[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10130796A - Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder - Google Patents

Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder

Info

Publication number
JPH10130796A
JPH10130796A JP8355015A JP35501596A JPH10130796A JP H10130796 A JPH10130796 A JP H10130796A JP 8355015 A JP8355015 A JP 8355015A JP 35501596 A JP35501596 A JP 35501596A JP H10130796 A JPH10130796 A JP H10130796A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
grain size
ihc
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8355015A
Other languages
Japanese (ja)
Other versions
JP3488354B2 (en
Inventor
Hirokazu Kanekiyo
裕和 金清
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP35501596A priority Critical patent/JP3488354B2/en
Publication of JPH10130796A publication Critical patent/JPH10130796A/en
Application granted granted Critical
Publication of JP3488354B2 publication Critical patent/JP3488354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain a fine crystal permanent magnet alloy excellent in residual magnetic flux density by rapidly cooling an Nd-Fe-B series ally molten metal with low rate earth concn. having a specified compsn. at a specified roll circumferential speed in an evacuated inert gas atmosphere. SOLUTION: The composition al formula of an alloy is composed of Fe100-x-y Bx Ry , where R denotes one or two kinds among Pr, Nd and Dy, and (x) and (y) satisfy 15<=x<=30at.% and 1<=y<=5at.%. The molten metal of this alloy is rapidly cooled by a melt quenching method using rapid cooling rolls. At this time, the roll curcumferential speed is limited to 2 to 10m/sec. In this way, a fine crystal alloy in which the crystal structure in which Fe3 B type compounds and compound phases having an αFe and Nd2 Fe14 B type crystal structures are coexistent occupies by >=90% and the average grain size is regulated to 10 to 50nm can directly be obtd. from the alloy molten metal. This alloy has the magnetic properties of iHC>=2KOe and Br>=10KG.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、各種モーター、
アクチュエーター、磁気センサー用磁気回路並びにマグ
ネットロールやスピーカー用などに最適な微細結晶永久
磁石合金の製造方法に係り、希土類元素含有量が5at
%以下の特定組成のR−Fe−B系合金溶湯を、特定の
減圧不活性ガス雰囲気中、ロール周速度の液体急冷法に
より急冷して、実質的に90%以上がFe3B型化合物
並びにα−FeとNd2Fe14B型結晶構造を有する化
合物相が共存する結晶組織で、かつ各構成相の平均結晶
粒径が10nm〜50nmを有する微細結晶となすこと
により、合金溶湯から直接、厚み70μm〜300μm
の薄板磁石あるいはボンド磁石用合金粉末として実用に
耐えるiHc≧2kOe、Br≧10kGの磁気特性を
有する永久磁石合金を得ることが可能な微細結晶永久磁
石合金の製造方法に関する。
TECHNICAL FIELD The present invention relates to various motors,
Regarding the manufacturing method of microcrystalline permanent magnet alloy which is most suitable for actuator, magnetic circuit for magnetic sensor, magnet roll and speaker, etc., rare earth element content is 5at
% Or less of a specific composition of the R-Fe-B alloy melt is quenched by a liquid quenching method at a roll peripheral speed in a specific reduced pressure inert gas atmosphere, and substantially 90% or more of the Fe 3 B type compound and α-Fe and a crystal structure in which a compound phase having a Nd 2 Fe 14 B type crystal structure coexists, and the average crystal grain size of each constituent phase is formed into fine crystals having a diameter of 10 nm to 50 nm, thereby directly from the molten alloy. Thickness 70μm ~ 300μm
The present invention relates to a method for producing a microcrystalline permanent magnet alloy capable of obtaining a permanent magnet alloy having magnetic properties of iHc ≧ 2 kOe and Br ≧ 10 kG, which can be practically used as a thin plate magnet or an alloy powder for a bonded magnet.

【0002】[0002]

【従来の技術】家電用機器、ならびにOA機器や電装品
に用いられるステッピングモーター、パワーモーター並
びにアクチュエーターなどに使用される永久磁石は、従
来、性能対価格比に優れたハードフェライト磁石に限定
されていたが、低温でのiHc低下に伴う低温減磁特性
があること、セラミックス材質のために機械的強度が低
く、割れ、欠けが発生し易いこと、複雑な形状が得難い
ことなどの問題があった。
2. Description of the Related Art Permanent magnets used in stepping motors, power motors, actuators, and the like used in home electric appliances, OA equipment and electrical components, have hitherto been limited to hard ferrite magnets having an excellent performance-to-price ratio. However, there are problems such as low temperature demagnetization characteristics due to a decrease in iHc at low temperatures, low mechanical strength due to the ceramic material, easy occurrence of cracks and chips, and difficulty in obtaining a complicated shape. .

【0003】今日、家電機器、OA機器、電装品等にお
いて、より一層の高性能化と小型軽量化が要求されてお
り、永久磁石を用いた磁気回路全体として、性能対重量
比を最大にするための設計が検討されており、特に現在
のモーター構造では永久磁石として残留磁束密度Brが
5kG〜7kG程度のものが最適とされているが、従来
のハードフェライト磁石では得ることができない。
[0003] Today, home appliances, office automation equipment, electrical components, and the like are required to have higher performance and smaller size and lighter weight, and maximize the performance-to-weight ratio of the entire magnetic circuit using permanent magnets. In particular, in the current motor structure, a permanent magnet having a residual magnetic flux density Br of about 5 kG to 7 kG is optimized, but cannot be obtained with a conventional hard ferrite magnet.

