JPH10118681A - Contact filtration material - Google Patents
Contact filtration materialInfo
- Publication number
- JPH10118681A JPH10118681A JP29707896A JP29707896A JPH10118681A JP H10118681 A JPH10118681 A JP H10118681A JP 29707896 A JP29707896 A JP 29707896A JP 29707896 A JP29707896 A JP 29707896A JP H10118681 A JPH10118681 A JP H10118681A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- shape
- sewage
- density
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
- Filtering Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は生活雑排水、便排水
等の汚水の浄化処理に用いられる汚水浄化用充填濾材に
関し、更には浄化性能、通水性に優れた微生物坦持接触
濾過用の充填濾材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter material for purifying sewage used for purifying sewage such as domestic wastewater and faecal effluent, and more particularly, to a filter for contact filtration of microorganisms having excellent purification performance and water permeability. Related to filter media.
【0002】[0002]
【従来の技術】生活雑排水、便排水等の汚水浄化には一
般的に生物処理が行われている。これは汚水中で培養し
た微生物が汚水中の有機物等を同化あるいは異化して汚
水を浄化する作用を利用するものである。また、従来か
ら汚水浄化槽の接触用微生物担体として熱可塑性樹脂発
泡粒子を用いることは知られている。2. Description of the Related Art Biological treatment is generally performed to purify sewage such as household wastewater and fecal wastewater. This utilizes the action of microorganisms cultured in sewage to purify sewage by assimilating or catabolizing organic substances and the like in the sewage. It has been known that foamed thermoplastic resin particles are used as a microbial carrier for contact in a sewage treatment tank.
【0003】特開平6−277407号公報には発泡ス
チロール等の浮上性粒状濾材の充填層を濾床とする懸濁
液の濾過装置が示されている。この濾過装置においては
ろ材の粒径は0.5〜1mmの小粒子が用いられてい
る。特開平7−265887号公報には粒径0.5〜1
0mmの発泡スチロール片が好気性処理槽用の微生物接
触濾材として開示されている。[0003] Japanese Patent Application Laid-Open No. 6-277407 discloses an apparatus for filtering a suspension using a packed bed of a floating particulate filter medium such as styrene foam as a filter bed. In this filtering device, small particles having a particle size of the filter medium of 0.5 to 1 mm are used. JP-A-7-265887 discloses that the particle size is 0.5 to 1
A 0 mm styrofoam strip is disclosed as a microbial contact filter for an aerobic treatment tank.
【0004】しかし上記公報に示されるような熱可塑性
樹脂発泡粒子を微生物担体とする従来技術では発泡粒子
は粒径10mm以下の小粒子が用いられており、粒子間
の隙間が小さいため、粒子間に汚泥が堆積すると通液抵
抗が大きくなりやすい。そのため頻繁に逆洗等の濾材洗
浄が必要であった。また、発泡粒子の形状が球状あるい
は角形であると通水液の流れや曝気により粒子が回転し
たり浮遊して、粒子に付着した汚泥がはがれ処理水に汚
泥が混入する恐れがあった。However, in the prior art using thermoplastic resin expanded particles as a microbial carrier as described in the above-mentioned publication, small particles having a particle size of 10 mm or less are used. When sludge accumulates on the surface, the flow resistance tends to increase. Therefore, it has been necessary to frequently wash the filter medium such as backwashing. In addition, if the shape of the expanded particles is spherical or square, the particles may rotate or float due to the flow or aeration of the water-flowing liquid, and the sludge attached to the particles may peel off and the sludge may be mixed into the treated water.
【0005】また、特開平8−141588号公報には
ポリプロピレンに親水性粉体を分散させ、クラッシャー
で直径を0.1〜300mmに破砕した濾材が開示され
ている。しかしクラッシャーで破砕された粒子は形状が
不均一で微細な破砕くずが混入し、この微細粒子が濾材
流出防止フィルターを通り抜け処理水に濾材粒子が浮遊
流出するという問題があった。Further, Japanese Patent Application Laid-Open No. 8-141588 discloses a filter medium in which hydrophilic powder is dispersed in polypropylene and crushed by a crusher to a diameter of 0.1 to 300 mm. However, the particles crushed by the crusher have a problem that fine crushed debris having a non-uniform shape is mixed therein, and the fine particles pass through a filter for preventing a filter medium from flowing out, and the filter medium particles float and flow into treated water.
【0006】[0006]
【発明が解決しようとする課題】本発明においては、こ
のような問題を解決し、通水抵抗が小さく、充填材への
付着微生物等の汚泥の流出を抑え、浄化性能の優れた汚
水浄化用充填濾材を提供することを目的とする。SUMMARY OF THE INVENTION The present invention solves such a problem, has a small water flow resistance, suppresses the outflow of sludge such as microorganisms attached to the filler, and has excellent purification performance. It is an object to provide a packed filter medium.
