ある。Pは脱酸剤としての効果があり、合金鋳造時のS
iの酸化による悪影響を防止することができる。Zn及
びPの量が所定量より多くなると、導電率が低下する。
When the amounts of Ni and Si are small, the high strength due to precipitation hardening becomes insufficient. Conversely, when the added amount of Ni and Si increases, the amount of solid solution elements that cannot be completely precipitated increases. The reason for defining the weight ratio of Ni / Si is that
This is to reduce the amount of Ni or Si existing as a surplus when i 2 Si is sufficiently precipitated. Furthermore, Zn has an effect of improving interface peeling during soldering. P has an effect as a deoxidizing agent, and S at the time of alloy casting
An adverse effect due to oxidation of i can be prevented. When the amounts of Zn and P are larger than predetermined amounts, the electrical conductivity decreases.

【0021】なお、表1の組成においては、表中の値に
固定されるものではなく、次の範囲で選択可能である。
Ni1.0〜5.0wt%、Si0.2〜1.0wt
%、Zn0.3〜5.0wt%、P0.003〜0.3
wt%、及びNi/Si=4.5〜5.5。また、ステ
ップ102における熱間押出加工では800℃に加熱す
るものとしたが、この温度は700〜1000℃の範囲
に設定することができる。更に、第ステップ105の1
次時効処理は450℃で行ったが、400〜500℃の
範囲で行うことができる。
The compositions in Table 1 are not fixed to the values in the table but can be selected in the following ranges.
Ni 1.0 to 5.0 wt%, Si 0.2 to 1.0 wt%
%, Zn 0.3 to 5.0 wt%, P 0.003 to 0.3
wt%, and Ni / Si = 4.5-5.5. In the hot extrusion in step 102, the heating is performed at 800 ° C., but the temperature can be set in the range of 700 to 1000 ° C. Further, the first step 105
The next aging treatment was performed at 450 ° C, but can be performed at a temperature in the range of 400 to 500 ° C.

【0022】[0022]

【発明の効果】以上より明らかな如く、本発明によれ
ば、所定の比率にしたNi、Siのほか、Zn及びPを
所定の組成でCuに添加した銅合金を700〜1000
℃で溶体化処理し、ついで20〜80%の加工率で冷間
圧延し、更に400〜500℃及び0.5〜3時間で時
効処理を施した後、10〜70%の加工率で再度冷間圧
延し、ついで350〜450℃及び0.5〜3時間で再
度時効処理を施すようにしたので、高強度及び高導電率
を備えた銅合金を得ることができる。したがって、リー
ドフレームに用いると、小型化、多ピン化及び高速化に
対応したQFP等の半導体装置を得ることができる。
As is clear from the above, according to the present invention, in addition to Ni and Si in a predetermined ratio, a copper alloy in which Zn and P are added to Cu in a predetermined composition in a range of 700 to 1000.
And then cold-rolled at a working rate of 20-80%, and further subjected to aging treatment at 400-500 ° C for 0.5-3 hours, and then again at a working rate of 10-70%. Since cold rolling is performed and then aging treatment is performed again at 350 to 450 ° C. and 0.5 to 3 hours, a copper alloy having high strength and high electrical conductivity can be obtained. Therefore, when used for a lead frame, it is possible to obtain a semiconductor device such as a QFP compatible with miniaturization, multi-pin operation and high-speed operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の銅合金材の製造方法の製造工程を示す
フローチャートである。
FIG. 1 is a flowchart showing a manufacturing process of a method for manufacturing a copper alloy material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 650 C22F 1/00 650F 661 661A 682 682 685 685Z 686 686Z 691 691B 691C 694 694A ──────────────────────────────────────────────────続 き Continuation of front page (51) Int.Cl. 6 Identification code FI C22F 1/00 650 C22F 1/00 650F 661 661A 682 682 685 685Z 686 686Z 691 691B 691C 694 694A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比Ni/Siを4.5〜5.5にし
た1.0〜5.0wt%のNi、及び0.2〜1.0w
t%のSiと、0.3〜5.0wt%のZn、及び0.
003〜0.3wt%のPを含み、 所定の溶体化処理し、冷間圧延、及び時効処理によって
50%IACS以上の導電率と、700MPa以上の引
張強度を有するように構成されたことを特徴とする銅合
金材。
1. A 1.0-5.0 wt% Ni having a weight ratio Ni / Si of 4.5-5.5, and 0.2-1.0 w
t% of Si, 0.3 to 5.0 wt% of Zn, and 0.1% of Zn.
003-0.3 wt% of P, it is configured to have a conductivity of 50% IACS or more and a tensile strength of 700 MPa or more by predetermined solution treatment, cold rolling and aging treatment. Copper alloy material.
【請求項2】 重量比Ni/Siを4.5〜5.5にし
た1.0〜5.0wt%のNi、及び0.2〜1.0w
t%のSiと、0.3〜5.0wt%のZn、及び0.
003〜0.3wt%のPがCuに添加された銅合金を
700〜1000℃に加熱して溶体化処理し、 20〜80%の加工率で冷間圧延し、 400〜500℃及び0.5〜3時間の時効処理を施
し、 10〜70%の加工率で冷間圧延し、 350〜450℃及び0.5〜3時間の時効処理を施す
ことを特徴とする銅合金材の製造方法。
2. A 1.0-5.0 wt% Ni having a weight ratio Ni / Si of 4.5-5.5, and 0.2-1.0 w.
t% of Si, 0.3 to 5.0 wt% of Zn, and 0.1% of Zn.
003-0.3 wt% of the copper alloy containing P added to Cu is heated to 700-1000 ° C for solution treatment, cold-rolled at a working ratio of 20-80%, and 400-500 ° C. A method for producing a copper alloy material comprising subjecting to aging treatment for 5 to 3 hours, cold rolling at a working rate of 10 to 70%, and aging treatment at 350 to 450 ° C. for 0.5 to 3 hours. .
JP31327696A 1996-11-25 1996-11-25 Copper alloy material and its production Pending JPH10152736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31327696A JPH10152736A (en) 1996-11-25 1996-11-25 Copper alloy material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31327696A JPH10152736A (en) 1996-11-25 1996-11-25 Copper alloy material and its production

