JPH10111332A - Method for visualizing three components of wave source current vector - Google Patents
Method for visualizing three components of wave source current vectorInfo
- Publication number
- JPH10111332A JPH10111332A JP8268249A JP26824996A JPH10111332A JP H10111332 A JPH10111332 A JP H10111332A JP 8268249 A JP8268249 A JP 8268249A JP 26824996 A JP26824996 A JP 26824996A JP H10111332 A JPH10111332 A JP H10111332A
- Authority
- JP
- Japan
- Prior art keywords
- receiving antenna
- source current
- current vector
- sensitivity matrix
- equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電波ホログラム観
測によるホログラム測定データから波源電流ベクトル成
分を可視化する方法に関し、特に波源電流ベクトル3成
分を可視化する方法に関する。The present invention relates to a method for visualizing a source current vector component from hologram measurement data obtained by radio wave hologram observation, and more particularly to a method for visualizing three source current vector components.
【0002】[0002]
【従来の技術】波動の干渉性を利用した電波可視化技術
として、合成開口レーダや雪中レーダおよび地中レーダ
などの能動可視化技術、ならびに電波天文やラジオメト
リなどの受動可視化技術がある((1)松尾優,山根国
義:“レーダホログラフイ”,電子通信学会編,198
0.、(2)青木由直:“波動信号処理”,森北出版,
1986.)。2. Description of the Related Art Radio visualization techniques utilizing wave coherence include active visualization techniques such as synthetic aperture radars, snow radars and underground radars, and passive visualization techniques such as radio astronomy and radio geometry. ) Yu Matsuo, Kuniyoshi Yamane: "Radar holography", IEICE, 198
0. , (2) Yoshinao Aoki: "Wave signal processing", Morikita Publishing,
1986. ).
【0003】次に、まず、フレネル近似やフランホーフ
ァ近似を用いない従来の技術である電波ホログラムの数
値再生法を述べる。[0003] Next, a description will be given of a conventional technique for numerically reproducing a radio hologram, which does not use the Fresnel approximation or the Franhofer approximation.
【0004】図2のホログラム観測モデルに示す直角座
標系において波源点x’、y’、z’に面電流源J
(R’)があり、これによって生じる観測点x、y、z
=0の電界をE(R)とする。また、波源J(R’)の
分布する範囲は、z=z’の有限な2次元平面−L/2
≦x’≦L/2、−L/2≦y’≦L/2とし、E
(R)の観測範囲もz=0で有限な2次元平面−D/2
≦x≦D/2、−D/2≦y≦D/2とする。ここで、
E(R)は3次元自由空間におけるダイアディックグリ
ーン関数Gを用いて、In the rectangular coordinate system shown in the hologram observation model of FIG. 2, a surface current source J is located at wave source points x ', y', z '.
(R '), and the resulting observation points x, y, z
The electric field of = 0 is E (R). The distribution range of the wave source J (R ′) is a finite two-dimensional plane of z = z′−L / 2
≦ x ′ ≦ L / 2, −L / 2 ≦ y ′ ≦ L / 2,
The observation range of (R) is also a finite two-dimensional plane at z = 0 -D / 2
≦ x ≦ D / 2, −D / 2 ≦ y ≦ D / 2. here,
E (R) is calculated using a dyadic Green function G in three-dimensional free space,
【0005】[0005]
【数1】 と表すことができる。(Equation 1) It can be expressed as.
【0006】ところで、電界ベクトルEを観測するため
に用いるアンテナのベクトル実効長をll とおくと、波
長をλとしてr=l R−R’l >>λの領域において受信
される電圧Vは、By the way, if the vector effective length of an antenna used for observing the electric field vector E is l 1 , the voltage V received in the region of r = l R−R′l >> λ is λ, where λ is the wavelength. ,
【0007】[0007]
【数2】 となる。ただし、gは定数である。すなわち、ll は距
離rには依存しない指向性と感度を表す関数とみなすこ
とができる。観測点Rに置かれたアンテナからの出力電
圧は式(1)および(2)から、(Equation 2) Becomes Here, g is a constant. That is, l l can be regarded as a function representing directivity and sensitivity independent of the distance r. The output voltage from the antenna placed at the observation point R is given by the following equations (1) and (2).