【0007】[0007]
【課題を解決するための手段】本発明は熱可塑性発泡樹
脂粒子から成る汚水浄化用充填濾材であって、内側に湾
曲した面を有する異形で、最長部の長さLが10mm<
L<100mmの形状をしており、密度dが0.01g
/cm3 <d<0.15g/cm3 であることを特徴と
する汚水浄化用充填濾材に係わる。更に本発明は熱可塑
性発泡樹脂粒子に汚水を浄化する微生物が坦持されてい
る充填濾材であり、熱可塑性樹脂がポリオレフィン系樹
脂、あるいはスチレン系樹脂であり、嫌気性汚水浄化槽
に充填されている汚水浄化用充填濾材に係わる。SUMMARY OF THE INVENTION The present invention is directed to a filled filter medium for purifying sewage, comprising thermoplastic foamed resin particles, having an irregular shape having an inwardly curved surface, and having a longest portion having a length L of less than 10 mm.
L <100mm, density d is 0.01g
/ Cm 3 <d <0.15 g / cm 3 . Furthermore, the present invention is a filled filter medium in which microorganisms for purifying sewage are carried in thermoplastic foamed resin particles, wherein the thermoplastic resin is a polyolefin-based resin or a styrene-based resin, and is filled in an anaerobic sewage purification tank. It is related to filter media for sewage purification.
【0008】以下、本発明を図面を用いて詳述する。図
1は本発明における汚水浄化用充填濾材の使用形態を示
す模式説明図である。汚水は流入配管3から浄化槽缶体
1の底部に供給され、缶体内に充填された汚水浄化用の
充填濾材2を通過して浄化され、処理水出口配管4より
排出される。必要により曝気を行う場合には配管5より
空気が供給され、排気口6から排気される。汚水の供給
管と処理水の排出管のレベル差が汚水を通水するヘッド
差7となる。缶体底部に堆積した固形物は底部排出弁よ
り除去される。Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic explanatory view showing a usage form of a filled filter medium for sewage purification in the present invention. The sewage is supplied from the inflow pipe 3 to the bottom of the septic tank can 1, passed through the filter medium 2 for purifying sewage filled in the can, purified, and discharged from the treated water outlet pipe 4. When performing aeration as needed, air is supplied from the pipe 5 and exhausted from the exhaust port 6. The level difference between the sewage supply pipe and the treated water discharge pipe is the head difference 7 through which the sewage flows. Solid matter deposited on the bottom of the can is removed from the bottom discharge valve.
【0009】水中充填濾材として用いられる発泡粒子は
水中で浮力を受け、水中充填層の上部粒子ほど下部粒子
の浮力が積算される。最上部の粒子は流出防止のフィル
ター8と下部からの浮上粒子に挟まれ圧縮される。発泡
粒子の形状が球状あるいは角形であると圧縮により、粒
子間が密に詰まって粒子間空隙率は小さくなる。[0009] The expanded particles used as the underwater-filled filter medium receive buoyancy in water, and the buoyancy of the lower particles is integrated in the upper particles of the underwater-packed layer. The uppermost particles are compressed between the outflow prevention filter 8 and the floating particles from below. If the expanded particles have a spherical or square shape, the particles are densely packed by compression, and the porosity between the particles is reduced.
【0010】本発明において発泡粒子は内側に湾曲した
面を持つ異形である。内側に湾曲した面を持つ形状とは
例えば、C形、S形、J形が挙げられる。図2に内側に
湾曲した面を持つ粒子の模式図を示す。これらの形状の
粒子が多数個集合したものは内側に湾曲した面同士が絡
み合って、粒子間の空隙が大きい状態で、集合体の強度
を大きすることができる。すなわち粒子の湾曲部同士が
絡み合って粒子のすべり、回転あるいは浮遊を抑えて強
度を保ち、圧縮されても粒子間の空隙を保持することが
できる。また、粒子の内側に湾曲した窪み部に微生物が
付着しやすく、また粒子の動きが抑えられるので微生物
が脱落しにくい。内側に湾曲した面を持つ粒子形状の中
で特に好ましい形状はS形である。[0010] In the present invention, the expanded beads have an irregular shape having an inwardly curved surface. Examples of the shape having an inwardly curved surface include a C shape, an S shape, and a J shape. FIG. 2 shows a schematic view of a particle having a surface curved inward. When a large number of particles having these shapes are aggregated, the surfaces curved inward are entangled with each other, and the strength of the aggregate can be increased in a state where the gap between the particles is large. That is, the curved portions of the particles are entangled with each other to suppress the sliding, rotation, or floating of the particles, thereby maintaining the strength, and even when compressed, can maintain the gap between the particles. In addition, microorganisms easily adhere to the concave portion curved inside the particles, and the movement of the particles is suppressed, so that the microorganisms are less likely to fall off. A particularly preferred shape among the particle shapes having an inwardly curved surface is the S shape.
