[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10154499A - Separator for battery and non-aqueous secondary battery using thereof - Google Patents

Separator for battery and non-aqueous secondary battery using thereof

Info

Publication number
JPH10154499A
JPH10154499A JP8312346A JP31234696A JPH10154499A JP H10154499 A JPH10154499 A JP H10154499A JP 8312346 A JP8312346 A JP 8312346A JP 31234696 A JP31234696 A JP 31234696A JP H10154499 A JPH10154499 A JP H10154499A
Authority
JP
Japan
Prior art keywords
separator
battery
electrode material
film
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8312346A
Other languages
Japanese (ja)
Inventor
Yasuhisa Tojo
泰久 東條
Hajime Saen
元 佐圓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP8312346A priority Critical patent/JPH10154499A/en
Publication of JPH10154499A publication Critical patent/JPH10154499A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a battery which does not have locally abnormal low resistance value between a cathode material and an anode material of a battery. SOLUTION: To produce a separator of a polyolefin porous membrane by making a polyolefin film porous by extrusion of the polyolefin film, the charged voltage, which is a characteristic property of being charged of the separator measured at unspecified points, is adjusted so as to be constantly within ±1kV, by kneading the polyolefin (raw material) with an anti-charging agent or applying or spraying an anti-charging agent to the film (the porous membrane) after extrusion. Consequently, a large local resistance value decrease of the separator due to the adhesion of conductive fine particles of active material particles, which are dropped from the cathode material and the anode material, for the separator is prevented in the battery manufacturing process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電池用セパレータ及
びこれを用いた非水系2次電池に関する。
The present invention relates to a battery separator and a non-aqueous secondary battery using the same.

【0002】[0002]

【従来の技術】種々のタイプの電池が実用に供されてお
り、それぞれに適した多孔質もしくは無孔質のフィルム
または不織布、紙等が電池用セパレータ(以下、単にセ
パレータとも称する。)として提案されている。これら
電池用セパレータには、電解液との親和性(濡れ性)及
び保液性、低い電気抵抗値、高い通気性、高い機械的強
度、並びに化学的安定性等が要求される。これらのう
ち、電解液との親和性及び保液性、低い電気抵抗値、高
い通気性等は電池の放電特性に関係し、電池反応で移動
するイオンの動きを容易にするために求められるもので
ある。機械的強度は電池の組立工程及びその後のセパレ
ータの破れや突き抜け不良に関係し、これが高いほど内
部短絡不良の発生を減らすことができる。電池用セパレ
ータは電池内部の酸化・還元雰囲気に曝されるため、分
解・反応等を起こしにくい化学的に安定な材料を使用す
る必要があり、この観点からポリオレフィンやフッ素系
ポリマーが使用されることが多い。
2. Description of the Related Art Various types of batteries have been put to practical use, and porous or non-porous films, nonwoven fabrics, papers, and the like suitable for the respective types have been proposed as battery separators (hereinafter, also simply referred to as separators). Have been. These battery separators are required to have an affinity (wetting property) with an electrolytic solution and a liquid retaining property, a low electric resistance value, a high air permeability, a high mechanical strength, a chemical stability, and the like. Among these, the affinity and liquid retention of the electrolyte, low electric resistance, high air permeability, etc. are related to the discharge characteristics of the battery and are required to facilitate the movement of ions moving in the battery reaction. It is. The mechanical strength is related to the assembling process of the battery and the subsequent breakage or penetration failure of the separator, and the higher this is, the more the occurrence of internal short circuit failure can be reduced. Since the battery separator is exposed to the oxidizing and reducing atmosphere inside the battery, it is necessary to use a chemically stable material that does not easily decompose or react, and from this viewpoint, polyolefin or fluorine-based polymer must be used. There are many.

【0003】近年、電子機器のコードレス化等に対応す
るための電池として、高エネルギー密度、高起電力、及
び自己放電の少なさ等から非水系2次電池、特に、リチ
ウム2次電池が注目を浴びている。
[0003] In recent years, non-aqueous secondary batteries, particularly lithium secondary batteries, have attracted attention as batteries for responding to cordless electronic devices due to their high energy density, high electromotive force, and low self-discharge. I'm taking a bath.

【0004】非水系2次電池における正極材及び負極材
は、通常、電極材本体、すなわち、集電体としての金属
箔の表面に活物質を担持させて構成されている。例えば
リチウム2次電池の負極材としては、銅箔に例えばリチ
ウム単体粒子や、リチウムとアルミニウム等の金属との
合金粒子や、カーボンやグラファイト等のリチウムイオ
ンを吸着又は吸蔵する材料の粒子や、リチウムイオンを
ドーピングした導電性高分子材料の粒子を活物質として
付着させたものが知られている。また、正極材として
は、アルミニウム箔に例えば(CF)n の組成式で示さ
れるフッ化黒鉛粒子や、CoLiO2 、MnO2 、V2
5 、CuO、Ag2 CrO4 等の金属酸化物粒子や、
TiO2 、CuS等の硫化物粒子を活物質として付着さ
せたものが知られている。また、電解液としてはエチレ
ンカーボネート、プロピレンカーボネート、ジエチルカ
ーボネート、1,2−ジメトキシエタン等の混合有機溶
媒が用いられる。
A positive electrode material and a negative electrode material in a non-aqueous secondary battery are generally formed by supporting an active material on the surface of an electrode material main body, that is, a metal foil as a current collector. For example, as a negative electrode material of a lithium secondary battery, for example, lithium simple particles, alloy particles of lithium and a metal such as aluminum, particles of a material that adsorbs or occludes lithium ions such as carbon and graphite, or lithium There is known a material in which particles of a conductive polymer material doped with ions are attached as an active material. As the positive electrode material, for example, fluorinated graphite particles represented by a composition formula of (CF) n , CoLiO 2 , MnO 2 , V 2
Metal oxide particles such as O 5 , CuO, Ag 2 CrO 4 ,
It is known that sulfide particles such as TiO 2 and CuS are attached as an active material. In addition, a mixed organic solvent such as ethylene carbonate, propylene carbonate, diethyl carbonate, and 1,2-dimethoxyethane is used as the electrolytic solution.