【数3】 で与えることができる。(Equation 3) Can be given by
【0008】式(3)は、任意の面電流分布に対して任
意のアンテナによる受信電圧を与えている。しかし、実
際のホログラム測定においては、アンテナ走査系を考慮
するとxおよびy方向の電界を受信するアンテナは容易
に実現できるが、z方向の電界を精度良く受信すること
は極めて難しい。また、観測対象としている装置表面に
z成分の電流ベクトルが存在したとしてもホログラム測
定面ではほとんど受信できない。Equation (3) gives a received voltage by an arbitrary antenna for an arbitrary surface current distribution. However, in actual hologram measurement, an antenna that receives electric fields in the x and y directions can be easily realized in consideration of an antenna scanning system, but it is extremely difficult to accurately receive an electric field in the z direction. Even if a z-component current vector exists on the surface of the device to be observed, it can hardly be received on the hologram measurement surface.
【0009】そこで、面電流が水平成分と垂直成分のみ
をもつものとして、これを水平偏波と垂直偏波のアンテ
ナで受信する場合に限って以下、議論を進める。[0009] Therefore, the following discussion will be made only on the assumption that the surface current has only a horizontal component and a vertical component, and this is received by a horizontally polarized and vertically polarized antenna.
【0010】今、ホログラム測定面に水平偏波および垂
直偏波のアンテナを置いて、これらによって受信される
電圧ベクトルをNow, a horizontally polarized antenna and a vertically polarized antenna are placed on the hologram measurement surface, and a voltage vector received by these antennas is calculated.
【0011】[0011]
【数4】 とする。ここで、Vh およびVv は水平偏波および垂直
偏波のアンテナの受信電圧であり、lh lおよびlv lは、
これらのアンテナのベクトル実効長を表す。2つの受信
アンテナは同じ形状のものを用いるものとし、主偏波感
度をAθ、交差偏波感度をAφとする。また、点Rに置
かれた水平偏波受信アンテナから見た点R’の天頂角お
よび方位角をθh およびφh とし、垂直偏波受信アンテ
ナから見た点R’の天頂角および方位角をθv および
φv とおく。ただし、方位角φh 、φv はそれぞれx
軸方向およびy軸方向から測った角度を表す。(Equation 4) And Here, V h and V v is the received voltage of the horizontally polarized wave and vertically polarized wave antenna, l h l and l v l is
It represents the vector effective length of these antennas. The two receiving antennas have the same shape, and the main polarization sensitivity is Aθ, and the cross polarization sensitivity is Aφ. Also, the zenith angle and azimuth angle of the point viewed from the horizontal polarization receiving antenna placed at point R R 'zenith angle and azimuth angle of the theta h and phi h, point viewed from the vertical polarization reception antennas R' Are defined as θ v and φ v . Where azimuth angles φ h and φ v are x
It represents the angle measured from the axial direction and the y-axis direction.
【0012】式(3)右辺に含まれる点電流源による受
信感度を表す部分を、Equation (3): The portion representing the receiving sensitivity of the point current source included in the right side is:
【0013】[0013]
【数5】 と表すと、式(3)、(4)より(Equation 5) From Expressions (3) and (4),
【0014】[0014]
【数6】 となって、Vh およびVv が与えられる。(Equation 6) Become, V h and V v is given.
【0015】従って、式(5)、(6)よりTherefore, from equations (5) and (6),
【0016】[0016]
【数7】 となって、式(4)の受信される電圧ベクトル(Equation 7) And the received voltage vector of equation (4)
【0017】[0017]
【数8】 に対して、式(7)から(Equation 8) From equation (7)
【数9】 の波源電流ベクトルの2成分のみ可視化していた。(Equation 9) Only two components of the wave source current vector were visualized.
【0018】[0018]
【発明が解決しようとする課題】上述した従来の技術
は、以下の問題点がある。The above-mentioned prior art has the following problems.