【0011】本発明の発泡粒子は最長部の長さLが10
mm<L<100mmの形状をしている。最長部の長さ
が10mm以下では、内側に湾曲した面を持つ形状の未
発泡粒子を生産することが難しくなり経済的に不利であ
る。最長部の長さが100mm以上の粒子は、体積当た
りの表面積が相対的に小さくなるので、微生物を担持さ
せる面積効率が低下する。最長部の長さの特に好ましい
範囲は20〜70mmである。発泡粒子の最長部の長さ
は図3のLで例示されるように、粒子断面の端部間で最
も長い寸法で与えられる。The expanded particles of the present invention have a longest portion having a length L of 10
mm <L <100 mm. When the length of the longest portion is 10 mm or less, it is difficult to produce unexpanded particles having a surface curved inward, which is economically disadvantageous. Particles having a length of 100 mm or more in the longest part have a relatively small surface area per volume, so that the area efficiency for carrying microorganisms is reduced. A particularly preferred range of the length of the longest part is 20 to 70 mm. The length of the longest part of the expanded particles is given by the longest dimension between the ends of the particle cross section, as exemplified by L in FIG.
【0012】本発明の発泡粒子充填材は、発泡粒子の密
度dが0.01g/cm3 <d<0.15g/cm3 の
粒子である。密度が0.01g/cm3 以下では粒子が
密に圧縮され粒子間隙間が埋まり通水抵抗が大きくな
る。密度が0.15g/cm3以上の粒子は硬く、粒子
間空隙が大きいので汚泥が隙間から流出し、処理水の水
質を低下させることになる。発泡粒子充填材密度の更に
好ましい範囲は0.03〜0.09g/cm3 である。
充填材粒子間の空隙率が大きい、あるいは粒子間の隙間
が大きいと、充填濾材に付着する微生物汚泥は、濾液と
共に処理水中に流出する。従って、本発明の充填濾材は
高濃度汚水の1次処理に好ましい。The expanded particle filler of the present invention is a particle having a density d of expanded particles of 0.01 g / cm 3 <d <0.15 g / cm 3 . When the density is 0.01 g / cm 3 or less, the particles are densely compressed, the gaps between the particles are filled, and the water flow resistance increases. Particles having a density of 0.15 g / cm 3 or more are hard and have large interparticle gaps, so that sludge flows out of the gaps and lowers the quality of treated water. A more preferable range of the density of the expanded particle filler is 0.03 to 0.09 g / cm 3 .
If the porosity between the filler particles is large or the gap between the particles is large, the microbial sludge adhering to the filled filter medium flows out into the treated water together with the filtrate. Therefore, the filled filter medium of the present invention is preferable for the primary treatment of highly concentrated sewage.
【0013】本発明の発泡粒子は独立気泡率が80〜1
00%であることが好ましい。独立気泡率が80%未満
では粒子の圧縮強度が低下し、粒子が圧縮され粒子間隙
間が埋まり通水抵抗が大きくなる。本発明の発泡粒子に
用いられる熱可塑性樹脂としては、スチレン系樹脂ある
いはポリオレフィン系樹脂が好ましく用いられる。The foamed particles of the present invention have a closed cell ratio of 80 to 1
Preferably, it is 00%. If the closed cell ratio is less than 80%, the compressive strength of the particles decreases, the particles are compressed, the gaps between the particles are filled, and the water flow resistance increases. As the thermoplastic resin used for the expanded particles of the present invention, a styrene resin or a polyolefin resin is preferably used.
【0014】スチレン系樹脂としては、ポリスチレン、
スチレン系モノマーを50%以上含有するスチレン系共
重合体を用いることができる。スチレン系モノマーとし
ては、スチレンの外、メチルスチレン、ジメチルスチレ
ン、エチルメチルスチレン等の核アルキル置換スチレ
ン、クロルスチレン等の核ハロゲン化スチレン等であ
り、単独あるいは2種以上の混合物として用いられる。
スチレン系共重合モノマーとしては、例えばアクリロニ
トリル、メチルメタクリレート、無水マレイン酸等があ
る。これらの中で特に好ましいものはポリスチレン、ス
チレン−アクリロニトリル共重合体である。As the styrene resin, polystyrene,
A styrene copolymer containing 50% or more of a styrene monomer can be used. Examples of the styrene monomer include styrene, nuclear alkyl-substituted styrene such as methyl styrene, dimethyl styrene, and ethyl methyl styrene, and nuclear halogenated styrene such as chlorostyrene, and used alone or as a mixture of two or more.
Examples of the styrene-based copolymer monomer include acrylonitrile, methyl methacrylate, and maleic anhydride. Particularly preferred among these are polystyrene and styrene-acrylonitrile copolymer.