【0004】例えば、Nd2Fe14Bを主相とするNd
−Fe−Bボンド磁石ではかかる磁気特性を満足する
が、金属の分離精製や還元反応に多大の工程並びに大規
模な設備を要するNdを10at%〜15at%含有し
ているため、ハードフェライト磁石に比較して著しく高
価となり、性能対価格比の点でハードフェライト磁石か
らの代替は一部の機種でしか進んでおらず、現在のとこ
ろ、5kG以上のBrを有し、安価な永久磁石材料は見
出されていない。
[0004] For example, Nd having a main phase of Nd 2 Fe 14 B
-Fe-B bonded magnets satisfy such magnetic properties, but contain 10 at% to 15 at% of Nd which requires a large number of steps and large-scale facilities for metal separation and purification and reduction reactions. In comparison with hard ferrite magnets, only some models have advanced in terms of performance-price ratio in terms of performance-price ratio. At present, inexpensive permanent magnet materials having Br of 5 kG or more are inexpensive. Not found.

【0005】[0005]

【発明が解決しようとする課題】一方、Nd‐Fe−B
系磁石において、近年、Nd4Fe7719(at%)近
傍組成でFe3B型化合物を主相とする磁石材料が提案
(R.Coehoorn等、J.de Phys,C
8,1988,669〜670頁)された。この永久磁
石材料はアモルファスリボンを熱処理することにより、
軟磁性であるFe3B相と硬磁性であるNd2Fe14B相
が混在する結晶集合組織を有する準安定構造の永久磁石
材料である。
On the other hand, Nd-Fe-B
In recent years, magnet materials based on Nd 4 Fe 77 B 19 (at%) and containing a Fe 3 B-type compound as a main phase have been proposed (for example, R. Coehoorn et al., J. de Phys.
8, 1988, 669-670). This permanent magnet material is obtained by heat-treating the amorphous ribbon.
It is a metastable permanent magnet material having a crystal texture in which a soft magnetic Fe 3 B phase and a hard magnetic Nd 2 Fe 14 B phase are mixed.

【0006】かかる永久磁石材料は、10kG程度のB
rと2kOe〜3kOeのiHcを有し、高価なNdの
含有濃度が4at%程度と低いため、配合原料価格はN
2Fe14Bを主相とするNd‐Fe−B系ボンド磁石
より安価ではあるが、配合原料のアモルファス合金化が
必須条件であるため液体急冷条件が限定され、また、同
時に硬磁性材料になり得るための熱処理条件が狭く限定
され、工業生産上実用的でなく、ハードフェライト磁石
の代替として安価に提供できない。
[0006] Such a permanent magnet material has a B of about 10 kG.
r and iHc of 2 kOe to 3 kOe, and the content of expensive Nd is as low as about 4 at%.
Although it is less expensive than Nd-Fe-B based bonded magnets with d 2 Fe 14 B as the main phase, liquid quenching conditions are limited because amorphous alloying of the compounding material is an essential condition. The heat treatment conditions that can be used are narrow and limited, and are not practical for industrial production, and cannot be provided inexpensively as a substitute for hard ferrite magnets.

【0007】この発明は、希土類濃度が5at%以下と
低いことを特徴とする軟磁性のFe3B相と硬磁性のN
2Fe14B相が混在する結晶集合組織を有する準安定
構造の永久磁石材料において、その製造条件を緩和して
安定した工業生産を可能にすることを目的とし、特に、
10kG以上の残留磁束密度Brを有してハードフェラ
イト磁石に匹敵する性能対価格比を有する微細結晶永久
磁石合金を安定的に量産可能にする微細結晶永久磁石合
金の製造方法の提供を目的としている。
According to the present invention, a soft magnetic Fe 3 B phase and a hard magnetic N 3 are characterized in that the rare earth concentration is as low as 5 at% or less.
A permanent magnet material having a metastable structure having a crystal texture in which d 2 Fe 14 B phase is mixed is intended to relax the manufacturing conditions to enable stable industrial production.
It is an object of the present invention to provide a method of manufacturing a microcrystalline permanent magnet alloy that has a residual magnetic flux density Br of 10 kG or more and has a performance-to-price ratio comparable to that of a hard ferrite magnet and enables stable mass production of a microcrystalline permanent magnet alloy. .

【0008】[0008]

【課題を解決するための手段】発明者らは、軟磁性相と
硬磁性相が混在する低希土類濃度のNd−Fe−B系永
久磁石材料の安定した工業生産が可能な製造方法を目的
に種々検討した結果、希土類元素の含有量が5at%以
下と少なく、15〜30at%のBを含有する特定組成
の合金溶湯を、急冷ロールを用いた液体急冷法により急
冷するに際し、30kPa以下の減圧不活性ガス雰囲気
中にて、ロール周速度を2〜10m/sに限定すること
によって、アモルファス合金を熱処理により結晶化する
工程を経ることなく、直接、実質90%以上をFe3
型化合物並びにα−FeとNd2Fe14B型結晶構造を
有する化合物相が共存する結晶組織で平均結晶粒径が5
0nm以下の微細結晶からなる、焼結磁石用粉末合金や
ボンド磁石用粉末合金、あるいは厚み70μm〜300
μmの急冷合金薄帯(薄板磁石)が得られることを知見
し、この発明を完成した。
DISCLOSURE OF THE INVENTION The inventors of the present invention aim at a production method capable of stably industrially producing a low rare earth Nd-Fe-B-based permanent magnet material in which a soft magnetic phase and a hard magnetic phase are mixed. As a result of various examinations, when the content of the rare earth element is as small as 5 at% or less, and the molten alloy having a specific composition containing 15 to 30 at% of B is rapidly cooled by a liquid quenching method using a quenching roll, the pressure is reduced to 30 kPa or less. By limiting the peripheral speed of the roll to 2 to 10 m / s in an inert gas atmosphere, substantially 90% or more of Fe 3 B is directly transferred without passing through a step of crystallizing the amorphous alloy by heat treatment.
Structure in which a compound phase and a compound phase having an α-Fe and Nd 2 Fe 14 B type crystal structure coexist and have an average crystal grain size of 5
Powder alloy for sintered magnets or powder alloys for bonded magnets consisting of fine crystals of 0 nm or less, or 70 μm to 300 μm in thickness
The inventors have found that a rapidly quenched alloy ribbon (thin plate magnet) of μm can be obtained, and have completed the present invention.