【0019】すなわち、V(R)の測定に用いるプロー
ブアンテナのJz 成分に対する指向性が考慮されていな
いため、正確な波源電流ベクトルが計測できないことに
なる。また、波源電流ベクトルのうち、2成分のみしか
可視化できないことになる。That is, since the directivity of the probe antenna used for measuring V (R) with respect to the Jz component is not taken into account, an accurate wave source current vector cannot be measured. Further, only two components of the wave source current vector can be visualized.
【0020】上記従来技術の問題点に鑑み、本発明の目
的は、ホログラム測定データから波源電流ベクトル3成
分を可視化する方法を提供することにある。In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a method for visualizing three components of a wave source current vector from hologram measurement data.
【0021】[0021]
【課題を解決するための手段】本発明の波源電流ベクト
ル3成分を可視化する方法は、電波ホログラム観測によ
るホログラム測定データから波源電流ベクトル成分を可
視化する方法であって、電波ホログラム観測を第1の走
査面と第2の走査面との2つの走査面で行い、それぞれ
の走査面に水平偏波および垂直偏波のプローブアンテナ
を置いて、アンテナによって受信される電圧ベクトルの
分布を記録する段階と、プローブアンテナの全指向特性
をモーメント法を用いて計算し、波源電流ベクトルによ
る水平偏波受信アンテナの受信アンテナ感度行列および
垂直偏波受信アンテナの受信アンテナ感度行列を求める
段階と、受信アンテナ感度行列の行列式を比較し、垂直
偏波受信アンテナの受信アンテナ感度行列の誤差と、水
平偏波受信アンテナの受信アンテナ感度行列の誤差との
大小を求めて、受信される電圧ベクトルと受信アンテナ
感度逆行列とを選択的に用いて、波源電流ベクトルの3
成分を求め可視化する段階と、を有する。The method for visualizing the three components of the wave source current vector according to the present invention is a method for visualizing the wave source current vector component from hologram measurement data obtained by radio wave hologram observation. Performing on two scan planes, a scan plane and a second scan plane, placing a horizontally and vertically polarized probe antenna on each scan plane and recording the distribution of voltage vectors received by the antenna; Calculating the omni-directional characteristics of the probe antenna using the method of moments, obtaining a receiving antenna sensitivity matrix of the horizontally polarized receiving antenna and a receiving antenna sensitivity matrix of the vertically polarized receiving antenna based on the source current vector, and a receiving antenna sensitivity matrix. The determinant of the horizontal polarization receiving antenna is compared with the error of the receiving antenna sensitivity matrix of the vertical polarization receiving antenna. Seeking magnitude of the error of the reception antenna sensitivity matrix, selectively using the voltage vector to be received and the receiving antenna sensitivity inverse matrix, 3 of the wave source current vector
Determining and visualizing the components.
【0022】従って、上述の各段階を経ることにより、
ホログラム測定データから波源電流ベクトル3成分を可
視化することができる。Therefore, through the above-described steps,
Three components of the wave source current vector can be visualized from the hologram measurement data.
【0023】[0023]
【発明の実施の形態】本発明の実施の形態について図面
を参照して説明する。Embodiments of the present invention will be described with reference to the drawings.
【0024】図1に示すように、ホログラム観測を走査
面1と走査面2の2つの走査面で行う。それぞれの走査
面に水平偏波および垂直偏波のプローブアンテナを置い
て、これらによって受信される電圧ベクトルを、走査面
1についてはAs shown in FIG. 1, hologram observation is performed on two scanning planes, a scanning plane 1 and a scanning plane 2. The horizontal and vertical polarization probe antennas are placed on each scan plane, and the voltage vectors received by them are
【0025】[0025]
【数10】 走査面2については(Equation 10) For scanning surface 2
【0026】[0026]
【数11】 とする。図1のΔxおよびΔyは走査面1と走査面2の
オフセット量を示す。[Equation 11] And Δx and Δy in FIG. 1 indicate the offset amounts between the scanning plane 1 and the scanning plane 2.