【0015】ポリオレフィン系樹脂としては、低、中、
高密度ポリエチレン、線状低密度ポリエチレン、線状超
低密度ポリエチレン、エチレン−酢酸ビニル共重合体等
で代表されるエチレン系樹脂、ポリプロピレン、共重合
成分がエチレン、ブテン1,4−2メチルペンテンの1
種以上であるプロピレンとのランダム及びブロック共重
合体等で代表されるプロピレン系樹脂、またはこれらの
樹脂の2種以上が混合された混合樹脂、あるいはこれら
の樹脂を50重量%以上含み他成分が塩化ビニル、エチ
ルアクリレート、メチルアクリレート、アクリル酸等の
成分である共重合、混合樹脂等が用いられる。これらの
中で特に好ましいものは中、高密度ポリエチレン、ポリ
プロピレンである。As polyolefin resins, low, medium,
High-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, ethylene-based resin represented by ethylene-vinyl acetate copolymer, polypropylene, copolymer component of ethylene, butene 1,4-methylpentene 1
Propylene-based resin represented by random or block copolymers with propylene, which is at least one kind, or a mixed resin obtained by mixing two or more of these resins, or containing at least 50% by weight of these resins and other components Copolymers and mixed resins which are components such as vinyl chloride, ethyl acrylate, methyl acrylate, and acrylic acid are used. Of these, particularly preferred are medium and high density polyethylene and polypropylene.
【0016】樹脂には必要に応じて、染顔料、滑剤、離
型剤、帯電防止剤、発泡核剤、紫外線安定剤等の添加剤
を加えることができる。本発明で用いられる揮発性発泡
剤としては、沸点が−80〜+100℃の範囲にあるも
の、例えばブタン、nペンタン、イソペンタン、ヘキサ
ン、石油エーテル等の脂肪族炭化水素、シクロペンタン
等の環状脂肪族炭化水素、の外ハロゲン化炭化水素、炭
酸ガス等を用いることができる。If necessary, additives such as dyes and pigments, lubricants, release agents, antistatic agents, foam nucleating agents, and ultraviolet stabilizers can be added to the resin. As the volatile foaming agent used in the present invention, those having a boiling point in the range of -80 to + 100 ° C, for example, aliphatic hydrocarbons such as butane, n-pentane, isopentane, hexane and petroleum ether, and cyclic fats such as cyclopentane A group hydrocarbon, an outer halogenated hydrocarbon, carbon dioxide, or the like can be used.
【0017】本発明の充填材は粒子形状が揃った熱可塑
性樹脂発泡粒子である。本発明における発泡粒子の製造
方法には特に制限はない。押出機内で樹脂と発泡剤を混
合し、未発泡状態でストランド状に押し出したものを粒
子状にカットし、スチーム等の加熱により発泡粒子とす
る方法。あるいは樹脂粒子に発泡剤を含浸させ、スチー
ム等の加熱により発泡粒子とする方法等が用いられる。
従って本発明で得られる発泡粒子は発泡体をクラッシャ
ーで破砕する等の方法で得られた粒子と異なり形状の揃
ったものが得られる。The filler of the present invention is a foamed thermoplastic resin particle having a uniform particle shape. The method for producing expanded beads in the present invention is not particularly limited. A method in which a resin and a foaming agent are mixed in an extruder, extruded in a strand shape in an unfoamed state, cut into particles, and heated with steam or the like to form expanded particles. Alternatively, a method of impregnating the resin particles with a foaming agent and heating them with steam or the like to form foamed particles is used.
Therefore, the foamed particles obtained by the present invention have a uniform shape, unlike the particles obtained by a method such as crushing the foam with a crusher.
【0018】本発明の充填濾材は汚水浄化装置の濾材と
して用いる。汚水浄化装置は汚水を濾材に通液し連続的
に浄化する装置である。装置全体を槽内にまとめたもの
が一般的である。浄化装置は好気性浄化、嫌気性浄化い
ずれでも良い。本発明の充填濾材を用いた浄化槽は形状
を小型化できる。浄化装置は家庭用の小型槽から500
人槽以上の大型のものがあるが、本発明の充填濾材は特
に制限なく用いることができる。中でも200人槽以下
の比較的小型のものが好ましく、更には50人槽以下も
の、家庭用の生活雑排水浄化槽あるいは家庭用合併処理
槽等の装置に好ましく用いられる。The filled filter medium of the present invention is used as a filter medium for a sewage purification apparatus. A sewage purification device is a device for continuously purifying sewage by passing it through a filter medium. Generally, the whole apparatus is put in a tank. The purifying device may be either aerobic purifying or anaerobic purifying. The septic tank using the filled filter medium of the present invention can be downsized. Purification equipment is 500 from a small household tank.
Although there is a large filter larger than a human tank, the filled filter medium of the present invention can be used without any particular limitation. Above all, a relatively small one having a tank of 200 or less is preferable, and a tank having a tank of 50 or less and a household wastewater purification tank or a household combined treatment tank is preferably used.