【0009】また、発明者らは、合金溶湯から直接得た
微細結晶の各構成相の平均結晶粒径が10nm〜50n
mである場合は、iHc≧2kOe、Br≧10kGの
磁気特性が得られること、さらに、平均結晶粒径10n
mに満たない微細結晶が得られた場合、特定の粒成長の
ための熱処理を施すことにより、各構成相の平均結晶粒
径が10nm〜50nmとなり、iHc≧2kOe、B
r≧10kGの磁気特性が得られることを知見し、この
発明を完成した。
Further, the inventors have found that the average crystal grain size of each constituent phase of the fine crystals directly obtained from the molten alloy is 10 nm to 50 n.
m, the magnetic properties of iHc ≧ 2 kOe and Br ≧ 10 kG can be obtained.
When fine crystals less than m are obtained, the average crystal grain size of each constituent phase becomes 10 nm to 50 nm by performing heat treatment for specific grain growth, iHc ≧ 2 kOe, B
The inventors have found that magnetic characteristics of r ≧ 10 kG can be obtained, and have completed the present invention.

【0010】すなわち、この発明は、組成式をFe
100-x-yxy(但しRはPr、NdまたはDyの1種
または2種)と表し、組成範囲を限定する記号x、y
が、15≦x≦30at%、1≦y≦5at%を満足す
る合金溶湯を、急冷ロールを用いた液体急冷法により急
冷するに際し、30kPa以下の減圧不活性ガス雰囲気
中にて、ロール周速度を2m/s〜10m/sにして、
Fe3B型化合物並びにα−FeとNd2Fe14B型結晶
構造を有する化合物相が共存する結晶組織が90%以上
を占め、平均結晶粒径が10nm〜50nmである微細
結晶合金を合金溶湯から直接得ることにより、iHc≧
2kOe、Br≧10kGの磁気特性を有する永久磁石
合金を得る微細結晶永久磁石合金の製造方法である。
That is, according to the present invention, the composition formula is Fe
100-xy B x R y (where R is one or two of Pr, Nd or Dy) and symbols x and y for limiting the composition range
However, when rapidly quenching a molten alloy satisfying 15 ≦ x ≦ 30 at% and 1 ≦ y ≦ 5 at% by a liquid quenching method using a quenching roll, the roll peripheral speed is set in a reduced pressure inert gas atmosphere of 30 kPa or less. From 2 m / s to 10 m / s,
A crystal structure in which a Fe 3 B type compound and a compound phase having α-Fe and a Nd 2 Fe 14 B type crystal structure coexist accounts for 90% or more, and a fine crystal alloy having an average crystal grain size of 10 nm to 50 nm is formed into an alloy melt. From iHc ≧
This is a method for producing a microcrystalline permanent magnet alloy for obtaining a permanent magnet alloy having magnetic properties of 2 kOe and Br ≧ 10 kG.

【0011】また、この発明は、上述の製造方法におい
て、液体急冷法により合金溶湯から直接、平均結晶粒径
が10nm以下の微細結晶合金となした場合は、その
後、500℃〜700℃の温度域にて粒成長を目的とす
る熱処理を施し、平均結晶粒径が10nm〜50nmの
微細結晶合金となし、iHc≧2kOe、Br≧10k
Gの磁気特性を有する永久磁石合金を得る微細結晶永久
磁石合金の製造方法を合わせて提案する。
Further, the present invention provides a method as described above, wherein when a fine crystal alloy having an average crystal grain size of 10 nm or less is directly formed from the molten alloy by the liquid quenching method, the temperature is then raised to 500 ° C. to 700 ° C. Heat treatment for the purpose of grain growth in the region to form a fine crystal alloy having an average crystal grain size of 10 nm to 50 nm, iHc ≧ 2 kOe, Br ≧ 10 k
A method for producing a microcrystalline permanent magnet alloy for obtaining a permanent magnet alloy having the magnetic properties of G is also proposed.

【0012】さらに、この発明は、上述の製造方法にお
いて、得られる微細結晶永久磁石合金を平均粉末粒径3
μm〜500μmに粉砕して、iHc≧2kOe、Br
≧7kGの磁気特性を有する等方性永久磁石合金粉末を
得る製造方法を合わせて提案する。
Further, according to the present invention, in the above-mentioned manufacturing method, the obtained fine crystalline permanent magnet alloy has an average powder particle size of 3%.
μm to 500 μm, iHc ≧ 2 kOe, Br
A manufacturing method for obtaining an isotropic permanent magnet alloy powder having magnetic properties of ≧ 7 kG is also proposed.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

組成の限定理由 希土類元素Rは、Pr、NdまたはDyの1種または2
種を特定量含有のときのみ、高い磁気特性が得られ、他
の希土類、例えばCe、LaではiHcが2kOe以上
の特性が得られず、また、TbおよびDyを除くSm以
降の中希土類元素、重希土類元素は磁気特性の劣化を招
来するとともに磁石を高価格にするため好ましくない。
Rは、1at%未満では2kOe以上のiHcが得られ
ず、また5at%を越えると10kG以上のBrが得ら
れないため、1at%〜5at%の範囲とする。好まし
くは、2at%〜5at%が良い。
Reason for limiting composition Rare earth element R is one or two of Pr, Nd or Dy.
Only when the species is contained in a specific amount, high magnetic properties can be obtained, and other rare earth elements such as Ce and La cannot have properties of iHc of 2 kOe or more, and medium rare earth elements after Sm excluding Tb and Dy, Heavy rare earth elements are not preferable because they cause deterioration of magnetic properties and increase the cost of the magnet.
If R is less than 1 at%, iHc of 2 kOe or more cannot be obtained, and if it exceeds 5 at%, Br of 10 kG or more cannot be obtained, so R is in the range of 1 at% to 5 at%. Preferably, 2 at% to 5 at% is good.