【0027】走査面1上の点R=(x,y,z=0)に
置かれた各アンテナと点R’=(x’,y’,z’)の
波源電流べクトルとの極座標角をPolar coordinate angle between each antenna located at point R = (x, y, z = 0) on scanning plane 1 and the source current vector at point R ′ = (x ′, y ′, z ′) To
【0028】[0028]
【数12】 (Equation 12)
【0029】[0029]
【数13】 (Equation 13)
【0030】[0030]
【数14】 [Equation 14]
【0031】[0031]
【数15】 (Equation 15)
【0032】[0032]
【数16】 (Equation 16)
【0033】[0033]
【数17】 [Equation 17]
【0034】[0034]
【数18】 (Equation 18)
【0035】[0035]
【数19】 とおく。[Equation 19] far.
【0036】走査面2上の点R=(x,y,z=0)に
置かれた各アンテナと点R’=(x’,y’,z’)の
波源電流べクトルとの極座標角については、式(12)
から(19)において、xをx+Δx,yをy+Δyに
置き替えた式をそれぞれθx’、θy’、θz’、φz’、
θh’、θv’、φh’、φv’とおく。Polar coordinate angle between each antenna placed at point R = (x, y, z = 0) on scanning plane 2 and the source current vector at point R ′ = (x ′, y ′, z ′) Is given by equation (12)
To (19), the expressions in which x is replaced by x + Δx and y is replaced by y + Δy are represented by θ x ′, θ y ′, θ z ′, φ z ′,
θ h ′, θ v ′, φ h ′, and φ v ′.
【0037】ホログラム観測に用いたプローブアンテナ
の全指向特性をモーメント法等で計算し、そのプローブ
アンテナの主偏波感度をAθ、交差偏波感度をAφとす
ると、波源電流ベクトルによる水平偏波受信アンテナの
受信アンテナ感度行列は、The omnidirectional characteristics of the probe antenna used for hologram observation are calculated by the method of moments and the like. If the main polarization sensitivity of the probe antenna is Aθ and the cross polarization sensitivity is Aφ, horizontal polarization reception by the wave source current vector is performed. The receiving antenna sensitivity matrix of the antenna is
【0038】[0038]
【数20】 波源電流ベクトルによる垂直偏波受信アンテナの受信ア
ンテナ感度行列は、(Equation 20) The receiving antenna sensitivity matrix of the vertically polarized receiving antenna by the source current vector is
【0039】[0039]
【数21】 従来の技術である式(7)を3次元に拡張して、(Equation 21) Equation (7), which is a conventional technique, is extended to three dimensions,
【数22】 より(Equation 22) Than
【0040】[0040]
【数23】 の波源電流ベクトルの3成分を求め可視化する。ここ
で、(Equation 23) The three components of the wave source current vector are obtained and visualized. here,
【0041】[0041]
【数24】 ならば、水平偏波受信アンテナの受信アンテナ感度行列
の誤差は、垂直偏波受信アンテナの受信アンテナ感度行
列の誤差より小さくなるので、(Equation 24) Then, the error of the receiving antenna sensitivity matrix of the horizontally polarized receiving antenna is smaller than the error of the receiving antenna sensitivity matrix of the vertically polarized receiving antenna,
【0042】[0042]
【数25】 (Equation 25)
【0043】[0043]
【数26】 とする。(Equation 26) And
【0044】[0044]
【数27】 ならば、垂直偏波受信アンテナの受信アンテナ感度行列
の誤差は、水平偏波受信アンテナの受信アンテナ感度行
列の誤差より小さくなるので、[Equation 27] Then, since the error of the receiving antenna sensitivity matrix of the vertically polarized receiving antenna is smaller than the error of the receiving antenna sensitivity matrix of the horizontally polarized receiving antenna,
【0045】[0045]
【数28】 [Equation 28]
【数29】 とする。ただし、式(26)および(27)において、(Equation 29) And However, in equations (26) and (27),
【0046】[0046]
【数30】 [Equation 30]
【0047】[0047]
【数31】 上述のように、受信アンテナ感度行列の行列式を比較
し、垂直偏波受信アンテナの受信アンテナ感度行列の誤
差と、水平偏波受信アンテナの受信アンテナ感度行列の
誤差との大小を求めて、受信される電圧ベクトルV
(R)と受信アンテナ感度逆行列A-1(R−R’)を選
択的に用いて、波源電流ベクトルJ(R’)の3成分を
求め可視化することができる。この選択的操作は、波源
電流ベクトルJ(R’)のz成分Jz は正面から観測で
きないため、Jz に対する感度ヌル(Null)を避け
るために重要である。(Equation 31) As described above, the determinant of the receiving antenna sensitivity matrix is compared, and the magnitude of the error of the receiving antenna sensitivity matrix of the vertically polarized receiving antenna and the error of the receiving antenna sensitivity matrix of the horizontally polarized receiving antenna are calculated. Voltage vector V
By selectively using (R) and the receiving antenna sensitivity inverse matrix A -1 (R-R '), three components of the wave source current vector J (R') can be obtained and visualized. This selective operation, z component J z of the wave source current vector J (R ') because it can not be observed from the front, is important to avoid sensitivity null (Null) for J z.