【0019】嫌気性浄化槽では長期の連続使用で汚水の
通水詰まりを発生させないことが必要である。従って粒
子間空隙の大きい本発明の充填濾材は嫌気性汚水浄化槽
に用いることが特に好ましい。発泡粒子形状としては表
面に微生物が付着しやすいよう凹凸、しわを設けること
ができる。発泡粒子に凹凸、しわを設けるには、発泡粒
子を20〜80℃、絶対圧力350〜700torr雰
囲気中で減圧処理して収縮させることで得られる。浄化
性能評価には、処理水のBOD濃度値、処理水透視度を
用いた。In an anaerobic septic tank, it is necessary to prevent clogging of sewage with continuous use for a long period of time. Therefore, it is particularly preferable to use the filled filter medium of the present invention having a large interparticle gap in an anaerobic sewage purification tank. As the shape of the expanded particles, irregularities and wrinkles can be provided on the surface so that microorganisms can easily adhere to the surface. In order to provide irregularities and wrinkles on the foamed particles, the foamed particles are obtained by reducing the pressure in an atmosphere of 20 to 80 ° C. and an absolute pressure of 350 to 700 torr to cause shrinkage. For the purification performance evaluation, the BOD concentration value of treated water and the visibility of treated water were used.
【0020】[0020]
【実施例】以下に実施例等によって本発明を更に詳細に
説明する。実施例、比較例中の発泡粒子の密度、独立気
泡率、汚水透視度は以下のように測定した。 (1)密度 : 約5gの発泡粒子を小数以下2位で秤
量する。次に、最小目盛単位が1cm3 である200c
m3 ガラス製メスシリンダーに50〜100cm3 の水
を入れ、これにメスシリンダーの口径よりやや小さい円
形の金網板であって、その中心部に長さが15〜30c
mの針金が直立して固定された発泡粒子の押圧具を没
し、その時の水位H1 cm3 を読み取る。次に押圧具を
除き、秤量した上記発泡粒子をメスシリンダー内に入れ
押圧具を用いて完全に水没させた状態で水位H2 cm3
を読み取り、下記の式により発泡粒子の真密度d(g/
cm3)を求めた。 d=W/(H2 −H1 ) ただし、W :発泡粒子の重量(g) H1 :発泡粒子を入れる前の水位(cm3 ) H2 :発泡粒子を水没した後の水位(cm3 )The present invention will be described in more detail with reference to the following examples. The density, closed cell rate, and sewage transparency of the foamed particles in Examples and Comparative Examples were measured as follows. (1) Density: Approximately 5 g of expanded particles are weighed at two decimal places. Next, 200c whose minimum scale unit is 1 cm 3
m 3 glass graduated cylinder is filled with 50-100 cm 3 of water, and a circular wire mesh plate slightly smaller than the diameter of the graduated cylinder is placed in the center at a length of 15-30 c.
The wire of m is erected and the pressing tool of the fixed foamed particles is immersed, and the water level H1 cm 3 at that time is read. Then except pusher, the water level H2 cm 3 in a state of completely submerged using a pressing tool placed weighed the expanded beads in a graduated cylinder
Is read, and the true density d (g / g /
cm 3 ). d = W / (H 2 −H 1) where W: weight of expanded particles (g) H 1: water level before adding expanded particles (cm 3 ) H 2: water level after immersing expanded particles (cm 3 )
【0021】(2)独立気泡率 : 密度(g/c
m3 )が既知の発泡体約24cm3 の真の容積を東芝・
ベックマン社製空気比較式比重計930形を用いて測定
し、次式より独立気泡率〔S,(%)〕を算出する。 S=(Vx−W/ρ)×100/(Va−W/ρ)
(%) Vx:上記装置で測定した真の発泡体の容積(cm3 ) Va:発泡体の容積〔重量/かさ密度〕(cm3 ) W :発泡体の重量(g) ρ :発泡体の基材樹脂の密度(g/cm3 )(2) Closed cell ratio: Density (g / c)
m 3 ) is about 24 cm 3 of the known foam.
It is measured using an air comparison specific gravity meter Model 930 manufactured by Beckman, and the closed cell rate [S, (%)] is calculated from the following equation. S = (Vx−W / ρ) × 100 / (Va−W / ρ)
(%) Vx: Volume of the true foam measured by the above apparatus (cm 3 ) Va: Volume of the foam [weight / bulk density] (cm 3 ) W: Weight of the foam (g) ρ: Foam of the foam Density of base resin (g / cm 3 )
【0022】(3)汚水透視度 : 汚水をガラス製筒
状容器にとり、容器底部が目視できる汚水の水深(c
m)を汚水透視度とした。(3) Permeability of sewage: The sewage is taken in a glass cylindrical container, and the depth of the sewage (c) at which the bottom of the container is visible.
m) was defined as the sewage transparency.
