JPH10158033A - Porous crystalized glass having cuti2(po4)3 crystal as skeleton and its production - Google Patents
Porous crystalized glass having cuti2(po4)3 crystal as skeleton and its productionInfo
- Publication number
- JPH10158033A JPH10158033A JP32760196A JP32760196A JPH10158033A JP H10158033 A JPH10158033 A JP H10158033A JP 32760196 A JP32760196 A JP 32760196A JP 32760196 A JP32760196 A JP 32760196A JP H10158033 A JPH10158033 A JP H10158033A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- glass
- surface area
- specific surface
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C11/00—Multi-cellular glass ; Porous or hollow glass or glass particles
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はCuTi2(PO4)
3結晶構造を持つ多孔質結晶化ガラスの製造方法に関す
る。更に詳しくは抗菌性や触媒作用が期待されるCuT
i2(PO4)3結晶をスケルトンとする多孔質結晶化ガ
ラスを安価にて効率良く作成することが可能な製造方法
に関するものである。[0001] The present invention relates to CuTi 2 (PO 4 )
The present invention relates to a method for producing a porous crystallized glass having a three- crystal structure. More specifically, CuT, which is expected to have antibacterial properties and catalytic action
The present invention relates to a production method capable of efficiently and inexpensively producing a porous crystallized glass using i 2 (PO 4 ) 3 crystal as a skeleton.
【0002】[0002]
【従来の技術】多孔質材料は、触媒担体、各種フィルタ
ー、ガスセンサー、クロマトグラフィー用充填材など多
岐にわたり使用されている。これらの用途に対しそれぞ
れ必要とされる特徴は異なっている。たとえば、高温用
ガスフィルターとして用いる場合、通過するガスと反応
しない材料を選択し補集したい物質を確実にキャッチで
きる気孔径でかつ圧力損失の少ない構造を持っていなけ
ればいけない。そのため多孔質材料は、その用途に応じ
て材料組成及び製造方法が異なっている。たとえば窒素
酸化物の分解に対して触媒作用などが期待される結晶と
してCu(I)を含むCuTi2(PO4)3が考えられ
る。触媒として用いられる場合、材料そのものが触媒作
用を有すると同時に処理する物質がいかに効率良く触媒
に接触できるかが非常に大きなポイントとなる。そのた
め触媒自体の持つ比表面積を大きくするための方法が種
々検討されている。しかしCuTi2(PO4)3結晶構
造を持つ材料を粉末焼結法により作ることは可能である
が、その比表面積はほとんど0m2/gに等しい。これ
はCuTi2(PO4)3結晶構造とするためにその原料
としての酸化銅、酸化チタン、リン酸を組成配合率とす
るためである。粉末焼結法により得られた比表面積がほ
とんど0m2/gであるCuTi2(PO4)3結晶を使用
する場合、擬似的に比表面積を大きくするため、材料を
微粉化する方法が用いられる。しかし材料の微細化は物
理的に粉砕する以外に方法はなく、しかも物理的という
面で微細化には限界があり比表面積を希望するレベルま
で向上させるのは困難である。また微細化粉末を多孔質
材料として使用する場合、カラム等の容器に充填して用
いることになるが、充填する粉末の粒子が細かくなれば
なるほど容器内の充填率が上昇してしまい圧力損失が大
きくなってしまうという問題がある。その対策として、
各種の多孔質な結晶材料の製造方法が試みられている。
たとえば粉末焼結法において、原料配合時に目標組成原
料以外の低融点原料を配合し焼結中にその低融点原料を
溶出させることにより空隙を生じさせる方法がある。し
かしこの場合、低融点原料成分の分散性が悪いため連続
した気孔が得られなかったり、融材成分を多量に含むた
め焼成中の変形や炉材への融着が起こる等の問題があ
る。また他の方法として焼成後にガラス質のマトリック
ス成分を除去して結晶質の骨格成分のみを残して空隙を
形成する、すなわちガラスの相分離現象を利用した製造
方法が開発された。これは、Na2O−O−B2O3−S
iO2系(SiO2:70wt%)のガラス処理により相
分離させた後、酸によって可溶成分(Na2O−B
2O3)を溶出させ、シリカガラスの多孔体とする方法で
あるが、高温での処理が必要となり処理コストが高い、
材料成分がシリカ系ガラスに限定されるためその他の結
晶すなわちCuTi2(PO4)3から成る材料等ができ
ないなどの問題がある。2. Description of the Related Art Porous materials are widely used, such as catalyst carriers, various filters, gas sensors, and packing materials for chromatography. The features required for each of these applications are different. For example, when used as a high-temperature gas filter, it is necessary to select a material that does not react with the passing gas and have a structure with a small pore diameter and a small pressure loss that can reliably catch a substance to be collected. Therefore, the material composition and the manufacturing method of the porous material differ depending on the application. For example, CuTi 2 (PO 4 ) 3 containing Cu (I) can be considered as a crystal expected