【0014】Bは、15at%未満では液体急冷後の金
属組織において、α−Feの析出が著しく、保磁力の発
現に必須であるNd2Fe14B型結晶構造を有する化合
物の析出が阻害されるため、1kOe未満のiHcしか
得られず、また30at%を越えると減磁曲線の角形性
が著しく低下し、10kOe以上のBrが得られないた
め、15at%〜30at%の範囲とする。好ましく
は、15at%〜20at%が良い。
When B is less than 15 at%, precipitation of α-Fe is remarkable in the metal structure after liquid quenching, and precipitation of a compound having an Nd 2 Fe 14 B type crystal structure which is essential for the development of coercive force is inhibited. Therefore, only iHc of less than 1 kOe is obtained, and if it exceeds 30 at%, the squareness of the demagnetization curve is remarkably reduced, and Br of 10 kOe or more cannot be obtained, so the range is 15 at% to 30 at%. Preferably, 15 at% to 20 at% is good.

【0015】Feは、上述の元素の含有残余を占め、F
eの一部をCo、およびNiで置換することにより減滋
曲線の角形性が改善され、最大エネルギー積(BH)m
ax、および耐熱性の向上が得られ、また、Crで置換
することによりiHcの向上が得られ、さらに、Al、
Si、S、Ni、Cu、Zn、Ga、Ag、Pt、A
u、Pbの1種または2種で置換することにより減磁曲
線の角形性を改善し、Brおよび(BH)maxを増大
させる効果が得られる。
Fe accounts for the residual content of the above-mentioned elements, and F
By replacing part of e with Co and Ni, the squareness of the depletion curve is improved, and the maximum energy product (BH) m
ax and heat resistance are improved, and iHc is improved by substitution with Cr.
Si, S, Ni, Cu, Zn, Ga, Ag, Pt, A
By substituting one or two of u and Pb, the squareness of the demagnetization curve is improved, and an effect of increasing Br and (BH) max is obtained.

【0016】製造条件の限定理由 この発明における液体急冷法とは、急冷ロールによる液
体急冷法及び合金鋳造法であるストリップキャスト法を
含むものである。上述の特定組成の合金溶湯を液体急冷
法で30kPa以下の減圧不活性ガス雰囲気中にて、ロ
ール周速度を2m/s〜10m/sにして急冷するが、
2m/s未満では100nm以上の粗大なα−Fe粒子
を含む金属組織となり、また10m/sを超えるとアモ
ルファス金属となるため好ましくなく、その結晶組織の
90%以上がFe3B型化合物並びにα−FeとNd2
14B型結晶構造を有する化合物相が共存する結晶組織
とならないためであり、特に、各構成相の平均結晶粒径
がiHc≧2kOe、Br≧10kGの磁気特性を得る
に必要な平均結晶粒径10nm〜50nmの合金を得る
ことが重要である。
Reasons for Limiting Manufacturing Conditions The liquid quenching method in the present invention includes a liquid quenching method using a quenching roll and a strip casting method which is an alloy casting method. The alloy melt having the specific composition described above is rapidly cooled by a liquid quenching method in a reduced pressure inert gas atmosphere of 30 kPa or less with a roll peripheral speed of 2 m / s to 10 m / s.
If it is less than 2 m / s, it becomes a metal structure containing coarse α-Fe particles of 100 nm or more, and if it exceeds 10 m / s, it becomes an amorphous metal, which is not preferable, and 90% or more of its crystal structure is Fe 3 B type compound and α. -Fe and Nd 2 F
This is because a crystal structure in which a compound phase having an e 14 B-type crystal structure coexists is not obtained. In particular, the average crystal grain size of each constituent phase is iHc ≧ 2 kOe and Br ≧ 10 kG. It is important to obtain an alloy having a diameter of 10 nm to 50 nm.

【0017】すなわち、合金溶湯の急冷処理の際、急冷
雰囲気が30kPaを越える場合は、回転ロールと合金
溶湯の間に雰囲気ガスが入り込み、急冷条件の均一性が
失われるため、粗大なα−Fe含む金属組織となり、i
Hc≧2kOe、Br≧10kGの磁気特性が得られな
いことから、合金急冷雰囲気を30kPa以下とする。
好ましくは、10kPa以下が良い。雰囲気ガスは、合
金溶湯の酸化防止のために不活性ガスとし、好ましく
は、Arガス中が良い。
That is, when the quenching atmosphere exceeds 30 kPa during the quenching treatment of the molten alloy, the atmosphere gas enters between the rotating roll and the molten alloy, and the uniformity of the quenching condition is lost. Metal structure containing
Since the magnetic properties of Hc ≧ 2 kOe and Br ≧ 10 kG cannot be obtained, the alloy quenching atmosphere is set to 30 kPa or less.
Preferably, the pressure is 10 kPa or less. The atmosphere gas is an inert gas for preventing oxidation of the molten alloy, and is preferably in Ar gas.

【0018】Cu製ロールを用いる液体急冷法の場合、
ロール周速度が10m/秒を越えると、急冷合金中に含
まれる結晶組織が減少してアモルファス相が増加するた
め、熱処理によるアモルファスの結晶化が必要となる
が、アモルファスの結晶化に伴う発熱は、急冷直後、す
でに析出している結晶組織の粒成長を引き起こすため、
iHc≧2kOe、Br≧10kGの磁気特性を得るに
必要な平均結晶粒径10nm〜50nmより粗大な金属
組織となり、10kG以上のBrを得られない、また、
ロール周速度が2m/s未満では、急冷合金中に粗大な
α‐Feが析出するため好ましくなく、ロール周速度を
2〜10m/sに限定する。
In the case of the liquid quenching method using a Cu roll,
If the roll peripheral speed exceeds 10 m / sec, the crystal structure contained in the quenched alloy is reduced and the amorphous phase is increased, so that it is necessary to crystallize the amorphous by heat treatment. , Immediately after quenching, to cause grain growth of the crystal structure already precipitated,
An average crystal grain size required to obtain magnetic properties of iHc ≧ 2 kOe and Br ≧ 10 kG becomes a coarser metal structure than 10 nm to 50 nm, and Br of 10 kG or more cannot be obtained.
If the roll peripheral speed is less than 2 m / s, coarse α-Fe precipitates in the quenched alloy, which is not preferable, and the roll peripheral speed is limited to 2 to 10 m / s.

【0019】上述した条件の急冷ロールを用いる液体急
冷法にて、急冷した急冷合金の平均結晶粒径が、iHc
≧2kOe、Br≧10kGの磁気特性を得るに必要な
平均結晶粒径10nmに満たない場合は、粒成長を目的
とした熱処理を行っても良く、磁気特性が最高となる熱
処理温度は組成に依存するが、熱処理温度が500℃未
満では粒成長を起こさないため、10nm以上の平均結
晶粒径が得られない、また700℃を越えると粒成長が
著しくiHc、Brおよび減磁曲線の角形性が劣化し、
上述の磁気特性が得られないため、熱処理温度は500
℃〜700℃に限定する。
The average crystal grain size of the quenched alloy quenched by the liquid quenching method using the quenching roll under the above-mentioned conditions is iHc
If the average crystal grain size required to obtain magnetic characteristics of ≧ 2 kOe and Br ≧ 10 kG is less than 10 nm, heat treatment for grain growth may be performed, and the heat treatment temperature at which the magnetic characteristics become maximum depends on the composition. However, if the heat treatment temperature is lower than 500 ° C., the grain growth does not occur, so that an average crystal grain size of 10 nm or more cannot be obtained. Deteriorated,
Since the above magnetic properties cannot be obtained, the heat treatment temperature is 500
C. to 700.degree.

【0020】熱処理において、雰囲気は酸化防止のため
Arガス、N2ガスなどの不活性ガス雰囲気中もしくは
1.33Pa以下の真空中が好ましい。磁気特性は熱処
理時間には依存しないが、6時間を越えるような場合は
若干時間の経過とともにBrが低下する傾向があるた
め、好ましくは6時間以下が良い。
In the heat treatment, the atmosphere is preferably an inert gas atmosphere such as Ar gas or N 2 gas or a vacuum of 1.33 Pa or less to prevent oxidation. The magnetic properties do not depend on the heat treatment time, but if it exceeds 6 hours, Br tends to slightly decrease with the passage of time, so that it is preferably 6 hours or less.

【0021】この発明による微細結晶永久磁石合金の結
晶相は、軟磁性を有するFe3B型化合物、並びにα−
FeとNd2Fe14B型結晶構造を有する硬磁性化合物
相とが同一組織中に共存し、各構成相の平均結晶粒径が
10nm〜50nmの範囲の微細結晶集合体からなるこ
とを特徴としている。磁石合金の平均結晶粒径が50n
mを越えると、Brおよび減磁曲線の角形性が劣化し、
Br≧10kGの磁気特性を得ることができず、また、
平均結晶粒径は細かいほど好ましいが、10nm未満で
はiHcの低下を引き起こすため、下限を10nmとす
る。
The crystal phase of the microcrystalline permanent magnet alloy according to the present invention is composed of a soft magnetic Fe 3 B-type compound and α-
Fe and a hard magnetic compound phase having a Nd 2 Fe 14 B-type crystal structure coexist in the same structure, and each component phase is composed of a fine crystal aggregate having an average crystal grain size in a range of 10 nm to 50 nm. I have. Average crystal grain size of magnet alloy is 50n
m, the squareness of Br and the demagnetization curve deteriorates,
The magnetic properties of Br ≧ 10 kG cannot be obtained.
The average crystal grain size is preferably as small as possible, but if the average crystal grain size is less than 10 nm, iHc is reduced, so the lower limit is set to 10 nm.

【0022】この発明において、磁石合金溶湯組成及び
急冷条件を選定することによって、焼結やボンド磁石用
に適した粉末状磁石合金、あるいは厚さ70μm〜30
0μmの薄板磁石を製造することができる。
In the present invention, by selecting the composition of the molten magnet alloy and the quenching conditions, a powdered magnetic alloy suitable for sintering or bonded magnets, or a thickness of 70 μm to 30 μm can be obtained.
A 0 μm thin plate magnet can be manufactured.