【0048】なお、受信アンテナ感度行列の行列式の計
算は、全ての積分区間で行わないで、波源点の位置ベク
トルR’のみに依存して決めることもできる。すなわ
ち、The calculation of the determinant of the receiving antenna sensitivity matrix may be performed not in all integration sections, but may be determined depending only on the position vector R 'of the wave source point. That is,
【0049】[0049]
【数32】 ならば、水平偏波受信アンテナの受信アンテナ感度行列
の誤差は、垂直偏波受信アンテナの受信アンテナ感度行
列の誤差より小さくなるので、(Equation 32) Then, the error of the receiving antenna sensitivity matrix of the horizontally polarized receiving antenna is smaller than the error of the receiving antenna sensitivity matrix of the vertically polarized receiving antenna,
【0050】[0050]
【数33】 [Equation 33]
【0051】[0051]
【数34】 とする。(Equation 34) And
【0052】[0052]
【数35】 ならば、垂直偏波受信アンテナの受信アンテナ感度行列
の誤差は、水平偏波受信アンテナの受信アンテナ感度行
列の誤差より小さくなるので、(Equation 35) Then, since the error of the receiving antenna sensitivity matrix of the vertically polarized receiving antenna is smaller than the error of the receiving antenna sensitivity matrix of the horizontally polarized receiving antenna,
【0053】[0053]
【数36】 [Equation 36]
【0054】[0054]
【数37】 とする。(37) And
【0055】[0055]
【発明の効果】以上説明したように本発明は、電波ホロ
グラム観測を第1の走査面と第2の走査面との2つの走
査面で行い、それぞれの走査面に水平偏波および垂直偏
波のプローブアンテナを置いて、アンテナによって受信
される電圧ベクトルの分布を記録する段階と、プローブ
アンテナの全指向特性をモーメント法を用いて計算し、
波源電流ベクトルによる水平偏波受信アンテナの受信ア
ンテナ感度行列および垂直偏波受信アンテナの受信アン
テナ感度行列を求める段階と、受信アンテナ感度行列の
行列式を比較し、垂直偏波受信アンテナの受信アンテナ
感度行列の誤差と、水平偏波受信アンテナの受信アンテ
ナ感度行列の誤差との大小を求めて、受信される電圧ベ
クトルと受信アンテナ感度逆行列とを選択的に用いて、
波源電流ベクトルの3成分を求め可視化する段階と、を
有することにより、波源電流ベクトル3成分を可視化す
ることができるという効果がある。波源電流ベクトルの
可視化を2成分から3成分に拡張することにより、電波
可視化の精度は±6dBから±1dBに改善されるとい
う効果がある。As described above, according to the present invention, radio wave hologram observation is performed on two scanning planes, a first scanning plane and a second scanning plane, and horizontal and vertical polarizations are respectively applied to the scanning planes. Placing the probe antenna, recording the distribution of the voltage vector received by the antenna, and calculating the omni-directional characteristics of the probe antenna using the method of moments,
Determining the receiving antenna sensitivity matrix of the horizontally polarized receiving antenna and the receiving antenna sensitivity matrix of the vertically polarized receiving antenna based on the source current vector, and comparing the determinant of the receiving antenna sensitivity matrix with the receiving antenna sensitivity of the vertically polarized receiving antenna Matrix error, the magnitude of the error of the receiving antenna sensitivity matrix of the horizontally polarized receiving antenna is determined, selectively using the received voltage vector and the receiving antenna sensitivity inverse matrix,
And visualizing the three components of the wave source current vector, whereby the three components of the wave source current vector can be visualized. By extending the visualization of the wave source current vector from two components to three components, there is an effect that the accuracy of radio wave visualization is improved from ± 6 dB to ± 1 dB.