to have a catalytic action for the decomposition of nitrogen oxides. When used as a catalyst, a very important point is how efficiently the substance to be treated can contact the catalyst at the same time as the material itself has a catalytic action. Therefore, various methods for increasing the specific surface area of the catalyst itself have been studied. However, it is possible to produce a material having a CuTi 2 (PO 4 ) 3 crystal structure by a powder sintering method, but its specific surface area is almost equal to 0 m 2 / g. This is because the composition ratio of copper oxide, titanium oxide, and phosphoric acid as raw materials for obtaining a CuTi 2 (PO 4 ) 3 crystal structure. When a CuTi 2 (PO 4 ) 3 crystal whose specific surface area obtained by the powder sintering method is almost 0 m 2 / g is used, a method of pulverizing the material is used in order to increase the specific surface area in a pseudo manner. . However, there is no other method than the physical pulverization of the material other than physical pulverization, and furthermore, there is a limit in the physical refinement, and it is difficult to improve the specific surface area to a desired level. When the finely divided powder is used as a porous material, it is used by filling it in a container such as a column.However, the finer the particles of the powder to be filled, the higher the filling rate in the container and the pressure loss. There is a problem that it becomes large. As a countermeasure,
Various methods for producing porous crystalline materials have been attempted.
For example, in the powder sintering method, there is a method in which a low melting point raw material other than the target composition raw material is compounded at the time of compounding the raw material, and the low melting point raw material is eluted during sintering to form voids. However, in this case, there are problems that continuous pores cannot be obtained due to poor dispersibility of the low-melting-point raw material component, and deformation during firing or fusion to a furnace material occurs due to a large amount of a flux component. Further, as another method, a production method has been developed in which a glassy matrix component is removed after firing to form voids while leaving only a crystalline skeleton component, that is, a phase separation phenomenon of glass. This is because Na 2 O—O—B 2 O 3 —S
After phase separation by glass treatment of an iO 2 (SiO 2 : 70 wt%), a component soluble in acid (Na 2 O—B)
2 O 3 ) is eluted to form a porous silica glass body, but requires a high temperature treatment, resulting in a high treatment cost.
Since the material component is limited to silica-based glass, there is a problem that other crystals, that is, a material made of CuTi 2 (PO 4 ) 3 cannot be formed.
【0003】[0003]
【発明が解決しようとする課題】本発明はCuTi
2(PO4)3結晶構造を持ち、物理粉砕による擬似的な
比表面積を上昇させる必要のない多孔質、高比表面積な
結晶化ガラスを安価に効率よく製造することを目的とす
るものである。SUMMARY OF THE INVENTION The present invention relates to CuTi
An object of the present invention is to efficiently and inexpensively produce a porous, high specific surface area crystallized glass having a 2 (PO 4 ) 3 crystal structure and having no need to increase a pseudo specific surface area by physical grinding. .