【0005】このようなリチウム2次電池では、負極材
の活物質であるリチウムが強い反応性を有し、また、エ
チレンカーボネート、プロピレンカーボネート、アセト
ニトリル、γ−ブチルラクトン、1、2−ジメトキシエ
タン、テトラヒドロフラン等の有機溶媒にLiPF6
LiCF3 SO3 、LiClO4 、LiBF4 等を電解
質とした非水系の電解液を使用しているため、電池の誤
使用によって正極−負極間に電流が流れて、電解液の抵
抗による発熱を生じて電池内部の温度が著しく上昇し、
遂には火災や破裂といった重大事故を引き起こす危険性
がある。従って、この様な事故を防ぐためにリチウム2
次電池では安全対策のために種々の機構が施されてい
る。例えば、電流遮断装置は、電池の温度が上昇した場
合に電解液の蒸発などによって電池内部の気圧が上がる
のを利用して、強制的に外部回路の一部を切断するよう
構成されたものである。また、電池用セパレータが有す
るシャットダウン機構も安全機構の一つであり、これに
ついては種々の提案がなされている。例えば、シャット
ダウン開始設計温度に融点があるポリエチレンとポリエ
チレンより30℃程度融点が高いポリプロピレンの混合
物の多孔質膜からなるもの(特開平4−206257)
や、融点が異なる熱可塑性高分子の多孔質膜(具体的に
はポリエチレンの多孔質膜とポリプロピレンの多孔質
膜)を積層した積層多孔質膜からなるもの(特開平4−
181651、特開昭62−10857)等がある。こ
れらはいずれも多孔質膜の孔が溶融した樹脂によって塞
がれて膜の電気抵抗(以下、単に抵抗と称する。)が増
大することにより電流を遮断するものであり、低融点の
ポリエチレンが溶融することによりシャットダウンが低
温で開始し、かつ、高融点のポリプロピレンがポリエチ
レンの溶融時に溶融せず、セパレータの膜形状を保持す
るよう働くことにより、充分な耐熱温度が得られるよう
になっている。
In such a lithium secondary battery, lithium as an active material of a negative electrode material has strong reactivity, and ethylene carbonate, propylene carbonate, acetonitrile, γ-butyl lactone, 1,2-dimethoxyethane, LiPF 6 , an organic solvent such as tetrahydrofuran,
Since a non-aqueous electrolyte using LiCF 3 SO 3 , LiClO 4 , LiBF 4 or the like as an electrolyte is used, current flows between the positive electrode and the negative electrode due to misuse of the battery, and heat is generated due to the resistance of the electrolyte. The temperature inside the battery rises significantly,
Finally, there is a risk of causing a serious accident such as a fire or rupture. Therefore, to prevent such accidents, lithium 2
The secondary battery is provided with various mechanisms for safety measures. For example, a current interrupting device is configured to forcibly cut off a part of an external circuit by utilizing the fact that the internal pressure of a battery rises due to evaporation of an electrolytic solution when the temperature of the battery rises. is there. Further, a shutdown mechanism of the battery separator is one of the safety mechanisms, and various proposals have been made. For example, a porous film made of a mixture of polyethylene having a melting point at a shutdown start design temperature and polypropylene having a melting point of about 30 ° C. higher than polyethylene (JP-A-4-206257)
And a laminated porous membrane obtained by laminating porous films of thermoplastic polymers having different melting points (specifically, a porous film of polyethylene and a porous film of polypropylene) (Japanese Patent Laid-Open No.
181651, JP-A-62-10857) and the like. In each of these methods, the electric current (hereinafter, simply referred to as resistance) of the porous film is blocked by the melted resin and the electric current (hereinafter, simply referred to as resistance) increases, thereby interrupting the electric current. By doing so, the shutdown starts at a low temperature, and the high melting point polypropylene does not melt when the polyethylene is melted, and works to maintain the membrane shape of the separator, so that a sufficient heat-resistant temperature can be obtained.

【0006】[0006]

【発明が解決しようとする課題】ところで、リチウム2
次電池等の非水系2次電池は、正極材と負極材をこれら
の間に電池用セパレータを介在させて巻き取った巻回物
を電池缶内に挿入し、非水系電解質溶液を含浸させ、電
池缶を封口することにより製造される。しかるに、この
ような非水系2次電池では、電池内において電池用セパ
レータの抵抗値がばらつき、抵抗値の異常に小さい部分
に集中的に電流が流れ、その結果、その箇所及び当該箇
所の近傍での正極材及び負極材における反応が他の箇所
のそれに比べて激しくなり、異常発熱を起こすという不
具合を生じていた。特に、リチウム2次電池では、前記
のような異常発熱とともにリチウムテンドライドを析出
したり、最悪の場合は発火し、または電池が使用不能に
なってしまうことがあった。前記の電池用セパレータに
おける抵抗値のバラツキは、電池の製造工程においてセ
パレータを正極材及び負極材とともにこれらの間に介在
させて巻回しこの巻回物を電池缶内に収容する際に、セ
パレータに導電性の微粒子が付着し、この導電性の微粒
子がセパレータを貫通するためである。以下、この点に
ついて詳しく説明する。
By the way, lithium 2
A non-aqueous secondary battery such as a secondary battery, a wound material obtained by inserting a positive electrode material and a negative electrode material with a battery separator interposed therebetween, is inserted into a battery can, and impregnated with a non-aqueous electrolyte solution. It is manufactured by sealing a battery can. However, in such a non-aqueous secondary battery, the resistance value of the battery separator fluctuates in the battery, and current flows intensively in a portion where the resistance value is abnormally small. The reaction in the positive electrode material and the negative electrode material became more intense than that in other places, causing a problem that abnormal heat generation occurred. In particular, in a lithium secondary battery, the above-described abnormal heat generation may cause the precipitation of lithium tendendite, or in the worst case, may ignite or render the battery unusable. Variations in the resistance value of the battery separator are caused by interposing the separator together with the positive electrode material and the negative electrode material in a battery manufacturing process and winding the wound product in a battery can. This is because conductive fine particles adhere and the conductive fine particles penetrate the separator. Hereinafter, this point will be described in detail.

【0007】電池用セパレータは、前記したような、ポ
リエチレンやポリプロピレン等のポリオレフィンの多孔
質膜からなるものが主流であり、かかるポリオレフィン
の多孔質膜は通常ポリオレフィンのフィルムを一軸延伸
または二軸延伸等によって多孔質化し、これを芯材に巻
き取ることによって製造される。従って、かかるポリオ
レフィンの多孔質膜からなるセパレータは、絶縁性であ
るが故に、その延伸工程での延伸ロールとの摩擦や巻き
取り時におけるセパレータ同士の摩擦や剥離によって静
電気を発生して帯電する。また、電池の製造工程では、
かかるセパレータは製造ラインの所定位置に巻回物(ロ
ール)の状態でセッティングされて送りリールによって
繰り出され、製造ラインの他の位置にセッティングされ
た正極材と負極材のそれぞれの巻回物(ロール)から繰
り出されてくる正極材と負極材の間に挟まれながら(介
在しながら)、これら正極材及び負極材とともに巻き取
られて(以下、これを巻き替え作業と称する。)、巻回
物とされる。このため、前記巻き替え作業における巻回
物(ロール)からの繰り出し時にセパレータ同士が摩擦
や剥離を起こし、これによって更に帯電する。一方、前
記巻き替え作業時に、正極材(または負極材)において
は、これを繰り出していく送りリールとの接触やそれ自
身の屈曲等によって正極材(または負極材)の表面に付
着している活物質粒子の一部が空気中に脱落する。従っ
て、前記巻き替え作業中、正極材及び負極材から脱落し
た活物質粒子や空気中に浮遊している微粒子が帯電した
電池用セパレータに引きつけられて付着し、セパレータ
とともに正極材と負極材の間に巻き締められることとな
り、セパレータの厚みよりも大きいな粒径の微粒子や鋭
角なエッジを有する微粒子がセパレータを貫通する。こ
の結果、活物質粒子は導電性であり、空気中の浮遊微粒
子には導電性の微粒子が多く含まれるので、セパレータ
に導電性の微粒子が貫通することでその部分の抵抗値が
急激に低下してしまう。
As the battery separator, a porous film of a polyolefin such as polyethylene or polypropylene as described above is mainly used, and such a porous film of a polyolefin is usually obtained by uniaxially stretching or biaxially stretching a polyolefin film. And produced by winding it around a core material. Therefore, since the separator made of such a polyolefin porous film is insulative, it is charged by generating static electricity due to friction with a stretching roll in the stretching step and friction and peeling between the separators during winding. In the battery manufacturing process,
Such a separator is set at a predetermined position in the production line in the form of a roll (roll) and is fed out by a feed reel, and each of the positive electrode material and the negative electrode material set at another position in the production line (roll). ), While being sandwiched (interposed) between the positive electrode material and the negative electrode material, and wound up together with the positive electrode material and the negative electrode material (hereinafter, this is referred to as a rewinding operation) to obtain a wound material. It is said. For this reason, at the time of unwinding from the wound material (roll) in the rewinding operation, the separators cause friction and peeling, and thereby are further charged. On the other hand, at the time of the rewinding operation, the positive electrode material (or the negative electrode material) is attached to the surface of the positive electrode material (or the negative electrode material) due to the contact with the feed reel that feeds out or the bending of the material itself. Some of the material particles fall into the air. Therefore, during the rewinding operation, active material particles dropped from the positive electrode material and the negative electrode material and fine particles floating in the air are attracted to and adhere to the charged battery separator, and together with the separator, between the positive electrode material and the negative electrode material. The fine particles having a particle size larger than the thickness of the separator and the fine particles having an acute edge penetrate the separator. As a result, the active material particles are conductive, and the suspended fine particles in the air contain a large amount of conductive fine particles. Would.