Publications (1)

Publication Number Publication Date
JPH10152736A true JPH10152736A (en) 1998-06-09

Family

ID=18039268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31327696A Pending JPH10152736A (en) 1996-11-25 1996-11-25 Copper alloy material and its production

Country Status (1)

Country Link
JP (1) JPH10152736A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025078A (en) * 2001-07-10 2003-01-28 Dowa Mining Co Ltd Copper, copper-base alloy and method of manufacturing the same
JP2004007020A (en) * 2003-09-30 2004-01-08 Sanyo Electric Co Ltd Semiconductor device
US7413619B2 (en) 2005-03-11 2008-08-19 Mitsubishi Denki Kabushiki Kaisha Copper alloy
CN115044846A (en) * 2022-06-23 2022-09-13 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof
CN115354251A (en) * 2022-08-29 2022-11-18 西安交通大学 Heat treatment method for improving precipitation degree and inhibiting precipitated phase from coarsening

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025078A (en) * 2001-07-10 2003-01-28 Dowa Mining Co Ltd Copper, copper-base alloy and method of manufacturing the same
JP4738657B2 (en) * 2001-07-10 2011-08-03 Dowaホールディングス株式会社 Copper, copper-based alloy and method for producing the same
JP2004007020A (en) * 2003-09-30 2004-01-08 Sanyo Electric Co Ltd Semiconductor device
US7413619B2 (en) 2005-03-11 2008-08-19 Mitsubishi Denki Kabushiki Kaisha Copper alloy
US7727345B2 (en) 2005-03-11 2010-06-01 Mitsubishi Denki Kabushiki Kaisha Copper alloy and method of manufacturing the same
DE102006010760B4 (en) * 2005-03-11 2014-03-27 Mitsubishi Denki K.K. Copper alloy and method of making the same
CN115044846A (en) * 2022-06-23 2022-09-13 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof
CN115354251A (en) * 2022-08-29 2022-11-18 西安交通大学 Heat treatment method for improving precipitation degree and inhibiting precipitated phase from coarsening

Similar Documents

Publication Publication Date Title
US8430979B2 (en) Copper alloy containing cobalt, nickel and silicon
JP3273613B2 (en) Method for producing copper alloy having high strength and conductivity
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
KR100360131B1 (en) Method for improving the bendability of copper alloy and copper alloy manufactured therefrom
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
EP2371976A1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JPH0118977B2 (en)
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP3896793B2 (en) Manufacturing method of high strength and high conductivity copper alloy material
US20020029827A1 (en) High-strength and high-conductivity Cu-(Ni, Co, Fe)-Si copper alloy for use in leadframes and method of making the same
JP3465541B2 (en) Lead frame material manufacturing method
JP3376840B2 (en) Manufacturing method of copper alloy material
JP3900733B2 (en) Manufacturing method of high strength and high conductivity copper alloy material
JP3772319B2 (en) Copper alloy for lead frame and manufacturing method thereof
JPH10152736A (en) Copper alloy material and its production
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same
JP4251672B2 (en) Copper alloy for electrical and electronic parts
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JPH0635633B2 (en) Copper alloy for electric and electronic parts and method for producing the same
JPH11323463A (en) Copper alloy for electrical and electronic parts
JP4175920B2 (en) High strength copper alloy
JP3407527B2 (en) Copper alloy materials for electronic equipment