【0023】また、この発明による微細結晶永久磁石合
金を平均粒度3μm〜500μmに粉砕することによ
り、iHc≧2kOe、Br≧7kGの磁気特性を有す
る等方性永久磁石合金粉末を得ることができる。粉砕平
均粒度が3μm未満では磁気特性、特にBrが低下して
好ましくなく、また500μmを越えると成形が困難な
ため、粉砕後の平均粒度を3μm〜500μmに限定す
る。圧縮成形ボンド磁石用粉末として使用する場合の粉
砕粒度は、20μm〜300μmが好ましく、射出成形
ボンド磁石用粉末として使用する場合は50μm以下が
好ましい。
Further, by grinding the microcrystalline permanent magnet alloy according to the present invention to an average particle size of 3 μm to 500 μm, an isotropic permanent magnet alloy powder having magnetic properties of iHc ≧ 2 kOe and Br ≧ 7 kG can be obtained. If the average particle size is less than 3 μm, magnetic properties, particularly Br, are unfavorably reduced, and if it exceeds 500 μm, molding is difficult. Therefore, the average particle size after grinding is limited to 3 μm to 500 μm. The pulverized particle size when used as a powder for a compression-molded bonded magnet is preferably from 20 μm to 300 μm, and is preferably 50 μm or less when used as a powder for an injection-molded bonded magnet.

【0024】[0024]

【実施例】【Example】

実施例1 表1のNo.1〜17の組成となるように、純度99.
5%以上のFe、Al、Si、S、Ni、Cu、Co、
Cr、Zn、Ga、Ag、Pt、Au、Pb、B、N
d、Pr、Dyの金属を用い、総量が30gとなるよう
に秤量し、底部に直径0.8mmのオリフィスを有する
石英るつぼ内に投入し、表1の急冷雰囲気圧に保持した
Ar雰囲気中で高周波加熱により溶解し、溶解温度を1
300℃にした後、湯面をArガスにより加圧して室温
にて、表1に示すロール周速度にて回転するCu製ロー
ルの外周面に0.7mmの高さから溶湯を噴出させて幅
2mm〜3mm、厚み100μm〜300μmの急冷合
金薄帯を作製した。
Example 1 No. 1 in Table 1. Purity of 99.
5% or more of Fe, Al, Si, S, Ni, Cu, Co,
Cr, Zn, Ga, Ag, Pt, Au, Pb, B, N
d, Pr, and Dy metals were weighed so that the total amount was 30 g, placed in a quartz crucible having an orifice with a diameter of 0.8 mm at the bottom, and placed in an Ar atmosphere maintained at a quenching atmosphere pressure in Table 1. Melted by high frequency heating, melting temperature 1
After the temperature was raised to 300 ° C., the molten metal surface was pressurized with Ar gas, and at room temperature, the molten metal was jetted from a height of 0.7 mm onto the outer peripheral surface of the Cu roll rotating at the roll peripheral speed shown in Table 1 to obtain a width. A quenched alloy ribbon having a thickness of 2 mm to 3 mm and a thickness of 100 μm to 300 μm was produced.

【0025】図1にCu−Kαの特性X線による実施例
No.2の場合のX線回折パターンを示すごとく、得ら
れた急合金薄帯は、軟磁性を有するFe3B型化合物、
並びにα−FeとNd2Fe14B型結晶構造を有する硬
磁性化合物相とが同一組織中に共存する金属組織である
ことを確認した。また、結晶粒径については、実施例N
o.4、No.16、No.17を除き、いずれの試料
も平均結晶粒径が10nm〜50nmの微細結晶組織で
あった。表2にVSMで測定した磁石特性を示す。
FIG. 1 shows the characteristics of the embodiment No. As shown in the X-ray diffraction pattern in the case of No. 2, the obtained rapidly alloy ribbon was a Fe 3 B-type compound having soft magnetism,
In addition, it was confirmed that α-Fe and a hard magnetic compound phase having an Nd 2 Fe 14 B type crystal structure had a metal structure coexisting in the same structure. Also, regarding the crystal grain size,
o. 4, no. 16, No. Except for No. 17, all samples had a fine crystal structure with an average crystal grain size of 10 nm to 50 nm. Table 2 shows the magnet characteristics measured by the VSM.

【0026】実施例2 表1の実施例No.4、No.16、No.17につい
ては、平均結晶粒径が10nm未満であったため、急冷
合金簿帯をArガス中、600℃にて10分間保持し、
平均結晶粒径が10nm以上になるよう熱処理を施し
た。VSMを用いて磁石特性を測定した結果を表2に示
す。なお、実施例No.5〜No.17においてAl、
Si、S、Ni、Cu、Co、Cr、Zn、Ga、A
g、Pt、Au、Pbは各構成相のFeの一部を置換す
る。
Example 2 Example No. 1 in Table 1 4, no. 16, No. About 17, since the average crystal grain size was less than 10 nm, the rapidly quenched alloy strip was held at 600 ° C. for 10 minutes in Ar gas,
Heat treatment was performed so that the average crystal grain size became 10 nm or more. Table 2 shows the results of measuring the magnet characteristics using the VSM. In addition, in Example No. 5-No. Al at 17,
Si, S, Ni, Cu, Co, Cr, Zn, Ga, A
g, Pt, Au, and Pb substitute a part of Fe of each constituent phase.

【0027】実施例3 表1のNo.2、No.3、No.5、No.6、N
o.13について粉砕機を用いて、粉砕粒度25μm〜
300μm、平均粉末粒径150μmになるように粉砕
し、等方性永久磁石粉末を作製した。表3にVSMで測
定した磁石合金粉末の磁気特性を示す。
Example 3 2, No. 3, No. 5, no. 6, N
o. 13 using a pulverizer, a pulverized particle size of 25 μm
The powder was pulverized so as to have a particle size of 300 μm and an average powder particle size of 150 μm, thereby producing an isotropic permanent magnet powder. Table 3 shows the magnetic properties of the magnet alloy powder measured by VSM.