【0023】(実施例1)直径20cm高さ1mの缶体
に図1に示すような汚水流入管、処理水排出管を取付
け、充填材である発泡粒子を高さ50cmに充填した。
缶体上部には発泡粒子浮上流出防止用のフィルターを取
り付けた。供給汚水はBOD濃度が400mg/lで、
透視度が15cmのものを用い、発泡粒子として、S形
状のポリスチレン発泡粒子(旭化成工業製アスパックサ
ラサラ)を用いた。発泡粒子は密度0.016g/cm
3 、最長部の長さ45mm、独立気泡率90%であっ
た。この発泡粒子の汚水浄化性能は、処理開始5日後、
処理水のBOD濃度35mg/lで、透視度が30cm
と良好なものであった。また、汚水供給管と処理水排出
管のヘッド差は5cmとしたが、通水上詰まりの問題は
見られなかった。(Example 1) A wastewater inflow pipe and a treated water discharge pipe as shown in FIG. 1 were attached to a can body having a diameter of 20 cm and a height of 1 m, and foamed particles as a filler were filled to a height of 50 cm.
A filter for preventing the floating and floating of the foamed particles was attached to the upper part of the can body. The feed sewage has a BOD concentration of 400 mg / l,
An S-shaped expanded polystyrene particle (Asapack Kasei Kogyo Co., Ltd.) was used as the expanded particles. The expanded particles have a density of 0.016 g / cm.
3. The longest part had a length of 45 mm and a closed cell ratio of 90%. The sewage purification performance of the foamed particles is 5 days after the treatment starts.
BOD concentration of treated water is 35mg / l, visibility is 30cm
And it was good. Although the head difference between the sewage supply pipe and the treated water discharge pipe was 5 cm, no problem of clogging due to water passage was observed.
【0024】(実施例2)S形状のポリスチレン発泡粒
子(旭化成工業製アスパックサラサラ)で、密度0.0
35g/cm3 、最長部の長さ30mm、独立気泡率9
0%のものを用いて実施例1と同様の評価を行った。浄
化性能は同等であり、通水上詰まりの問題は見られなか
った。(Example 2) S-shaped expanded polystyrene particles (Aspac Sarah, manufactured by Asahi Kasei Kogyo) and a density of 0.0
35 g / cm 3 , longest part length 30 mm, closed cell rate 9
The same evaluation as in Example 1 was performed using 0%. Purification performance was equivalent, and no problem of clogging due to water flow was observed.
【0025】(実施例3)発泡粒子として、C形のポリ
プロピレン樹脂からなる密度0.12g/cm3、最長
部の長さ15mm、独立気泡率95%のものを用いた。
実施例1と同様な評価を行ったところ、処理水のBOD
濃度40mg/lで、透視度が28cmと良好なもので
あった。また、通水上詰まりの問題は見られなかった。Example 3 As foamed particles, a C-type polypropylene resin having a density of 0.12 g / cm 3 , a longest portion having a length of 15 mm, and a closed cell ratio of 95% was used.
When the same evaluation as in Example 1 was performed, the BOD of the treated water
At a concentration of 40 mg / l, the transparency was as good as 28 cm. In addition, no problem of clogging due to water flow was observed.
【0026】(実施例4)発泡粒子として、C形のポリ
スチレン樹脂からなる密度0.012g/cm3、最長
部の長さ80mm、独立気泡率85%のものを用いた。
実施例1と同様な評価を行ったところ、処理水のBOD
濃度45mg/lで、透視度が26cmとほぼ良好なも
のであった。また、通水上詰まりの問題は見られなかっ
た。Example 4 As foamed particles, C-type polystyrene resin having a density of 0.012 g / cm 3 , a longest portion of 80 mm in length, and a closed cell ratio of 85% was used.
When the same evaluation as in Example 1 was performed, the BOD of the treated water
At a concentration of 45 mg / l, the visibility was almost as good as 26 cm. In addition, no problem of clogging due to water flow was observed.
【0027】(比較例1)発泡粒子として、球状のポリ
スチレン発泡粒子を用いた。粒子密度は0.03g/c
m3 、粒径6mm、独立気泡率90%であった。実施例
1と同様な評価を行ったところ、処理水のBOD濃度5
5mg/lで、透視度が24cmと不十分な浄化性能で
あり、粒子に汚泥が付着して通水抵抗が大きくなり、長
期間の通水処理はできなかった。Comparative Example 1 Spherical polystyrene expanded particles were used as expanded particles. Particle density is 0.03 g / c
m 3 , particle diameter 6 mm, closed cell rate 90%. When the same evaluation as in Example 1 was performed, the BOD concentration of the treated water was 5
At 5 mg / l, the transparency was 24 cm, which was insufficient purification performance. Sludge adhered to the particles, increasing the water flow resistance.
【0028】(比較例2)発泡粒子として、円柱状のポ
リスチレン発泡粒子を用いた。粒子密度は0.05g/
cm3 、最長部の長さ120mm、独立気泡率90%で
あった。実施例1と同様な評価を行ったところ、処理水
のBOD濃度60mg/lで、透視度が22cmと不十
分な浄化性能であった。通水上詰まりの問題は見られな
かった。Comparative Example 2 As the expanded particles, columnar expanded polystyrene particles were used. Particle density 0.05 g /
cm 3 , the length of the longest part was 120 mm, and the closed cell ratio was 90%. When the same evaluation as in Example 1 was performed, the treated water had a BOD concentration of 60 mg / l, and the visibility was 22 cm, indicating insufficient purification performance. No problem of clogging was observed.
【0029】(比較例3)発泡粒子として、S形状のポ
リスチレン発泡粒子を用いた。粒子密度は0.008g
/cm3 、最長部の長さ60mm、独立気泡率85%で
あった。実施例1と同様な評価を行ったところ、処理水
のBOD濃度50mg/lで、透視度が24cmと不十
分な浄化性能であった。粒子が浮力で圧縮され、通水抵
抗が大きくなり、長期間の通水処理はできなかった。Comparative Example 3 S-shaped polystyrene expanded particles were used as expanded particles. Particle density 0.008g
/ Cm 3 , the length of the longest part was 60 mm, and the closed cell ratio was 85%. When the same evaluation as in Example 1 was performed, it was found that the treated water had a BOD concentration of 50 mg / l and the transparency was 24 cm, which was insufficient purification performance. The particles were compressed by buoyancy, the water flow resistance increased, and the water flow treatment could not be performed for a long time.
【0030】(比較例4)発泡粒子として、S形状のポ
リスチレン発泡粒子を用いた。粒子密度は0.20g/
cm3 、最長部の長さ15mm、独立気泡率95%であ
った。実施例1と同様な評価を行ったところ、処理水の
BOD濃度45mg/lで、透視度が28cmであっ
た。粒子に汚泥が付着して通水抵抗が大きくなり、長期
間の通水処理はできなかった。Comparative Example 4 S-shaped polystyrene expanded particles were used as expanded particles. The particle density is 0.20 g /
cm 3 , the length of the longest part was 15 mm, and the closed cell ratio was 95%. When the same evaluation as in Example 1 was performed, the BOD concentration of the treated water was 45 mg / l, and the visibility was 28 cm. Sludge adhered to the particles, increasing the water flow resistance, making it impossible to perform long-term water flow treatment.
【0031】(比較例5)発泡粒子として、円柱状ポリ
スチレン発泡粒子を用いた。密度は0.02g/c
m3 、粒径30mm、独立気泡率60%であった。実施
例1と同様な評価を行ったところ、処理水のBOD濃度
45mg/lで、透視度が28cmであった。粒子が浮
力で圧縮され、通水抵抗が大きくなり、長期間の通水処
理はできなかった。Comparative Example 5 As the expanded particles, columnar polystyrene expanded particles were used. Density is 0.02 g / c
m 3 , particle size 30 mm, closed cell rate 60%. When the same evaluation as in Example 1 was performed, the BOD concentration of the treated water was 45 mg / l, and the visibility was 28 cm. The particles were compressed by buoyancy, the water flow resistance increased, and the water flow treatment could not be performed for a long time.
【0032】[0032]
【発明の効果】本発明においては、通水抵抗が小さく、
充填材への付着微生物等の汚泥の流出を抑え、粒子形状
の揃った汚水浄化用充填濾材を提供できる。According to the present invention, the water flow resistance is small,
The outflow of sludge such as microorganisms attached to the filler can be suppressed, and a packed filter medium for purifying sewage having a uniform particle shape can be provided.
【図1】本発明における汚水浄化用充填材の使用形態を
示す模式説明図である。FIG. 1 is a schematic explanatory view showing a usage form of a sewage purification filler according to the present invention.
【図2】本発明で用いられる発泡粒子の形状を示す模式
説明図である。FIG. 2 is a schematic explanatory view showing the shape of a foamed particle used in the present invention.
【図3】本発明で用いられる発泡粒子の最長部を示す説
明図である。FIG. 3 is an explanatory view showing the longest part of the expanded beads used in the present invention.
1 浄化槽缶体 2 汚水浄化用充填材 3 汚水供給配管 4 処理水排出配管 5 底部抜出し弁 6 排気口 7 汚水供給ヘッド差 8 濾材流出防止フィルター DESCRIPTION OF SYMBOLS 1 Septic tank can body 2 Filling material for sewage purification 3 Sewage supply piping 4 Treated water discharge piping 5 Bottom extraction valve 6 Exhaust port 7 Sewage supply head difference 8 Filter media outflow prevention filter
Claims (4)
用充填濾材であって、内側に湾曲した面を有する異形
で、最長部の長さLが10mm<L<100mmの形状
をしており、密度dが0.01g/cm3 <d<0.1
5g/cm3 であることを特徴とする汚水浄化用充填濾
材。1. A filter material for purifying sewage, comprising thermoplastic foamed resin particles, wherein the filter material has an irregular shape having an inwardly curved surface, and a length L of a longest portion is 10 mm <L <100 mm. Density d is 0.01 g / cm 3 <d <0.1
A packed filter medium for purifying sewage, characterized by having a weight of 5 g / cm 3 .
ことを特徴とする請求項1記載の充填濾材。2. The packed filter medium according to claim 1, wherein microorganisms for purifying sewage are carried.
ポリオレフィン系樹脂であることを特徴とする請求項1
又は2記載の充填濾材。3. The method according to claim 1, wherein the thermoplastic resin is a styrene resin or a polyolefin resin.
Or a packed filter medium according to 2.
を特徴とする請求項1〜3のいずれかに記載の充填濾
材。4. The filled filter medium according to claim 1, which is filled in an anaerobic sewage purification tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29707896A JPH10118681A (en) | 1996-10-21 | 1996-10-21 | Contact filtration material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29707896A JPH10118681A (en) | 1996-10-21 | 1996-10-21 | Contact filtration material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10118681A true JPH10118681A (en) | 1998-05-12 |
Family
ID=17841927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29707896A Withdrawn JPH10118681A (en) | 1996-10-21 | 1996-10-21 | Contact filtration material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10118681A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001205287A (en) * | 2000-01-28 | 2001-07-31 | Takeda Chem Ind Ltd | Carrier for water treatment, its production method, and apparatus for water treatment |
JP2001205288A (en) * | 2000-01-28 | 2001-07-31 | Takeda Chem Ind Ltd | Carrier for water treatment, its production method, and apparatus for water treatment |
WO2002072227A1 (en) * | 2001-03-13 | 2002-09-19 | Ngk Insulators, Ltd. | High rate filter and high rate filtration method using the filter |
JP2006055749A (en) * | 2004-08-20 | 2006-03-02 | Inoac Corp | Foamed body for water treatment filter medium |
JP2013255868A (en) * | 2012-06-11 | 2013-12-26 | Inoac Corp | Filter medium for filter treatment, and method for manufacturing the same |
-
1996
- 1996-10-21 JP JP29707896A patent/JPH10118681A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001205287A (en) * | 2000-01-28 | 2001-07-31 | Takeda Chem Ind Ltd | Carrier for water treatment, its production method, and apparatus for water treatment |
JP2001205288A (en) * | 2000-01-28 | 2001-07-31 | Takeda Chem Ind Ltd | Carrier for water treatment, its production method, and apparatus for water treatment |
WO2002072227A1 (en) * | 2001-03-13 | 2002-09-19 | Ngk Insulators, Ltd. | High rate filter and high rate filtration method using the filter |
AU2002237560B2 (en) * | 2001-03-13 | 2004-08-26 | Ngk Insulators, Ltd. | High rate filter and high rate filtration method using the filter |
US6841069B2 (en) | 2001-03-13 | 2005-01-11 | Ngk Insulators, Ltd. | High rate filter and high rate filtration method using the filter |
JP2006055749A (en) * | 2004-08-20 | 2006-03-02 | Inoac Corp | Foamed body for water treatment filter medium |
JP2013255868A (en) * | 2012-06-11 | 2013-12-26 | Inoac Corp | Filter medium for filter treatment, and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3846289A (en) | Waste treatment process | |
TW407165B (en) | Microorganism holding carrier for a fluidized bed | |
TWI585047B (en) | Anaerobic treatment method and device | |
JP3385381B2 (en) | Method for purifying drinking water or wastewater and / or smoke | |
NZ555673A (en) | Waste water treatment process system with circulating filter bed and aeration means | |
JP3452143B2 (en) | Method and apparatus for biological purification of wastewater | |
JPH10118681A (en) | Contact filtration material | |
CN102225322A (en) | Reactor with interval filling bed | |
US4915884A (en) | Process for production of granular material for water treatment | |
JP3977775B2 (en) | Microbial carrier | |
JPH10118679A (en) | Filling filtration material and contaminated water cleaning method using the same | |
JP2012110820A (en) | Method and apparatus for anaerobic treatment | |
JP3587733B2 (en) | Microbial carrier and wastewater treatment equipment | |
JP2009208024A (en) | Water purification apparatus | |
JP3922782B2 (en) | Anaerobic treatment equipment | |
JP5691439B2 (en) | Anaerobic treatment method and apparatus | |
JPH0677650B2 (en) | Upflow filtration method and device | |
JPH0623382A (en) | Biological filtering method and apparatus | |
JP2592356B2 (en) | Organic sewage biological filtration equipment | |
JPH026591B2 (en) | ||
JP2022191066A (en) | Water treatment method and water treatment apparatus | |
JP2000246272A (en) | Method for removing nitrogen of sewage | |
KR100360283B1 (en) | Activated Water Purification Apparatus with Charcoal, Germanium Ore and Quartz Monzonite Porphyry | |
JP2005021831A (en) | Carrier for microorganism proliferation, and its using method | |
JP2005021842A (en) | Contaminant removing material, and method for removing contaminant using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20041008 |