【0004】[0004]
【課題を解決するための手段】本発明者等は、鋭意研究
を重ねた結果、ガラスの相分離現象を利用することによ
り安価かつ高効率なCuTi2(PO4)3結晶構造を持
つ多孔質な結晶化ガラスの製造方法を発見したものであ
る。すなわち目的とする組成を含む2種類のガラスをス
ピノーダル分解によって得る。分離した2相はいずれも
特定の形状を持たず、ガラスは2相が絡み合った組織に
なるため高効率となるのである。使用する原料は、酸化
銅、酸化チタン、およびリン酸である。酸化銅21.8
−29.3wt%,酸化チタン5.9−10.9wt
%,リン酸64.8−67.3wt%組成に配合した原
料を溶融する。それぞれの原料を配合比以外にするとC
uTi2(PO4)3とCu3(PO4)2の2成分が生成し
なくなる。溶融物を急冷しガラス化するためその降温速
度は800℃/sec以上、望ましくは1000℃/s
ec以上とする。800℃/sec未満であると結晶化
が起こりガラスが得られない。またCuTi2(PO4)
3とCu3(PO4)2はともに単独ではガラス化しない
が、これらを擬似2成分とする系はその液相温度は大き
く低下し、安定なガラスとして得られるのである。生成
したガラスは、気孔率は0%であり多孔質とはなってい
ない。次にCuTi2(PO4)3とCu3(PO4)2それ
ぞれの結晶核を生成するため450℃−500℃にて1
0時間以上保持する。450℃未満であると結晶核の生
成がなく、500℃以上であると生成した核の成長が核
の生成よりも律速となるため大きな結晶が少量できるこ
ととなり、最終的に得られる結晶化ガラスは希望する比
表面積とならない。保持時間が10時間未満であると十
分な量の核生成が得られない。さらに生成した核を成長
させる必要がある。結晶の成長を十分に行わないと非晶
質(ガラス)部分が非常に多く残り、良好なスケルトン
が得られない。これらの熱処理によってCuTi2(P
O4)3とCu3(PO4)2の2種の結晶相から成る結晶
化物(結晶化ガラス)が得られる。得られた結晶化物を
0.1N以上の塩酸、硫酸などの酸で酸洗いすることに
より、目的のCuTi2(PO4)3結晶のみを得るので
ある。すなわちCuTi2(PO4)3塩酸や硫酸のよう
な酸に溶けることはないが、Cu3(PO4)2は溶ける
からであり、Cu3(PO4)2の溶け出した後の場所が
空隙となって、多孔体となるのである。酸の濃度が0.
1N以下であると溶出効率が著しく低下する。望ましく
は1N以上の酸を使用したい。多孔体の持つ比表面積は
10m2/g以上必要であり、それ未満であると表面活
性が得られない。Means for Solving the Problems As a result of intensive studies, the present inventors have found that a porous material having an inexpensive and highly efficient CuTi 2 (PO 4 ) 3 crystal structure can be obtained by utilizing the phase separation phenomenon of glass. It has discovered a method for producing a crystallized glass. That is, two types of glasses containing the desired composition are obtained by spinodal decomposition. Neither of the two separated phases has a specific shape, and the glass has a structure in which the two phases are entangled, resulting in high efficiency. The raw materials used are copper oxide, titanium oxide, and phosphoric acid. Copper oxide 21.8
-29.3wt%, titanium oxide 5.9-10.9wt
%, Phosphoric acid 64.8-67.3 wt%. If each raw material is not in the mixing ratio, C
Two components of uTi 2 (PO 4 ) 3 and Cu 3 (PO 4 ) 2 are not generated. In order to rapidly cool and vitrify the molten material, the temperature decreasing rate is 800 ° C./sec or more, preferably 1000 ° C./s.
ec or more. If the temperature is lower than 800 ° C./sec, crystallization occurs and glass cannot be obtained. CuTi 2 (PO 4 )
Both 3 and Cu 3 (PO 4 ) 2 do not vitrify by themselves, but a system using them as pseudo-two components has a significantly lower liquidus temperature and can be obtained as a stable glass. The resulting glass has a porosity of 0% and is not porous. Next, in order to generate crystal nuclei of CuTi 2 (PO 4 ) 3 and Cu 3 (PO 4 ) 2, 1
Hold for at least 0 hours. When the temperature is lower than 450 ° C., no crystal nucleus is generated, and when the temperature is higher than 500 ° C., the growth of the generated nucleus is more rate-determining than the generation of the nucleus. The desired specific surface area is not obtained. If the holding time is less than 10 hours, a sufficient amount of nucleation cannot be obtained. Further, it is necessary to grow the generated nuclei. If the crystal growth is not sufficiently performed, an extremely large amount of amorphous (glass) portion remains, and a good skeleton cannot be obtained. By these heat treatments, CuTi 2 (P
A crystallized product (crystallized glass) comprising two types of crystal phases of O 4 ) 3 and Cu 3 (PO 4 ) 2 is obtained. By pickling the obtained crystallized product with an acid such as hydrochloric acid or sulfuric acid of 0.1 N or more, only the desired CuTi 2 (PO 4 ) 3 crystal is obtained. That is, CuTi 2 (PO 4) never soluble in 3 hydrochloric acid or acids such as sulfuric acid, is because Cu 3 (PO 4) 2 dissolves, the location after the melted of Cu 3 (PO 4) 2 It becomes a void and becomes a porous body. Acid concentration of 0.