【0008】本発明は前記のような事情に鑑みてなされ
たものであり、電池内の正極材と負極材の間において局
所的に異常に小さい抵抗値を示すことのない電池用セパ
レータ及びこれを用いた非水系2次電池を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and a battery separator which does not locally show an abnormally small resistance value between a positive electrode material and a negative electrode material in a battery, and a battery separator therefor. An object is to provide a non-aqueous secondary battery used.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明の電池用セパレータは、不特定箇所で測定し
た帯電圧が常に±1kV以内にあるようにした。このよ
うな本発明の電池用セパレータを用いて電池の製造を行
うと、その製造工程においてセパレータに付着する導電
性微粒子数が大きく低減し、セパレータを貫通する導電
性微粒子が実質的になくなるため、セパレータが電池内
の正極材と負極材間で局所的に異常に小さい抵抗値を示
すものとなることを防止することができる。これは、す
なわち、電池の製造工程に供される前の電池用セパレー
タの不特定箇所で測定した帯電圧が常に±1kV以内に
あると、電池の製造工程においてセパレータが帯電して
も、その帯電電位(帯電量)は余り大きくならず、その
サイズがセパレータの厚みよりも大きい微粒子を付着し
たり、局所的に多くの微粒子(鋭角なエッジを有する微
粒子を含む)を付着するような高帯電量にまでセパレー
タが帯電してしまうことを防止できるためであると考え
られる。なお、前記において「不特定箇所で測定した帯
電圧が常に±1kV以内にある」とは、セパレータの多
数箇所をほぼ同じ時期に測定した時にそれぞれの箇所に
おける帯電圧が±1kV以内にあることをいう。
Means for Solving the Problems In order to achieve the above object, the battery separator of the present invention is designed such that the charged voltage measured at an unspecified location is always within ± 1 kV. When a battery is manufactured using such a battery separator of the present invention, the number of conductive fine particles adhering to the separator in the manufacturing process is greatly reduced, and the conductive fine particles penetrating the separator are substantially eliminated. It is possible to prevent the separator from locally exhibiting an abnormally small resistance value between the positive electrode material and the negative electrode material in the battery. That is, if the charged voltage measured at an unspecified portion of the battery separator before being used in the battery manufacturing process is always within ± 1 kV, even if the separator is charged in the battery manufacturing process, the charged The potential (charge amount) does not become too large, and a high charge amount such that fine particles whose size is larger than the thickness of the separator adheres or many fine particles (including fine particles having sharp edges) adhere locally. It is considered that this is because the separator can be prevented from being charged up to. In the above description, “the charged voltage measured at the unspecified portion is always within ± 1 kV” means that the charged voltage at each portion is within ± 1 kV when many portions of the separator are measured at substantially the same time. Say.

【0010】前記本発明の電池用セパレータにおいて
は、表面抵抗がA×109 〜B×10 16Ω(A,Bは1
以上10未満の実数)の範囲にあるのが好ましく、この
ような構成により、電池内の正極材と負極材間での導電
性微粒子によるセパレータの貫通がより高いレベルで防
止される。これは、このような表面抵抗のセパレータ
は、セパレータ表面において静電気が蓄積されにくく、
セパレータが電池の製造工程に供される前または電池の
製造工程中にセパレータが仮にそのサイズがセパレータ
の厚みよりも大きい微粒子を付着したり、局所的に多く
の微粒子(鋭角なエッジを有する微粒子を含む)を付着
するような高帯電量にまで帯電したとしても、セパレー
タが正極材と負極材とともに巻き取れる直前にはその帯
電電荷(静電気)が速やかに減衰して、導電性微粒子の
付着が起こらない帯電量まで低下するためであると考え
られる。なお、セパレータの表面抵抗が1×109 Ω未
満では、電極同士を絶縁するというセパレータ本来の機
能に支障をきたす傾向となり、1×1017以上では一旦
高帯電量に帯電すると、これが速やかに減衰せず、導電
性微粒子が付着しやすい傾向になる。
In the battery separator of the present invention,
Means that the surface resistance is A × 109~ B × 10 16Ω (A and B are 1
(Real number of 10 or more and less than 10).
With such a configuration, the conductivity between the positive electrode material and the negative electrode material in the battery
Prevents penetration of separators by conductive particles at a higher level
Is stopped. This is such a surface resistance separator
Is difficult to accumulate static electricity on the separator surface,
Before the separator is subjected to the battery manufacturing process or
During the manufacturing process, if the size of the separator is temporarily
Fine particles larger than the thickness of
Particles (including particles with sharp edges)
Even if the charge is high enough to
Immediately before the cathode is wound with the cathode and anode materials,
The electric charge (static electricity) is quickly attenuated,
It is thought to be because the charge amount is reduced to the point where no adhesion occurs.
Can be The separator has a surface resistance of 1 × 109Ω not yet
In the case of full, the separator's original machine that insulates the electrodes
1 × 1017Once above
When charged to a high charge, this does not decay quickly,
Particles tend to adhere.

【0011】また前記本発明の電池用セパレータにおい
ては、帯電処理を施して5kVに帯電させた後、帯電圧
が2.5kVまで減衰するまでの時間が1分以上15時
間以内であるのが好ましい。かかる好ましいセパレータ
の帯電圧の減衰特性(帯電処理を施して5kVに帯電さ
せた後、帯電圧が2.5kVまで減衰するまでの時間が
1分以上15時間以内)は、実質的に前記のセパレータ
の好ましい表面抵抗に対応しており、表面抵抗が1×1
9 Ωのセパレータの帯電圧の減衰時間はおおよそ1分
となり、表面抵抗が1×1017以上のセパレータの帯電
圧の減衰時間は15時間を越えることとなる。
In the battery separator according to the present invention, it is preferable that the time required for the charged voltage to attenuate to 2.5 kV after the charging process is performed to be 5 kV is 1 minute or more and 15 hours or less. . Such preferred separator's charging voltage attenuation characteristics (the time from charging and charging to 5 kV until charging voltage attenuates to 2.5 kV is from 1 minute to 15 hours) is substantially the same as that of the separator. And a surface resistance of 1 × 1
The decay time of the charged voltage of the 09 Ω separator is approximately 1 minute, and the decay time of the charged voltage of the separator having a surface resistance of 1 × 10 17 or more exceeds 15 hours.

【0012】また、本発明の非水系2次電池は、正極材
と負極材をこれらの間に前記本発明の電池用セパレータ
を介在させて巻き取った巻回物を電池缶内に収容してな
るものである。このような本発明の非水系2次電池で
は、正極材と負極材の間に介在するセパレータが導電性
微粒子による貫通のない一様な抵抗値を維持するものと
なるので、セパレータに局所的な電流集中が生じず、異
常発熱や発火を起こすことのない信頼性の高い非水系2
次電池となる。
In the non-aqueous secondary battery of the present invention, a wound material obtained by winding a positive electrode material and a negative electrode material with the battery separator of the present invention interposed therebetween is accommodated in a battery can. It becomes. In such a non-aqueous secondary battery of the present invention, the separator interposed between the positive electrode material and the negative electrode material maintains a uniform resistance value without penetration by the conductive fine particles. Highly reliable non-aqueous system 2 with no current concentration and no abnormal heat generation or ignition
Next battery.

【0013】[0013]

【発明の実施の形態】本発明のセパレータ、すなわち、
不特定箇所で測定した帯電圧が常に±1kV以内にある
セパレータを得るための方法は特に限定されず、セパレ
ータの材質、形態、及びその製造プロセスに応じた種々
方法で行うことができる。
DETAILED DESCRIPTION OF THE INVENTION The separator of the present invention, namely,
There is no particular limitation on the method for obtaining a separator whose charged voltage measured at an unspecified portion is always within ± 1 kV, and various methods can be used according to the material and form of the separator and its manufacturing process.

【0014】例えば、ポリオレフィンの多孔質膜からな
るセパレータを製造する場合、前述したように、ポリオ
レフィンをフィルム化し、このフィルムを一軸延伸また
は二軸延伸等によって多孔質化せしめるが、この場合、
ポリオレフィンフィルムの延伸工程における延伸ロール
の回転速度及び延伸後のフィルム(多孔質膜)の巻取り
工程における巻取りリールの回転速度や、延伸工程及び
巻取り工程を行う環境の温度,湿度等を制御することに
より、得られるポリオレフィンの多孔質膜(セパレー
タ)の帯電特性を前記の不特定箇所で測定した帯電圧が
常に±1kV以内となる帯電特性に調整することができ
る。また、ポリオレフィンの原材料に帯電防止剤を練り
こんだり、延伸後のフィルム(多孔質膜)に帯電防止剤
を塗布またはスプレーすることにより、得られるポリオ
レフィンの多孔質膜(セパレータ)の帯電特性を前記の
不特定箇所で測定した帯電圧が常に±1kV以内となる
帯電特性に調整することができる。なお、通常、製造さ
れたセパレータは巻回物として包装されて、電池の製造
現場に搬送されるが、この搬送時にセパレータと包装材
料との摩擦によって帯電量が増大することがあるので、
包装材料に帯電防止処理を施しておくのが好ましい。
For example, when manufacturing a separator comprising a porous polyolefin membrane, as described above, the polyolefin is formed into a film, and this film is made porous by uniaxial stretching or biaxial stretching.
Controlling the rotation speed of the stretching roll in the stretching process of the polyolefin film, the rotating speed of the take-up reel in the winding process of the stretched film (porous film), and the temperature and humidity of the environment in which the stretching process and the winding process are performed. By doing so, the charging characteristics of the obtained polyolefin porous membrane (separator) can be adjusted to the charging characteristics in which the charged voltage measured at the unspecified location is always within ± 1 kV. Further, the charging characteristics of the polyolefin porous film (separator) obtained by kneading an antistatic agent into the raw material of the polyolefin or applying or spraying the antistatic agent on the stretched film (porous film) are as described above. The charging characteristics can be adjusted so that the charged voltage measured at the unspecified location is always within ± 1 kV. In addition, usually, the manufactured separator is packaged as a roll and transported to a battery manufacturing site.At this transport, the amount of charge may increase due to friction between the separator and the packaging material.
Preferably, the packaging material is subjected to an antistatic treatment.

【0015】前記ポリオレフィンの原材料に混入する帯
電防止剤及び延伸後のフィルム(多孔質膜)に塗布また
はスプレーする帯電防止剤は特に限定されないが、例え
ば、アニオン系、ノニオン系、もしくはカチオン系の帯
電防止剤、または、有機塩系もしくは無機塩系の帯電防
止剤等が使用される。帯電防止剤をポリオレフィンの原
材料に混入する場合、セパレータ(多孔質膜)の表面層
を構成する原材料全体当り一般に0.01〜5重量%、
好ましくは0.5〜3重量%添加する。また、帯電防止
剤を塗布またはスプレーする場合、通常、適当な溶媒に
帯電防止剤を溶解して得られた溶液をセパレータ(多孔
質膜)の表面に塗布またはスプレーした後、乾燥処理を
施す。
The antistatic agent mixed into the raw material of the polyolefin and the antistatic agent applied or sprayed on the stretched film (porous film) are not particularly limited. For example, anionic, nonionic or cationic charging agents may be used. An antistatic agent or an organic or inorganic salt type antistatic agent is used. When the antistatic agent is mixed with the raw material of the polyolefin, generally 0.01 to 5% by weight based on the whole raw material constituting the surface layer of the separator (porous membrane),
Preferably, 0.5 to 3% by weight is added. When the antistatic agent is applied or sprayed, usually, a solution obtained by dissolving the antistatic agent in an appropriate solvent is applied or sprayed on the surface of the separator (porous membrane), and then dried.

【0016】本発明は単層構成または積層構成のポリオ
レフィン多孔質膜のセパレータに適用される。具体的に
は、ポリエチレンとポリプロピレンの混合物(アロイ)
の多孔質膜単体からなるセパレータ、ポリエチレンとポ
リプロピレンの混合物(アロイ)の多孔質膜とポリプロ
ピレンの多孔質膜を積層した積層体のセパレータを挙げ
ることができる。ポリエチレンとポリプロピレンの混合
物(アロイ)の多孔質膜とポリプロピレンの多孔質膜を
積層した積層体としては、ポリエチレンとポリプロピレ
ンの混合物(アロイ)の多孔質膜にポリプロピレンの多
孔質膜を積層した積層体、ポリエチレンとポリプロピレ
ンの混合物(アロイ)の多孔質膜の両面にポリプロピレ
ンの多孔質膜を積層した積層体、ポリプロピレンの多孔
質膜の両面にポリエチレンとポリプロピレンの混合物
(アロイ)の多孔質膜を積層した積層体、ポリエチレン
とポリプロピレンの混合物(アロイ)の多孔質膜とポリ
プロピレンの多孔質膜を交互にトータルの層数が4層以
上となるように積層した積層体を挙げることができる。
The present invention is applied to a single-layer or laminated polyolefin porous membrane separator. Specifically, a mixture of polyethylene and polypropylene (alloy)
And a separator formed by laminating a porous film of a mixture of polyethylene and polypropylene (alloy) and a porous film of polypropylene. As a laminate in which a porous film of a mixture of polyethylene and polypropylene (alloy) and a porous film of polypropylene are laminated, a laminate in which a porous film of polypropylene is laminated on a porous film of a mixture of polyethylene and polypropylene (alloy), A laminate in which a porous film of polyethylene and polypropylene is laminated on both sides of a porous film of a mixture of polyethylene and alloy (alloy), and a laminate in which porous films of a mixture of polyethylene and polypropylene (alloy) are laminated on both sides of a porous film of polypropylene And a laminate in which a porous film of a mixture (alloy) of polyethylene and polypropylene and a porous film of polypropylene are alternately laminated so that the total number of layers is 4 or more.

【0017】[0017]

【実施例】以下、実施例により本発明を詳細に説明す
る。 (実施例1)重量平均分子量98万のPP(ポリプロピ
レン)を表面層に、前記と同じPP50重量%と重量平
均分子量26万の高密度PE(ポリエチレン)50重量
%の混合物を中間層に用い、3層Tダイ式フィルム成形
機にて押し出し温度250℃、ドロー比30にて総厚み
32μm(各層の厚みPP層/中間層/PP層=10/
11/11μm)のフィルムに成形した。このフィルム
を温度25℃,相対湿度30%のクリーンルーム中で、
厚み50μmのPET(ポリエチレンテレフタレート)
フィルム2枚で挟み、これを表面温度150℃のロール
表面上におよそ10秒間接触させて熱処理して鉄芯上に
巻き取った。更にこれを125℃の乾燥機中に投入して
48時間熱処理した。続いてこの熱処理フィルムを60
℃にて未延伸フィルムの長さを基準に78%延伸し、更
に120℃にて未延伸フィルムの長さを基準に178%
延伸し(トータル延伸倍率256%;未延伸フィルムの
長さの3.56倍の長さ)、更に120℃にて延伸後の
フィルムの長さを基準に26%収縮させた(最終延伸倍
率163%;未延伸フィルムの長さの2.63倍の長
さ)。このようにして得られた多孔質膜A−1の特性を
表1に示す。
The present invention will be described below in detail with reference to examples. (Example 1) PP (polypropylene) having a weight average molecular weight of 980,000 was used for a surface layer, and the same mixture of 50% by weight of PP and 50% by weight of high density PE (polyethylene) having a weight average molecular weight of 260,000 was used for an intermediate layer. Extrusion temperature 250 ° C., draw ratio 30 and total thickness 32 μm (thickness of each layer PP layer / intermediate layer / PP layer = 10 /
(11/11 μm). This film is placed in a clean room at a temperature of 25 ° C and a relative humidity of 30%.
50 μm thick PET (polyethylene terephthalate)
The film was sandwiched between two films, and the film was brought into contact with a roll surface having a surface temperature of 150 ° C. for approximately 10 seconds, heat-treated and wound on an iron core. This was further placed in a dryer at 125 ° C. and heat-treated for 48 hours. Subsequently, this heat-treated film is
The film is stretched at 78 ° C. based on the length of the unstretched film at 78 ° C., and further 178% at 120 ° C. based on the length of the unstretched film.
The film was stretched (total stretching ratio 256%; 3.56 times the length of the unstretched film), and further contracted at 120 ° C. by 26% based on the length of the stretched film (final stretching ratio 163). %; 2.63 times the length of the unstretched film). Table 1 shows the properties of the porous film A-1 thus obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】次にこの多孔質膜A−1を(R−CONH
−CH2 −CH2 −N(CH3 2−CH2 −CH2
OH)+(NO3 -[Rは炭素(元素)数が1〜5で水
素(元素)数が3〜11を満たす炭化水素基]の構造式
で表される帯電防止剤の0.2重量%(wt%)水溶液
で処理した。処理は水槽に処理液を入れ、多孔質膜A−
1を2m/分の速度で水槽中を1mを通過させ、続いて
同速度で105℃の乾燥機中を2m通過させて乾燥した
後巻き取った。こうして、得られた多孔質膜をA−2と
した。多孔質膜A−2の帯電圧を1m毎に100箇所測
定したところ、平均値=0.26kV、最大値=0.8
6kV、最小値=−0.68kV、標準偏差=0.21
kVであった。
Next, this porous film A-1 was replaced with (R-CONH).
-CH 2 -CH 2 -N (CH 3 ) 2 -CH 2 -CH 2 -
OH) + (NO 3 ) − where R is a hydrocarbon group having 1 to 5 carbons (elements) and 3 to 11 hydrogens (elements). Treated with a wt% (wt%) aqueous solution. For treatment, a treatment liquid is put into a water tank, and the porous membrane A-
1 was passed through a water tank at a speed of 2 m / min for 1 m, then passed through a dryer at 105 ° C. at the same speed for 2 m, dried and wound up. Thus, the obtained porous film was set to A-2. When the charged voltage of the porous film A-2 was measured at 100 points every 1 m, the average value was 0.26 kV, and the maximum value was 0.8.
6 kV, minimum value = -0.68 kV, standard deviation = 0.21
kV.

【0020】また、多孔質膜をコロナ放電処理により帯
電圧が5kVとなるように帯電させ、多孔質膜の帯電圧
が2.5kVにまで減衰するまでの時間を測定したとこ
ろ、25分であった。
Further, the porous film was charged by corona discharge treatment so that the charged voltage became 5 kV, and the time required for the charged voltage of the porous film to attenuate to 2.5 kV was measured. Was.

【0021】また、表面抵抗は2.4×1014Ωであっ
た。
The surface resistance was 2.4 × 10 14 Ω.

【0022】なお、前記において、ポリプロピレン及び
ポリエチレンの重量平均分子量は、GPC(gel permea
tion chromatograph)装置であるWaters社製;G
PC−150C(商品名)を用い、溶媒にO−ジクロル
ベンゼン、カラムに昭和電工社製;ShodexKF−
80M(商品名)を使用して、温度135℃で溶出液の
積算堆積を測定し、かかる溶出液の積算堆積から単分散
ポリスチレンの重量平均分子量を基準にして算出した。
In the above, the weight average molecular weight of polypropylene and polyethylene is determined by GPC (gel permea).
tion chromatograph) device from Waters; G
Using PC-150C (trade name), O-dichlorobenzene as a solvent, and a column manufactured by Showa Denko; Shodex KF-
Using 80M (trade name), the cumulative deposition of the eluate was measured at a temperature of 135 ° C., and the cumulative deposition of the eluate was calculated based on the weight average molecular weight of monodisperse polystyrene.

【0023】前記多孔質膜A−2の物性値(表1)のう
ち、収縮率は、フィルムを長さ方向がその機械方向に一
致する様に幅約10mm、長さ300mm程度に切り取
り、これを圧縮紙の上に無張力で設置した状態で60℃
に保った熱風循環式乾燥機中に1時間投入し、加熱前後
のフィルムの長さを測定してその減少率から求めた。
Among the physical properties of the porous membrane A-2 (Table 1), the shrinkage rate is determined by cutting the film to a width of about 10 mm and a length of about 300 mm so that the length direction matches the machine direction. At 60 ° C. with no tension placed on compressed paper
The film was put into a hot-air circulating dryer maintained for 1 hour, and the length of the film before and after heating was measured, and the length was determined from the decrease rate.

【0024】ガーレー値は、JIS K−8117に準
じ、安田精機製作所製ガーレー式デンソメーターNo.
323−Auto(商品名)を用い、膜面積642mm
2 を空気10ccが透過する時間を測定し、この値を1
0倍して求めた。
The Gurley value is a Gurley type densometer No. manufactured by Yasuda Seiki Seisakusho according to JIS K-8117.
323-Auto (trade name), film area 642 mm
2. Measure the time for 10 cc of air to permeate through
It was obtained by multiplying by 0.

【0025】気孔率は、一定面積のセパレータを切り取
り、その平均厚みを掛けて得られる堆積Vと、その質量
mを測定しセパレータの比重及び空気の比重から計算に
よって求めた。
The porosity was obtained by calculating the specific gravity of the separator and the specific gravity of air by measuring the mass V obtained by cutting a separator having a certain area and multiplying the separator by the average thickness.

【0026】厚みは、多孔質膜全体の厚みを1/100
0mmのダイアルゲージにて測定し、各層の厚みはフィ
ルムを凍結破断し断面を光学顕微鏡で観察することによ
って求めた。
The thickness is 1/100 of the total thickness of the porous membrane.
The thickness of each layer was determined by freeze breaking the film and observing the cross section with an optical microscope.

【0027】(実施例2)前記実施例1で得た多孔質膜
A−1を帯電防止剤(米国,Analytical Chemical Labo
ratories社製:Staticide(商品名))の1wt%水溶
液で実施例1と 同様に処理して多孔質膜A−3を得
た。多孔質膜A−3の帯電圧を1m毎に100箇所測定
したところ、平均値=0.17kV、最大値=0.54
kV、最小値=−0.32kV、標準偏差=0.17k
Vであった。
Example 2 The porous film A-1 obtained in Example 1 was used as an antistatic agent (Analytical Chemical Laboratories, USA).
It was treated in the same manner as in Example 1 with a 1 wt% aqueous solution of ratories (Staticide (trade name)) to obtain a porous membrane A-3. When the charged voltage of the porous film A-3 was measured at 100 points every 1 m, the average value was 0.17 kV, and the maximum value was 0.54.
kV, minimum value = −0.32 kV, standard deviation = 0.17 k
V.

【0028】また、多孔質膜をコロナ放電処理により帯
電圧が5kVとなるように帯電させ、多孔質膜セの帯電
圧が2.5kVにまで減衰するまでの時間を測定したと
ころ、2分であった。
Further, the porous film was charged by corona discharge treatment so that the charged voltage became 5 kV, and the time required for the charged voltage of the porous membrane to attenuate to 2.5 kV was measured. there were.

【0029】また、表面抵抗は4.5×1010Ωであっ
た。
The surface resistance was 4.5 × 10 10 Ω.

【0030】(実施例3)前記実施例1で得た多孔質膜
A−1の製造工程と概ね同様であるが、延伸工程、巻き
替え工程、切断工程が行われる各パートに除電ブロアー
を設置して各工程で帯電した多孔質膜の電荷を除電する
ようにし、更に、各工程でのリールによる多孔質膜の繰
り出しまたは多孔質膜の巻き上げ速度が常に30m/分
以下になるようにした。こうして作製した多孔質膜をA
−4とした。多孔質膜A−4の帯電圧を1m毎に100
箇所測定したところ、平均値=0.67kV、最大値=
1.52kV、最小値=−0.49kV、標準偏差=
0.44kVであった。
(Example 3) The manufacturing process of the porous membrane A-1 obtained in Example 1 is substantially the same as that of Example 1, except that a static elimination blower is installed in each part where a stretching process, a rewinding process, and a cutting process are performed. Then, the charge of the porous film charged in each step was eliminated, and the reeling-out of the porous film or the winding speed of the porous film in each step was always 30 m / min or less. The porous membrane produced in this manner was designated as A
-4. The charged voltage of the porous membrane A-4 is set to 100 every 1 m.
As a result of measuring the points, the average value was 0.67 kV, the maximum value was
1.52 kV, minimum value = −0.49 kV, standard deviation =
It was 0.44 kV.

【0031】また、セパレータをコロナ放電処理により
帯電圧が5kVとなるように帯電させ、セパレータの帯
電圧が2.5kVにまで減衰するまでの時間を測定した
ところ、17分であった。
Further, the separator was charged by corona discharge treatment so that the charged voltage became 5 kV, and the time required for the charged voltage of the separator to attenuate to 2.5 kV was measured to be 17 minutes.

【0032】また、表面抵抗は6.2×1016Ωであっ
た。
The surface resistance was 6.2 × 10 16 Ω.

【0033】(比較例1)前記実施例1で得た多孔質膜
A−1をそのまま使用した。多孔質膜A−1の帯電圧を
1m毎に100箇所測定したところ、平均値=6.2k
V、最大値=9.4kV、最小値=−2.4kV、標準
偏差=3.1kVであった。
Comparative Example 1 The porous membrane A-1 obtained in Example 1 was used as it was. When the charged voltage of the porous film A-1 was measured at 100 points every 1 m, the average value was 6.2 k.
V, the maximum value was 9.4 kV, the minimum value was -2.4 kV, and the standard deviation was 3.1 kV.

【0034】また、セパレータをコロナ放電処理により
帯電圧が5kVとなるように帯電させ、セパレータの帯
電圧が2.5kVにまで減衰するまでの時間を測定した
ところ、17分であった。
Further, the separator was charged by corona discharge treatment so that the charged voltage became 5 kV, and the time required for the charged voltage of the separator to attenuate to 2.5 kV was measured to be 17 minutes.

【0035】また、表面抵抗は6.1×1016Ωであっ
た。
The surface resistance was 6.1 × 10 16 Ω.

【0036】(比較例2)巻き替え時のリール速度を7
0m/分にする以外は前記実施例3とまったく同様にし
て多孔質膜A−5を作製した。この多孔質膜A−5の帯
電圧を1m毎に100箇所測定したところ、平均値=
3.4kV、最大値=4.6kV、最小値=−1.2k
V、標準偏差=1.75kVであった。
(Comparative Example 2) Reel speed at the time of rewinding is set to 7
A porous film A-5 was produced in exactly the same manner as in Example 3 except that the speed was set to 0 m / min. When the charged voltage of this porous film A-5 was measured at 100 points every 1 m, the average value was
3.4 kV, maximum value = 4.6 kV, minimum value = -1.2 k
V, standard deviation = 1.75 kV.

【0037】また、セパレータをコロナ放電処理により
帯電圧が5kVとなるように帯電させ、セパレータの帯
電圧が2.5kVにまで減衰するまでの時間を測定した
ところ、17分であった。
Further, the separator was charged by corona discharge treatment so that the charged voltage became 5 kV, and the time required for the charged voltage of the separator to attenuate to 2.5 kV was measured to be 17 minutes.

【0038】また、表面抵抗は6.2×1016Ωであっ
た。
The surface resistance was 6.2 × 10 16 Ω.

【0039】(比較例3)クリーンルームの環境を温度
25℃,相対湿度1%にした以外は前記実施例3とまっ
たく同様にして多孔質膜A−6を作製した。この多孔質
膜A−6の帯電圧を1m毎に100箇所測定したとこ
ろ、平均値=6.7kV、最大値=11.4kV、最小
値=−8.6kV、標準偏差=4.2kVであった。
Comparative Example 3 A porous film A-6 was produced in exactly the same manner as in Example 3 except that the environment of the clean room was 25 ° C. and the relative humidity was 1%. When the charged voltage of the porous film A-6 was measured at 100 points every 1 m, the average value was 6.7 kV, the maximum value was 11.4 kV, the minimum value was -8.6 kV, and the standard deviation was 4.2 kV. Was.

【0040】また、セパレータをコロナ放電処理により
帯電圧が5kVとなるように帯電させ、セパレータの帯
電圧が2.5kVにまで減衰するまでの時間を測定した
ところ、17分であった。
Further, the separator was charged by corona discharge treatment so that the charged voltage became 5 kV, and the time required for the charged voltage of the separator to attenuate to 2.5 kV was measured to be 17 minutes.

【0041】表面抵抗は6.4×1016Ωであった。The surface resistance was 6.4 × 10 16 Ω.

【0042】(比較例4)実施例3で得られた多孔質膜
A−4を、6cm幅、800m巻のロール(巻回物)に
して帯電防止処理をしていないポリエチレン製の袋で包
装し、これを10個セットでダンボールに梱包し、トラ
ックで往復200kmの移送を行ったものを多孔質膜A
−7とした。
(Comparative Example 4) The porous membrane A-4 obtained in Example 3 was rolled into a roll (rolled) having a width of 6 cm and a length of 800 m and packaged in a polyethylene bag not subjected to an antistatic treatment. These were packed in a cardboard box in sets of 10 and transported 200 km back and forth by truck.
−7.

【0043】多孔質膜A−7の帯電圧を1m毎に100
箇所測定したところ、平均値=1.8kV、最大値=
3.1kV、最小値=−1.9kV、標準偏差=1.1
kVであった。
The charged voltage of the porous membrane A-7 is set to 100 per 1 m.
The average value was 1.8 kV and the maximum value was
3.1 kV, minimum = -1.9 kV, standard deviation = 1.1
kV.

【0044】また、多孔質膜をコロナ放電処理により帯
電圧が5kVとなるように帯電させ、多孔質膜の帯電圧
が2.5kVにまで減衰するまでの時間を測定したとこ
ろ、17分であった。
Further, the porous film was charged by corona discharge treatment so that the charged voltage became 5 kV, and the time required for the charged voltage of the porous film to attenuate to 2.5 kV was measured to be 17 minutes. Was.

【0045】また、表面抵抗は6.2×1016Ωであっ
た。
The surface resistance was 6.2 × 10 16 Ω.

【0046】セパレータとして前記実施例1〜3及び比
較例1〜4の多孔質膜(A−1〜A−7)を用い、正極
材としてアルミニウム箔に活物質としてのLiCoO2
と導電助材としてのカーボンとN−メチルピロリドン
(NMP)の混合物を塗布して乾燥して得られたもの
(巻回物)、負極材として電解銅箔に活物質としての黒
鉛とNMPの混合物を塗布し乾燥して得られたもの(巻
回物)、電解液としてエチレンカーボネートとエチルメ
チルカーボネートとの体積比1:2の混合物に六フッ化
燐酸リチウムを1.2mol/dm3 濃度になるように
溶解したものを用い、これらを電池の製造ラインにセッ
ティングしてLiイオン2次電池を各多孔質膜について
1000個作製した。そして電池の抵抗を測定してその
抵抗値が2kΩ以下のものを内部短絡不良(導電性の微
粒子によるセパレータの貫通が生じている)と判定し
た。なお、電池の抵抗値はテスター等の抵抗計を用い、
測定端子を正極及び負極に当てて測定した。
The porous films (A-1 to A-7) of Examples 1 to 3 and Comparative Examples 1 to 4 were used as separators, and LiCoO 2 as an active material was formed on an aluminum foil as a positive electrode material.
And a mixture obtained by applying and drying a mixture of carbon and N-methylpyrrolidone (NMP) as a conductive additive (rolled material), and a mixture of graphite and NMP as an active material on an electrolytic copper foil as a negative electrode material (Volume) obtained by applying and drying, a mixture of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 2 as an electrolytic solution to have a concentration of lithium hexafluorophosphate of 1.2 mol / dm 3. The thus-dissolved materials were set on a battery production line, and 1,000 Li-ion secondary batteries were manufactured for each porous membrane. Then, the resistance of the battery was measured, and a battery having a resistance value of 2 kΩ or less was determined to be an internal short circuit failure (penetration of the separator by conductive fine particles occurred). The resistance value of the battery is measured using a resistance meter such as a tester.
The measurement was performed with the measurement terminals applied to the positive electrode and the negative electrode.

【0047】下記表2に内部短絡不良の発生率と電池の
抵抗値の標準偏差を示す。
Table 2 below shows the occurrence rate of the internal short-circuit failure and the standard deviation of the resistance value of the battery.

【0048】[0048]

【表2】 [Table 2]

【0049】表2に示すように、実施例1〜3の多孔質
膜(任意の複数箇所で測定した帯電圧が常に±1kV以
内にある多孔質膜)を用いた場合の電池の内部短絡不良
の発生率は、比較例1〜4の多孔質膜(1kVより大き
い帯電圧を示す多孔質膜)を用いた場合のそれより明ら
かに小さかった。また、電池の抵抗値のバラツキも比較
例1〜4のそれよりも明らかに小さかった。
As shown in Table 2, internal short-circuit failure of the battery when the porous films of Examples 1 to 3 (the porous films whose charged voltages measured at arbitrary plural points were always within ± 1 kV) were used. Was significantly lower than that in the case of using the porous membranes of Comparative Examples 1 to 4 (porous membranes showing a charged voltage of more than 1 kV). Also, the variation in the resistance value of the battery was clearly smaller than that of Comparative Examples 1 to 4.

【0050】[0050]

【発明の効果】以上説明したように、本発明の電池用セ
パレータによれば、不特定箇所で測定した帯電圧が常に
±1kV以内にあることにより、電池の製造工程におい
てセパレータが正極材及び負極材とともにこれらの間に
介在させて巻き締められる際に、導電性微粒子がセパレ
ータに付着してセパレータを貫通することが抑制され、
その結果、セパレータが電池内の正極材と負極材間で局
所的に異常に小さい抵抗値を示すものとなることを防止
することができる。
As described above, according to the battery separator of the present invention, since the charged voltage measured at an unspecified portion is always within ± 1 kV, the separator can be used as a positive electrode material and a negative electrode in the battery manufacturing process. When interposed between these together with the material and tightened, conductive fine particles are suppressed from adhering to the separator and penetrating through the separator,
As a result, it is possible to prevent the separator from locally exhibiting an abnormally small resistance value between the positive electrode material and the negative electrode material in the battery.

【0051】また、本発明の非水系2次電池によれば、
正極材と負極材をこれらの間に前記本発明の電池用セパ
レータを介在させて巻き取った巻回物を電池缶内に収容
してなることにより、正極材と負極材の間に介在するセ
パレータが局所的に異常に小さい抵抗値を示すことなく
一様な抵抗値を維持することとなり、その結果、異常発
熱や発火を起こすことのない信頼性の高い非水系2次電
池を得ることができる。
According to the non-aqueous secondary battery of the present invention,
A separator interposed between the positive electrode material and the negative electrode material by storing the wound material obtained by winding the positive electrode material and the negative electrode material between them with the battery separator of the present invention interposed therebetween in a battery can. Can maintain a uniform resistance value without locally exhibiting an abnormally small resistance value. As a result, it is possible to obtain a highly reliable non-aqueous secondary battery that does not cause abnormal heat generation or ignition. .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不特定箇所で測定した帯電圧が常に±1
kV以内にある電池用セパレータ。
1. The charging voltage measured at an unspecified location is always ± 1.
Battery separator within kV.
【請求項2】 表面抵抗がA×109 〜B×1016Ω
(A,Bは1以上10未満の実数)の範囲にある請求項
1に記載の電池用セパレータ。
2. The surface resistance is A × 10 9 to B × 10 16 Ω.
The battery separator according to claim 1, wherein (A and B are real numbers of 1 or more and less than 10).
【請求項3】 帯電処理を施して5kVまで帯電させた
後、帯電圧が2.5kVまで減衰するまでの時間が1分
以上15時間以内である請求項1に記載の電池用セパレ
ータ。
3. The battery separator according to claim 1, wherein the time required for the charged voltage to attenuate to 2.5 kV after charging and charging to 5 kV is 1 minute or more and 15 hours or less.
【請求項4】 正極材と負極材をこれらの間に請求項1
〜3のいずれかに記載の電池用セパレータを介在させて
巻き取った巻回物を電池缶内に収容してなる非水系2次
電池。
4. The method according to claim 1, wherein a positive electrode material and a negative electrode material are interposed therebetween.
A non-aqueous secondary battery in which a wound product wound with the battery separator according to any one of the above items 3 to 3 is accommodated in a battery can.
JP8312346A 1996-11-22 1996-11-22 Separator for battery and non-aqueous secondary battery using thereof Pending JPH10154499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8312346A JPH10154499A (en) 1996-11-22 1996-11-22 Separator for battery and non-aqueous secondary battery using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8312346A JPH10154499A (en) 1996-11-22 1996-11-22 Separator for battery and non-aqueous secondary battery using thereof

Publications (1)

Publication Number Publication Date
JPH10154499A true JPH10154499A (en) 1998-06-09

Family

ID=18028146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8312346A Pending JPH10154499A (en) 1996-11-22 1996-11-22 Separator for battery and non-aqueous secondary battery using thereof

Country Status (1)

Country Link
JP (1) JPH10154499A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346350B1 (en) * 1999-04-20 2002-02-12 Celgard Inc. Structurally stable fusible battery separators and method of making same
JP2007172960A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2007317675A (en) * 2000-03-07 2007-12-06 Teijin Ltd Separator for lithium ion secondary battery
JPWO2005117169A1 (en) * 2004-05-27 2008-04-03 松下電器産業株式会社 Winding type non-aqueous secondary battery and electrode plate used therefor
US7883801B2 (en) 2005-11-15 2011-02-08 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
WO2011021644A1 (en) 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US7914931B2 (en) 2005-12-21 2011-03-29 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery, rechargeable lithium battery including the same, and method for preparing rechargeable lithium battery
JP2013089308A (en) * 2011-10-13 2013-05-13 Kawaken Fine Chem Co Ltd Separator for nonaqueous electrolyte cell and lithium ion secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346350B1 (en) * 1999-04-20 2002-02-12 Celgard Inc. Structurally stable fusible battery separators and method of making same
JP2007317675A (en) * 2000-03-07 2007-12-06 Teijin Ltd Separator for lithium ion secondary battery
JPWO2005117169A1 (en) * 2004-05-27 2008-04-03 松下電器産業株式会社 Winding type non-aqueous secondary battery and electrode plate used therefor
JP4695074B2 (en) * 2004-05-27 2011-06-08 パナソニック株式会社 Winding type non-aqueous secondary battery and electrode plate used therefor
US7883801B2 (en) 2005-11-15 2011-02-08 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
JP2007172960A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
KR100814815B1 (en) 2005-12-21 2008-03-20 삼성에스디아이 주식회사 Separator for lithium secondary battery, lithium secondary battery comprising the same, and method for preparing lithium secondary battery
US7914931B2 (en) 2005-12-21 2011-03-29 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery, rechargeable lithium battery including the same, and method for preparing rechargeable lithium battery
WO2011021644A1 (en) 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2013089308A (en) * 2011-10-13 2013-05-13 Kawaken Fine Chem Co Ltd Separator for nonaqueous electrolyte cell and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP3797729B2 (en) Battery separator
KR101434379B1 (en) Separator for non-aqueous rechargeable battery and non-aqueous rechargeable battery
KR101460829B1 (en) Separator
KR102271546B1 (en) Laminated porous film and non-aqueous electrolyte secondary cell
JP5282181B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5282180B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5882549B1 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP2001135295A (en) Separator for batteries
US9755208B2 (en) Non-aqueous-secondary-battery separator and non-aqueous secondary battery
WO2017183633A1 (en) Secondary battery
JPWO2019054422A1 (en) Separator for non-water secondary battery and non-water secondary battery
US20100009249A1 (en) Separator for nonaqueous electrolyte secondary battery and multilayer separator for nonaqueous electrolyte secondary battery
JPH10154499A (en) Separator for battery and non-aqueous secondary battery using thereof
CN113678313B (en) Separator for nonaqueous secondary battery, method for producing same, and nonaqueous secondary battery
EP3920264B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP2008016238A (en) Nonaqueous electrolyte secondary battery
JP7442655B2 (en) Electrode rolling equipment and electrode rolling method
Zhang et al. Lithium-ion battery separators1
JPH10154501A (en) Manufacture of battery separator and nonaqueous secondary battery using the same
US20030077516A1 (en) Cell incorporating polymer electrolyte
JPH11297298A (en) Battery separator and battery using it
WO2023190871A1 (en) Secondary battery
JP2019143008A (en) Polyolefin microporous membrane
JP5934027B2 (en) Extra fine fiber structure
KR20190036627A (en) The Method For Treating Surface Of Battery Separator