【0028】比較例1 実施例1と同様に表1のNo.18〜No.21の組成
となるように純度99.5%のFe、B、Rを用いて、
表1に示す急冷条件にて急冷合金薄帯を作製した。得ら
れた試料のCu−Kαの特性X線回折パターンを図1に
示す。X線回折パターンの結果から判るようにNo.1
8の試料は、保磁力の発現しないアモルファス合金であ
った。また、No.19の試料は、α−Fe相が主相と
なる金属組織であった。なお、No.20の試料は、非
磁性相であるNd2Fe233とα−Feからなる組織で
あり、No.21の試料は、No.19と同様、α−F
eを主相とする金属組織であった。また、No.18〜
No.21のVSMで測定した磁石特性を表2に示す。
Comparative Example 1 In the same manner as in Example 1, 18-No. Using Fe, B, and R having a purity of 99.5% so as to have a composition of 21,
A quenched alloy ribbon was produced under the quenching conditions shown in Table 1. FIG. 1 shows a characteristic X-ray diffraction pattern of Cu-Kα of the obtained sample. As can be seen from the result of the X-ray diffraction pattern, 1
Sample No. 8 was an amorphous alloy that did not exhibit coercive force. In addition, No. The 19 samples had a metal structure in which the α-Fe phase was the main phase. In addition, No. Sample No. 20 has a structure composed of Nd 2 Fe 23 B 3 which is a non-magnetic phase and α-Fe. Sample No. 21 was No. 21. As in 19, α-F
e was a metal structure having a main phase. In addition, No. 18 ~
No. Table 2 shows the magnet characteristics measured by the VSM No. 21.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【発明の効果】この発明は、希土類元素の含有量が5a
t%以下と少なく、15〜30at%のBを含有する特
定組成の合金溶湯を、急冷ロールを用いた液体急冷法に
より急冷するに際し、30kPa以下の減圧不活性ガス
雰囲気中にて、ロール周速度を2〜10m/sに限定す
ることによって、アモルファス合金を熱処理により結晶
化する工程を経ることなく、直接、実質90%以上をF
3B型化合物並びにα−FeとNd2Fe14B型結晶構
造を有する化合物相が共存する結晶組織となり、永久磁
石として実用に耐えるiHc≧2kOe、Br≧10k
Gの磁気特性を有する平均結晶粒径が10nm〜50n
mの厚み70μm〜300μmの薄板磁石あるいはボン
ド磁石用粉末合金が得られ、さらに、平均結晶粒径10
nmに満たない微細結晶が得られた場合、特定の粒成長
のための熱処理を施すことにより、各構成相の平均結晶
粒径が10nm〜50nmとなり、iHc≧2kOe、
Br≧10kGの磁気特性が得られるもので、従来の微
細結晶型永久磁石の製造工程に見られたアモルファス合
金を熱処理により結晶化する工程を介さないため、製造
方法が簡単で大量生産に適しており、ハードフェライト
磁石では達成できない優れた磁石特性を有する永久磁石
を安価で提供できる。
According to the present invention, the rare earth element content is 5a.
When the alloy melt having a specific composition as small as 15% or less and containing 15 to 30 at% of B is quenched by a liquid quenching method using a quenching roll, the roll peripheral speed is reduced in a reduced pressure inert gas atmosphere of 30 kPa or less. Is limited to 2 to 10 m / s, so that substantially 90% or more of F can be directly reduced without passing through a step of crystallizing the amorphous alloy by heat treatment.
e 3 B type compound and a compound phase having an alpha-Fe and Nd 2 Fe 14 B crystal structure becomes crystal structure coexist, iHc ≧ 2 kOe for practical use as a permanent magnet, Br ≧ 10k
The average crystal grain size having magnetic properties of G is 10 nm to 50 n
m, a thin plate magnet having a thickness of 70 μm to 300 μm or a powder alloy for a bonded magnet is obtained.
When a fine crystal of less than nm is obtained, by performing a heat treatment for specific grain growth, the average crystal grain size of each constituent phase becomes 10 nm to 50 nm, iHc ≧ 2 kOe,
The magnetic properties of Br ≧ 10 kG can be obtained, and the process of crystallizing an amorphous alloy by heat treatment, which has been seen in the process of manufacturing a conventional fine crystal type permanent magnet, is not required. Therefore, the manufacturing method is simple and suitable for mass production. Thus, a permanent magnet having excellent magnet properties that cannot be achieved with a hard ferrite magnet can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における試料のCu−Kαの特性X線回
折パターンを示すグラフである。
FIG. 1 is a graph showing a characteristic X-ray diffraction pattern of Cu-Kα of a sample in an example.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 組成式をFe100-x-yxy(但しRは
Pr、NdまたはDyの1種または2種)と表し、組成
範囲を限定する記号x、yが下記値を満足する合金溶湯
を、急冷ロールを用いた液体急冷法により急冷するに際
し、30kPa以下の減圧不活性ガス雰囲気中にて、ロ
ール周速度を2m/s〜10m/sにして、Fe3B型
化合物並びにα−FeとNd2Fe14B型結晶構造を有
する化合物相が共存する結晶組織が90%以上を占め、
平均結晶粒径が50nm以下である微細結晶合金を得る
微細結晶永久磁石合金の製造方法。 15≦x≦30at% 1≦y≦5at%
1. A composition formula is represented by Fe 100-xy B x R y (where R is one or two of Pr, Nd or Dy), and symbols x and y for limiting a composition range satisfy the following values. When the molten alloy is quenched by a liquid quenching method using a quenching roll, the roll peripheral speed is set to 2 m / s to 10 m / s in a reduced pressure inert gas atmosphere of 30 kPa or less, and the Fe 3 B type compound and α -90% or more of a crystal structure in which a compound phase having Fe and a Nd 2 Fe 14 B type crystal structure coexists;
A method for producing a microcrystalline permanent magnet alloy for obtaining a microcrystalline alloy having an average crystal grain size of 50 nm or less. 15 ≦ x ≦ 30at% 1 ≦ y ≦ 5at%
【請求項2】 請求項1において、液体急冷法により合
金溶湯から直接、平均結晶粒径が10nm〜50nmの
微細結晶合金となし、iHc≧2kOe、Br≧10k
Gの磁気特性を有する磁石合金を得る微細結晶永久磁石
合金の製造方法。
2. A fine crystal alloy having an average crystal grain size of 10 nm to 50 nm directly from a molten alloy by a liquid quenching method according to claim 1, iHc ≧ 2 kOe, Br ≧ 10 k
A method for producing a microcrystalline permanent magnet alloy for obtaining a magnet alloy having magnetic properties of G.
【請求項3】 請求項1において、液体急冷法により合
金溶湯から直接、平均結晶粒径が10nm以下の微細結
晶合金となし、その後、500℃〜700℃の温度域に
て粒成長を目的とする熱処理を施し、平均結晶粒径が1
0nm〜50nmの微細結晶合金となし、iHc≧2k
Oe、Br≧10kGの磁気特性を有する磁石合金を得
る微細結晶永久磁石合金の製造方法。
3. A liquid crystal quenching method according to claim 1, wherein the alloy melt is directly converted into a fine crystal alloy having an average crystal grain size of 10 nm or less, and thereafter, for the purpose of grain growth in a temperature range of 500 ° C. to 700 ° C. The average crystal grain size is 1
0 nm to 50 nm fine crystal alloy, iHc ≧ 2k
A method for producing a microcrystalline permanent magnet alloy for obtaining a magnet alloy having magnetic properties of Oe, Br ≧ 10 kG.
【請求項4】 請求項1において、得られる微細結晶永
久磁石合金は厚み70μm〜300μmの薄板磁石であ
る微細結晶永久磁石合金の製造方法。
4. The method for producing a microcrystalline permanent magnet alloy according to claim 1, wherein the obtained microcrystalline permanent magnet alloy is a thin plate magnet having a thickness of 70 μm to 300 μm.
【請求項5】 請求項1において、得られる微細結晶永
久磁石合金を平均粉末粒径3μm〜500μmに粉砕し
て、iHc≧2kOe、Br≧7kGの磁気特性を有す
る等方性永久磁石合金粉末を得る等方性永久磁石粉末の
製造方法。
5. The isotropic permanent magnet alloy powder according to claim 1, wherein the obtained fine crystalline permanent magnet alloy is pulverized to an average powder particle size of 3 μm to 500 μm to have iHc ≧ 2 kOe and Br ≧ 7 kG magnetic properties. A method for producing the obtained isotropic permanent magnet powder.
JP35501596A 1996-09-06 1996-12-20 Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder Expired - Lifetime JP3488354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35501596A JP3488354B2 (en) 1996-09-06 1996-12-20 Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-257700 1996-09-06
JP25770096 1996-09-06
JP35501596A JP3488354B2 (en) 1996-09-06 1996-12-20 Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder

Publications (2)

Publication Number Publication Date
JPH10130796A true JPH10130796A (en) 1998-05-19
JP3488354B2 JP3488354B2 (en) 2004-01-19

Family

ID=26543351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35501596A Expired - Lifetime JP3488354B2 (en) 1996-09-06 1996-12-20 Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder

Country Status (1)

Country Link
JP (1) JP3488354B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414462B1 (en) * 2000-05-30 2004-01-07 세이코 엡슨 가부시키가이샤 Magnetic material manufacturing method, ribbon-shaped magnetic materials, powdered magnetic materials and bonded magnets
DE10064022B4 (en) * 1999-12-27 2015-06-25 Hitachi Metals, Ltd. A process for producing an iron-based magnetic material alloy powder
CN107707051A (en) * 2017-11-24 2018-02-16 安徽美芝精密制造有限公司 For motor permanent magnet and there is its rotor assembly, motor and compressor
EP4066964A1 (en) * 2021-04-01 2022-10-05 Baotou Kerui Micro Magnet New Materials Co., Ltd. Method for preparing a high-performance nd-fe-b isotropic magnetic powder
US11600417B2 (en) 2017-11-24 2023-03-07 Anhui Meizhi Precision Manufacturing Co., Ltd. Permanent magnet for motor, rotor assembly having same, motor, and compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10064022B4 (en) * 1999-12-27 2015-06-25 Hitachi Metals, Ltd. A process for producing an iron-based magnetic material alloy powder
KR100414462B1 (en) * 2000-05-30 2004-01-07 세이코 엡슨 가부시키가이샤 Magnetic material manufacturing method, ribbon-shaped magnetic materials, powdered magnetic materials and bonded magnets
CN107707051A (en) * 2017-11-24 2018-02-16 安徽美芝精密制造有限公司 For motor permanent magnet and there is its rotor assembly, motor and compressor
US11600417B2 (en) 2017-11-24 2023-03-07 Anhui Meizhi Precision Manufacturing Co., Ltd. Permanent magnet for motor, rotor assembly having same, motor, and compressor
EP4066964A1 (en) * 2021-04-01 2022-10-05 Baotou Kerui Micro Magnet New Materials Co., Ltd. Method for preparing a high-performance nd-fe-b isotropic magnetic powder

Also Published As

Publication number Publication date
JP3488354B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
EP1018751B1 (en) Thin plate magnet having microcrystalline structure
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JPH10125518A (en) Thin sheet magnet with fine crystal structure
JP2008192903A (en) Iron-based rare- earth alloy magnet
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP4170468B2 (en) permanent magnet
JP3762912B2 (en) R-T-B rare earth permanent magnet
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP4788300B2 (en) Iron-based rare earth alloy nanocomposite magnet and manufacturing method thereof
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH07173501A (en) Permanent magnet alloy powder and production thereof
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

EXPY Cancellation because of completion of term