【図1】本発明の実施の形態の電波ホログラムを観測す
るために試作した測定装置の構成概略図である。FIG. 1 is a schematic configuration diagram of a prototype measuring device for observing a radio hologram according to an embodiment of the present invention.
【図2】ホログラム観測モデルを示す図である。FIG. 2 is a diagram showing a hologram observation model.
【符号の説明】 1、21 ホログラム観測面 3 走査アンテナ 4 固定アンテナ 5 放射 6 ノイズ源 22 波源面[Description of Signs] 1, 21 Hologram observation surface 3 Scanning antenna 4 Fixed antenna 5 Radiation 6 Noise source 22 Wave source surface
Claims (1)
定データから波源電流ベクトル成分を可視化する方法で
あって、 電波ホログラム観測を第1の走査面と第2の走査面との
2つの走査面で行い、前記それぞれの走査面に水平偏波
および垂直偏波のプローブアンテナを置いて、前記アン
テナによって受信される電圧ベクトルの分布を記録する
段階と、 前記プローブアンテナの全指向特性をモーメント法を用
いて計算し、波源電流ベクトルによる水平偏波受信アン
テナの受信アンテナ感度行列および垂直偏波受信アンテ
ナの受信アンテナ感度行列を求める段階と、 前記受信アンテナ感度行列の行列式を比較し、垂直偏波
受信アンテナの受信アンテナ感度行列の誤差と、水平偏
波受信アンテナの受信アンテナ感度行列の誤差との大小
を求めて、受信される電圧ベクトルと受信アンテナ感度
逆行列とを選択的に用いて、波源電流ベクトルの3成分
を求め可視化する段階と、 を有することを特徴とする波源電流ベクトル3成分を可
視化する方法。1. A method for visualizing a source current vector component from hologram measurement data obtained by radio wave hologram observation, wherein radio wave hologram observation is performed on two scan planes, a first scan plane and a second scan plane. Placing horizontally and vertically polarized probe antennas on each scan plane, recording the distribution of voltage vectors received by the antennas, and calculating the omni-directional characteristics of the probe antennas using the method of moments Determining the receiving antenna sensitivity matrix of the horizontally polarized receiving antenna and the receiving antenna sensitivity matrix of the vertically polarized receiving antenna by the source current vector, comparing the determinant of the receiving antenna sensitivity matrix, and receiving the vertically polarized receiving antenna. Finding the magnitude of the error in the antenna sensitivity matrix and the error in the reception antenna sensitivity matrix of the horizontally polarized receiving antenna, Selectively visualizing the three components of the source current vector by selectively using the received voltage vector and the inverse of the receiving antenna sensitivity matrix, and visualizing the three components of the source current vector.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26824996A JP3642897B2 (en) | 1996-10-09 | 1996-10-09 | Method for visualizing three components of wave source current vector |
US08/942,614 US5974178A (en) | 1996-10-07 | 1997-10-02 | Wavesource image visualization method using a partial division fast fourier transform |
GB9721153A GB2318941B (en) | 1996-10-07 | 1997-10-06 | Wavesource image visualization method |
GB9820450A GB2326787B (en) | 1996-10-07 | 1997-10-06 | Wavesource image visualization method |
FR9712418A FR2754362B1 (en) | 1996-10-07 | 1997-10-06 | METHOD FOR VISUALIZING AN IMAGE OF A WAVE SOURCE |
KR1019970051405A KR100252153B1 (en) | 1996-10-07 | 1997-10-07 | Wavesource image visualisation method |
DE19744286A DE19744286A1 (en) | 1996-10-07 | 1997-10-07 | Method for visualizing a wave source image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26824996A JP3642897B2 (en) | 1996-10-09 | 1996-10-09 | Method for visualizing three components of wave source current vector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10111332A true JPH10111332A (en) | 1998-04-28 |
JP3642897B2 JP3642897B2 (en) | 2005-04-27 |
Family
ID=17455968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26824996A Expired - Fee Related JP3642897B2 (en) | 1996-10-07 | 1996-10-09 | Method for visualizing three components of wave source current vector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3642897B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014004777A1 (en) * | 2012-06-27 | 2014-01-03 | Schlumberger Canada Limited | Analyzing subterranean formation with current source vectors |