If it is less than 1N, the elution efficiency will be significantly reduced. Preferably, 1N or more acid is used. The specific surface area of the porous body needs to be 10 m 2 / g or more, and if it is less than 10 m 2 / g, no surface activity can be obtained.
【0005】次に実施例により詳細に説明する。 (実施例)本発明による、酸化銅29.3wt%、酸化
チタン5.9wt%、リン酸64.8wt%の組成に混
合処理した原料を1250℃にて1時間溶融保持した。
その後窒素雰囲気中にて急冷却させてガラスを得た。こ
のときの冷却速度は、1000℃/secであった。次
に得られたガラスを480℃で20時間保持後、520
℃にて12時間保持し熱処理を行った。その後得られた
結晶化ガラスを室温で0.5N−H2SO4aqに3日間
浸漬し本発明品を製造した。得られた本発明品の粉末X
線回折を実施したところCu3(PO4)2結晶は全く検
出されずCuTi2(PO4)3結晶のみであった。また
BET法により比表面積を測定したところ、46m2/
gであり目標の特性を得られた。Next, an embodiment will be described in detail. (Example) A raw material according to the present invention, which was mixed and processed to have a composition of 29.3 wt% of copper oxide, 5.9 wt% of titanium oxide, and 64.8 wt% of phosphoric acid, was melted and held at 1250 ° C for 1 hour.
Thereafter, the glass was rapidly cooled in a nitrogen atmosphere to obtain glass. The cooling rate at this time was 1000 ° C./sec. Next, after holding the obtained glass at 480 ° C. for 20 hours, 520
C. for 12 hours to perform heat treatment. Then the resulting glass-ceramics was prepared immersed present invention product 3 days 0.5N-H 2 SO 4 aq at room temperature. Powder X of the obtained product of the present invention
When a line diffraction was performed, no Cu 3 (PO 4 ) 2 crystal was detected, and only a CuTi 2 (PO 4 ) 3 crystal was detected. When the specific surface area was measured by the BET method, 46 m 2 /
g, and the target characteristics were obtained.
【0006】[0006]
【比較例1】酸化銅31.9wt%、酸化チタン4.2
wt%、リン酸63.8wt%を調整した後、バインダ
ーとしてアクリル樹脂を用いて常温にて混練した。混練
物を金属製の金型に充填し油圧プレスにて1000kg
/cm2の圧力にて成形体を得た。次にこの成形体を1
300℃で24時間焼結し比較例1を得た。実施例及び
比較例1の粉末X線回折を実施したところ、ともにCu
Ti2(PO4)3結晶構造のみであった。また実施例及
び比較例1の気孔率、比表面積を測定したところ 実施例 比較例1 気孔率(%) 52 2 比表面積(m2/g) 46 1 であった。Comparative Example 1 Copper oxide 31.9 wt%, titanium oxide 4.2
After adjusting wt% and 63.8 wt% of phosphoric acid, the mixture was kneaded at room temperature using an acrylic resin as a binder. Fill the kneaded material into a metal mold and 1000kg with a hydraulic press
A molded body was obtained at a pressure of / cm 2 . Next, this molded body is
Sintering was performed at 300 ° C. for 24 hours to obtain Comparative Example 1. When powder X-ray diffractions of the example and comparative example 1 were performed,
It had only a Ti 2 (PO 4 ) 3 crystal structure. The porosity and specific surface area of Example and Comparative Example 1 were measured. Example Comparative Example 1 Porosity (%) 52 2 Specific surface area (m 2 / g) 46 1.
【0007】[0007]
【比較例2】酸化銅31.9%、酸化チタン4.2%、
リン酸63.9%を調整したバッチを120℃で6時間
乾燥後、1250℃にて1時間溶融した。その後窒素雰
囲気中にて急冷却させてガラスを得た。このときの冷却
速度は、1000℃/secであった。次に得られたガ
ラスを480℃で20時間保持後、520℃にて12時
間熱処理を行った。その後得られた結晶化ガラスを室温
で0.5N−H2SO4aqに3日間浸漬し比較例2を得
た。実施例及び比較例2の粉末X線回折を実施したとこ
ろ、実施例はCuTi2(PO4)3結晶のみであったが
比較例2はCuTi2(PO4)3結晶以外の数種類(T
iO2等)の結晶が確認された。Comparative Example 2 Copper oxide 31.9%, titanium oxide 4.2%,
The batch adjusted to 63.9% phosphoric acid was dried at 120 ° C. for 6 hours, and then melted at 1250 ° C. for 1 hour. Thereafter, the glass was rapidly cooled in a nitrogen atmosphere to obtain glass. The cooling rate at this time was 1000 ° C./sec. Next, the obtained glass was kept at 480 ° C. for 20 hours, and then heat-treated at 520 ° C. for 12 hours. Thereafter, the obtained crystallized glass was immersed in 0.5 N—H 2 SO 4 aq at room temperature for 3 days to obtain Comparative Example 2. When the powder X-ray diffraction of the example and the comparative example 2 was performed, the example was only the CuTi 2 (PO 4 ) 3 crystal, but the comparative example 2 was several types (T) other than the CuTi 2 (PO 4 ) 3 crystal.
crystal of iO 2, etc.) has been confirmed.
【0008】[0008]
【比較例3】実施例と同様の組成にて原料調整溶融後、
降温速度600℃/secにて冷却した。ここで得られ
た比較例3を粉末X線回折したところ、ガラスではなく
数種類の結晶が確認された。Comparative Example 3 After the raw material was adjusted and melted with the same composition as in the example,
Cooling was performed at a temperature lowering rate of 600 ° C./sec. The obtained Comparative Example 3 was subjected to powder X-ray diffraction. As a result, several types of crystals were confirmed instead of glass.
【0009】[0009]
【比較例4】実施例と同様の組成にて原料調整、溶融、
冷却後、400℃にて20時間保持し比較例4を得た。
ここで得られた比較例4を粉末X線回折したところ、結
晶の確認はできなかった。Comparative Example 4 Raw material preparation, melting,
After cooling, it was kept at 400 ° C. for 20 hours to obtain Comparative Example 4.
X-ray powder diffraction of Comparative Example 4 obtained here did not confirm any crystals.
【0010】[0010]
【比較例5】実施例と同様の組成にて原料調整、溶融、
冷却後、550℃にて20時間保持した後、実施例と同
様に結晶成長、酸洗いを行い比較例5を得た。実施例及
び比較例5の気孔率、比表面積を測定したところ 実施例 比較例1 気孔率(%) 52 50 比表面積(m2/g) 46 11 であった。 Comparative Example 5 Raw material preparation, melting,
After cooling, the temperature was maintained at 550 ° C. for 20 hours, and then crystal growth and pickling were carried out in the same manner as in Example to obtain Comparative Example 5. The porosity and the specific surface area of Example and Comparative Example 5 were measured. Example Comparative Example 1 Porosity (%) 52 50 Specific surface area (m 2 / g) 46 11.
【0011】[0011]
【比較例6】実施例と同様の組成にて原料調整、溶融、
冷却、結晶核生成後、結晶成長させることなく酸あらい
処理し比較例6を得た。ここで得られた比較例6を粉末
X線回折したところ、CuTi2(PO4)3のみであっ
たがその収率2%であった。Comparative Example 6 Raw material preparation, melting,
After cooling and generation of crystal nuclei, Comparative Example 6 was obtained by performing an acid treatment without growing crystals. When X-ray powder diffraction of Comparative Example 6 obtained here was CuTi 2 (PO 4 ) 3 , the yield was 2%.
【0012】[0012]
【比較例7】実施例と同様にて原料調整、溶融、冷却、
結晶核生成、結晶成長後、0.05Nの硫酸に3日間浸
漬して比較例7を得た。ここで得られた比較例7を粉末
X線回折したところ、CuTi2(PO4)3結晶のみで
なく、Cu3(PO4)2結晶も確認した。以上の結果、
本発明により比表面積が10m2/g以上であり、Cu
Ti2(PO4)3結晶構造のみを持つ多孔質結晶化ガラ
スが簡単に得られることがわかった。Comparative Example 7 Raw material preparation, melting, cooling,
After crystal nucleation and crystal growth, Comparative Example 7 was obtained by immersion in 0.05 N sulfuric acid for 3 days. X-ray powder diffraction of Comparative Example 7 obtained here confirmed not only CuTi 2 (PO 4 ) 3 crystals but also Cu 3 (PO 4 ) 2 crystals. As a result,
According to the present invention, the specific surface area is 10 m 2 / g or more, and Cu
It has been found that a porous crystallized glass having only a Ti 2 (PO 4 ) 3 crystal structure can be easily obtained.
【0013】[0013]
【発明の効果】本発明によれば、触媒作用等の効果が期
待できるCuTi2(PO4)3結晶構造を持つ多孔質結
晶化ガラスをガラスの相分離現象を用いた方法により安
価に効率よく製造できる。また抗菌作用を調査したとこ
ろ藻類等に対して効果が見られ抗菌材料としても期待が
できる。According to the present invention, CuTi 2 (PO 4) the effect of the catalytic action and the like can be expected inexpensively and efficiently by 3 methods a porous crystallized glass having a crystal structure with phase separation of the glass Can be manufactured. Investigation of the antibacterial action shows an effect on algae and the like, and can be expected as an antibacterial material.
Claims (3)
チタン5.9〜10.9wt%及びリン酸64.8〜6
7.3wt%組成からなる原料を溶融し、降温速度80
0℃/sec以上で冷却して製造したことを特徴とする
CuTi2(PO4)3結晶をスケルトンとする多孔質結
晶化ガラス。1. 11.8-29.3% by weight of copper oxide, 5.9-10.9% by weight of titanium oxide and 64.8-6% of phosphoric acid
A raw material having a composition of 7.3 wt% is melted,
A porous crystallized glass using a CuTi 2 (PO 4 ) 3 crystal as a skeleton, which is produced by cooling at 0 ° C./sec or more.
〜500℃の範囲で10時間以上保持してCuTi
2(PO4)3とCu3(PO4)2の結晶核を形成させた
後、さらにその2結晶を成長させることを特徴とする結
晶化ガラスの製造方法。2. 450 ° C. using the glass according to claim 1.
Hold for at least 10 hours in the range of
A method for producing crystallized glass, comprising forming crystal nuclei of 2 (PO 4 ) 3 and Cu 3 (PO 4 ) 2 and then growing the two crystals.
スを室温で0.1N以上の塩酸、硫酸などの酸を用いて
CuTi2(PO4)3とCu3(PO4)2の結晶化ガラス
中に含まれるCu3(PO4)2結晶を完全に溶出除去し
比表面積10m2/g以上を有することを特徴とするC
uTi2(PO4)3結晶をスケルトンとする多孔質結晶
化ガラスの製造方法。3. The method according to claim 1, wherein the crystallized glass is treated with CuN 2 (PO 4 ) 3 and Cu 3 (PO 4 ) 2 at room temperature using an acid such as hydrochloric acid or sulfuric acid of 0.1 N or more. C 3 characterized by having a specific surface area of 10 m 2 / g or more by completely eluting and removing Cu 3 (PO 4 ) 2 crystals contained in the crystallized glass.
A method for producing a porous crystallized glass using a uTi 2 (PO 4 ) 3 crystal as a skeleton.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32760196A JPH10158033A (en) | 1996-11-22 | 1996-11-22 | Porous crystalized glass having cuti2(po4)3 crystal as skeleton and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32760196A JPH10158033A (en) | 1996-11-22 | 1996-11-22 | Porous crystalized glass having cuti2(po4)3 crystal as skeleton and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10158033A true JPH10158033A (en) | 1998-06-16 |
Family
ID=18200887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32760196A Pending JPH10158033A (en) | 1996-11-22 | 1996-11-22 | Porous crystalized glass having cuti2(po4)3 crystal as skeleton and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10158033A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017508705A (en) * | 2014-02-19 | 2017-03-30 | コーニング インコーポレイテッド | Antibacterial glass composition, glass containing the same, and polymer article |
US11039620B2 (en) | 2014-02-19 | 2021-06-22 | Corning Incorporated | Antimicrobial glass compositions, glasses and polymeric articles incorporating the same |
US11039621B2 (en) | 2014-02-19 | 2021-06-22 | Corning Incorporated | Antimicrobial glass compositions, glasses and polymeric articles incorporating the same |
-
1996
- 1996-11-22 JP JP32760196A patent/JPH10158033A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017508705A (en) * | 2014-02-19 | 2017-03-30 | コーニング インコーポレイテッド | Antibacterial glass composition, glass containing the same, and polymer article |
US11039620B2 (en) | 2014-02-19 | 2021-06-22 | Corning Incorporated | Antimicrobial glass compositions, glasses and polymeric articles incorporating the same |
US11039621B2 (en) | 2014-02-19 | 2021-06-22 | Corning Incorporated | Antimicrobial glass compositions, glasses and polymeric articles incorporating the same |
US11039619B2 (en) | 2014-02-19 | 2021-06-22 | Corning Incorporated | Antimicrobial glass compositions, glasses and polymeric articles incorporating the same |
US11464232B2 (en) | 2014-02-19 | 2022-10-11 | Corning Incorporated | Antimicrobial glass compositions, glasses and polymeric articles incorporating the same |
US11470847B2 (en) | 2014-02-19 | 2022-10-18 | Corning Incorporated | Antimicrobial glass compositions, glasses and polymeric articles incorporating the same |
US11751570B2 (en) | 2014-02-19 | 2023-09-12 | Corning Incorporated | Aluminosilicate glass with phosphorus and potassium |
US12121030B2 (en) | 2014-02-19 | 2024-10-22 | Corning Incorporated | Aluminosilicate glass with phosphorus and potassium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5173454A (en) | Nanocrystalline materials | |
JP4347574B2 (en) | Transparent gallate glass ceramic | |
EP0283933B1 (en) | Process for producing unsintered cristobalite silica | |
CN108947253B (en) | Containing Y4.67(SiO4)3Yttrium aluminosilicate glass ceramic with O apatite crystal phase and preparation method thereof | |
US3531303A (en) | Alkaline earth aluminosilicate glass-ceramic articles | |
JPS6283313A (en) | Method for highly purifying silica | |
KR101780306B1 (en) | method of preparing a silver nanowire and a silver nanowire prepared by using the same | |
JPH10158033A (en) | Porous crystalized glass having cuti2(po4)3 crystal as skeleton and its production | |
US6927185B2 (en) | Porous material and method for preparation thereof | |
CN109336075B (en) | Preparation method of porous titanium hydrogen phosphate material, obtained product and application | |
CN118270978A (en) | Crystallization ion sieve and preparation method and application thereof | |
Yamamoto et al. | Preparation of Porous Glass‐Ceramics with a Skeleton of NASICON‐Type Crystal CuTi2 (PO4) 3 | |
JPH06219768A (en) | Quartz glass material and its production | |
JPS61256922A (en) | Immobilizing method for strontium incorporated in aqueous solution | |
KR100683834B1 (en) | Manufacturing method of glass-ceramics using steel dust in furnace | |
JP4567129B2 (en) | NU-1 type binderless zeolite molding and method for producing the same | |
JPS6132053B2 (en) | ||
JPS61187939A (en) | Adsorption of barium in aqueous solution, ion-exchange material and method for fixing barium | |
JP4812149B2 (en) | Beta-type binderless zeolite molding and method for producing the same | |
JPH038708A (en) | Production of silica feedstock | |
JPS5869799A (en) | Production of fibrous potassium titanate | |
JPS5930724A (en) | Manufacture of fibrous potassium titanate | |
CN118270804A (en) | Ion sieve and preparation method and application thereof | |
CN110586027A (en) | Preparation method of porous microcrystalline glass containing photocatalytic functional crystalline phase and obtained product | |
Kasuga et al. | Biocomposite materials for biotechnology |