-
1996
- 1996-10-09 JP JP26824996A patent/JP3642897B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014004777A1 (en) * | 2012-06-27 | 2014-01-03 | Schlumberger Canada Limited | Analyzing subterranean formation with current source vectors |
GB2518310A (en) * | 2012-06-27 | 2015-03-18 | Schlumberger Holdings | Analyzing subterranean formation with current source vectors |
US9625604B2 (en) | 2012-06-27 | 2017-04-18 | Schlumberger Technology Corporation | Analyzing subterranean formation with current source vectors |
GB2518310B (en) * | 2012-06-27 | 2019-11-20 | Schlumberger Holdings | Analyzing subterranean formation with current source vectors |
Also Published As
Publication number | Publication date |
---|---|
JP3642897B2 (en) | 2005-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Friedlander | Localization of signals in the near-field of an antenna array | |
JP6349937B2 (en) | Fluctuation detection apparatus, fluctuation detection method, and fluctuation detection program | |
JP2790103B2 (en) | Specific absorption rate measuring device and specific absorption rate measuring method | |
US7336230B2 (en) | Method for measuring electromagnetic radiation pattern and gain of radiator using term waveguide | |
US20090073063A1 (en) | Method and apparatus for polarization display of antenna | |
JP6678554B2 (en) | Antenna measuring device | |
JP2002518683A (en) | Method and apparatus for determining the direction of an electromagnetic wave | |
CN100478692C (en) | A method for determining field radiation levels for a radiating device | |
Jull | An investigation of near-field radiatin patterns measured with large antennas | |
JP3642897B2 (en) | Method for visualizing three components of wave source current vector | |
US5394157A (en) | Method of identifying antenna-mode scattering centers in arrays from planar near field measurements | |
López et al. | A Backpropagation Imaging Technique for Subsampled Synthetic Apertures | |
Khashimov et al. | Dynamic patterns technique for circular phased array diagnostics | |
US6347060B1 (en) | Hologram observation method and hologram observation apparatus and multi-dimensional hologram data processing method and multi-dimensional hologram data processing apparatus | |
Anyutin et al. | Correction of the Measured Amplitude-Phase Field Distribution in the Near Field from the Directional Pattern of the Probe | |
Musicant et al. | Vector sensor antenna design for VHF band | |
Schettino et al. | Novel heuristic UTD coefficients for the characterization of radio channels | |
James | High-frequency direction finding in space | |
JP2002107440A (en) | Method and device for detecting direction | |
KR20220111490A (en) | Apparatus for Estimating Electromagnetic Waves Electric Field of Near Field Using Electric Field of Far Field | |
Hansen et al. | Suppression of reflections by directive probes in spherical near-field measurements | |
JP2002243782A (en) | Method and system for measuring neighboring field | |
Dickel | 4.52-cm Observations of the Supernova Remnant IC 443 | |
Suenobu et al. | Non-Line-of-Sight Imaging by Linearized Inverse Scattering Method Based on Physical Optics | |
JP3257220B2 (en) | Transfer function non-contact measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050126 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080204 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090204 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100204 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |