JPH0394069A - 薄膜形成装置 - Google Patents
薄膜形成装置Info
- Publication number
- JPH0394069A JPH0394069A JP1229951A JP22995189A JPH0394069A JP H0394069 A JPH0394069 A JP H0394069A JP 1229951 A JP1229951 A JP 1229951A JP 22995189 A JP22995189 A JP 22995189A JP H0394069 A JPH0394069 A JP H0394069A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- reaction
- thin film
- active species
- supply port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 61
- 238000006243 chemical reaction Methods 0.000 claims abstract description 51
- 239000007789 gas Substances 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 22
- 239000012495 reaction gas Substances 0.000 claims description 19
- 239000002243 precursor Substances 0.000 abstract description 21
- 238000000034 method Methods 0.000 abstract description 7
- 239000000376 reactant Substances 0.000 abstract description 4
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 238000010410 dusting Methods 0.000 abstract 1
- 238000004020 luminiscence type Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 8
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 5
- 239000000428 dust Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 150000002926 oxygen Chemical class 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-NJFSPNSNSA-N oxygen-18 atom Chemical class [18O] QVGXLLKOCUKJST-NJFSPNSNSA-N 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45517—Confinement of gases to vicinity of substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/452—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45587—Mechanical means for changing the gas flow
- C23C16/45591—Fixed means, e.g. wings, baffles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10S156/916—Differential etching apparatus including chamber cleaning means or shield for preventing deposits
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は薄膜形成装置に関するものであり、特にC V
D (Chemical Vapor Deposi
tion)法により菌膜を形戒ずる装置に関するもので
ある。
D (Chemical Vapor Deposi
tion)法により菌膜を形戒ずる装置に関するもので
ある。
[従来の技術]
近年、LSI,液晶ディスプレイを含む電子デバイスの
製造プロセスの低温化,低損傷化に伴い、基板上に薄膜
を形戒する方法として、プラズマ分離型マイクロ波プラ
ズマCVD法が注目されている。プラズマ分離型マイク
ロ波プラズマCVD法は反応室とは分離したプラズマ放
電室でマイクロ波プラズマ放電により反応ガスを励起し
、生戒した活性種を反応室内の低温加熱された基板上に
輸送し薄膜を形戒する技術であり、基板が直接プラズマ
にさらされないため、プラズマ中の荷電粒子が基板及び
形戒中の薄膜に損傷を与えることなく、しかも3 0
0 ’C以下の低い基板温度で薄膜を形戒することがで
きる。
製造プロセスの低温化,低損傷化に伴い、基板上に薄膜
を形戒する方法として、プラズマ分離型マイクロ波プラ
ズマCVD法が注目されている。プラズマ分離型マイク
ロ波プラズマCVD法は反応室とは分離したプラズマ放
電室でマイクロ波プラズマ放電により反応ガスを励起し
、生戒した活性種を反応室内の低温加熱された基板上に
輸送し薄膜を形戒する技術であり、基板が直接プラズマ
にさらされないため、プラズマ中の荷電粒子が基板及び
形戒中の薄膜に損傷を与えることなく、しかも3 0
0 ’C以下の低い基板温度で薄膜を形戒することがで
きる。
第7図は例えば特開昭58−27656号公報に示され
た従来のプラズマ分離型マイクロ波プラズマCVD法に
用いられる簿膜形戒装置の構或を示す断面構戒図である
。
た従来のプラズマ分離型マイクロ波プラズマCVD法に
用いられる簿膜形戒装置の構或を示す断面構戒図である
。
図において、1は反応室、2は第1の反応ガス供給口、
3は第1の反応ガス、4は第2の反応ガス、5はマイク
ロ波プラズマ放電管、6はマイクロ波エネルギー、7は
活性種供給口、8は活性種、9は基板、10は基板9が
載置されるヒータ、11はガス排気口、l2は反応後の
ガスである。このように構成された薄膜形威装置におい
て、例えばシリコン酸化膜を形威する場合、反応ガス供
給口2から第1の反応ガスとしてシランガス3が反応室
1内に供給され、また第2の反応ガスとして酸素原子を
含むガス4がマイクロ波プラズマ放電管5に供給される
ことにより生戒される活性化酸素原子8が活性種供給口
7から反応室1内に供給される。
3は第1の反応ガス、4は第2の反応ガス、5はマイク
ロ波プラズマ放電管、6はマイクロ波エネルギー、7は
活性種供給口、8は活性種、9は基板、10は基板9が
載置されるヒータ、11はガス排気口、l2は反応後の
ガスである。このように構成された薄膜形威装置におい
て、例えばシリコン酸化膜を形威する場合、反応ガス供
給口2から第1の反応ガスとしてシランガス3が反応室
1内に供給され、また第2の反応ガスとして酸素原子を
含むガス4がマイクロ波プラズマ放電管5に供給される
ことにより生戒される活性化酸素原子8が活性種供給口
7から反応室1内に供給される。
この時、、活性化酸素原子8はシランガス3と基板近傍
の空間で化学気相反応を起こし、シリコン原子,水素原
子,酸素原子を含む前駆体を形威する。この前駆体が基
板9表面で変化し、シリコン酸化膜が形成される。
の空間で化学気相反応を起こし、シリコン原子,水素原
子,酸素原子を含む前駆体を形威する。この前駆体が基
板9表面で変化し、シリコン酸化膜が形成される。
第8図に従来のプラズマ分離型マイクロ波プラズマCV
D法に用いられる薄膜形威装置の反応室1部分の拡大図
を示す。この種の薄膜形威装置においては、活性種供給
口7より反応室1内に供給された活性種8は、基板9表
面近傍に停滞することなく、基板9外周部、さらには反
応室1内壁近傍に拡散し、そこで同様に拡散した第lの
反応ガス分子3と反応し、前駆体13を形威する。
D法に用いられる薄膜形威装置の反応室1部分の拡大図
を示す。この種の薄膜形威装置においては、活性種供給
口7より反応室1内に供給された活性種8は、基板9表
面近傍に停滞することなく、基板9外周部、さらには反
応室1内壁近傍に拡散し、そこで同様に拡散した第lの
反応ガス分子3と反応し、前駆体13を形威する。
また、基板9表面近傍で形威された前駆体13の一部も
反応室内壁近傍に拡散する。これらの前駆体13は薄膜
形戒反応に関与することなく、例えば反応室内壁のよう
な低温の表面と接触し、微細粒子状の反応生威物14に
変化する。従来、この反応生或物14が塵埃となって反
応室内に浮遊し、薄膜中に取り込まれたり、薄膜表面に
付着するために高品質の薄膜を形威することができない
という問題点があった。
反応室内壁近傍に拡散する。これらの前駆体13は薄膜
形戒反応に関与することなく、例えば反応室内壁のよう
な低温の表面と接触し、微細粒子状の反応生威物14に
変化する。従来、この反応生或物14が塵埃となって反
応室内に浮遊し、薄膜中に取り込まれたり、薄膜表面に
付着するために高品質の薄膜を形威することができない
という問題点があった。
また、プラズマ分離型マイクロ波プラズマCVD法は、
活性種8と第1の反応ガス分子3との化学反応により前
駆体13が形威される際に、ケミカルルミネッセンスを
伴うという特徴を有する。
活性種8と第1の反応ガス分子3との化学反応により前
駆体13が形威される際に、ケミカルルミネッセンスを
伴うという特徴を有する。
このケミカルルミネッセンス強度は薄膜形戒速度と相関
関係にあるため、ルごネッセンス強度を光ファイバーl
5を介し、分光光度計16を用いて計測することにより
薄膜形成速度のインシチュモニタリングが可能である。
関係にあるため、ルごネッセンス強度を光ファイバーl
5を介し、分光光度計16を用いて計測することにより
薄膜形成速度のインシチュモニタリングが可能である。
しかしながら従来の薄膜形戒装置においては、ケミカル
ルミネッセンス強度の計測に際して、第8図に示すよう
に前駆体13の形威反応が基板9面上に限定されないた
めに、本来必要な基板径Lw内のケごカルルミネッセン
スの積分強度に加えて、薄膜形戒反応に関わらない基板
外のルξネッセンス強度を合わせて測定するために、高
精度に薄膜形戒速度のインシチュモニタリングを行なう
ことが困難であるという問題点があった。
ルミネッセンス強度の計測に際して、第8図に示すよう
に前駆体13の形威反応が基板9面上に限定されないた
めに、本来必要な基板径Lw内のケごカルルミネッセン
スの積分強度に加えて、薄膜形戒反応に関わらない基板
外のルξネッセンス強度を合わせて測定するために、高
精度に薄膜形戒速度のインシチュモニタリングを行なう
ことが困難であるという問題点があった。
この発明は上記のような問題点を解決するためになされ
たもので、プラズマ分離型マイクロ波プラズマCVD法
により低発塵プロセスとプロセスの高精度インシチュモ
ニタリングを可能とする薄膜形威装置を得ることを目的
とする。
たもので、プラズマ分離型マイクロ波プラズマCVD法
により低発塵プロセスとプロセスの高精度インシチュモ
ニタリングを可能とする薄膜形威装置を得ることを目的
とする。
この発明に係る薄膜形威装置は、基板を収容し上記基板
を保持し加熱するヒータ.第lの反応ガスを供給する反
応ガス供給口,及び第2の反応ガスを励起することによ
り生成される活性種を供給する活性種供給口を有する反
応室を備え、上記基板上に第1の反応ガスと活性種の反
応により薄膜を形戒するものにおいて、活性種供給口と
ヒータとの間に少なくとも基板と活性種供給口を囲むよ
うに、小孔を多数有する金属多孔板を基板に近接して設
けたものである。
を保持し加熱するヒータ.第lの反応ガスを供給する反
応ガス供給口,及び第2の反応ガスを励起することによ
り生成される活性種を供給する活性種供給口を有する反
応室を備え、上記基板上に第1の反応ガスと活性種の反
応により薄膜を形戒するものにおいて、活性種供給口と
ヒータとの間に少なくとも基板と活性種供給口を囲むよ
うに、小孔を多数有する金属多孔板を基板に近接して設
けたものである。
この発明の薄膜形戒装置においては、前駆体形戒反応が
基板面上に限定され、なおかつ前駆体の基板外周部,反
応室内壁への拡散が防止されるために、発塵の原因とな
る微細粒子状反応生威物が発生することなく薄膜形戒反
応が進行する。また基板面上でのみケごカルルξネッセ
ンスが生じるために高精度インシチュモニタリングが可
能となる。
基板面上に限定され、なおかつ前駆体の基板外周部,反
応室内壁への拡散が防止されるために、発塵の原因とな
る微細粒子状反応生威物が発生することなく薄膜形戒反
応が進行する。また基板面上でのみケごカルルξネッセ
ンスが生じるために高精度インシチュモニタリングが可
能となる。
以下、この発明の一実施例を図について説明する。
第1図はこの発明の第1の実施例による薄膜形戒装置の
内部を示す断面構或図、また、第2図は第1図における
反応室内部を示す断面構或図である。
内部を示す断面構或図、また、第2図は第1図における
反応室内部を示す断面構或図である。
第1図において、第7図と同一符号は同一部分を示し、
■7は小孔を多数有する金属メッシュ板で、活性種供給
口7とヒータ10間に基板9と活性種供給口7及び反応
ガス供給口2を囲むように基板9に近接して設けられて
いる。この金属メッシュ板17の孔の大きさは主として
反応室1内の圧力に依存して決められいる。このプラズ
マ分離型マイクロ波プラズマCVD法による薄膜形戒装
置は、反応室1内が電気的に中性であるために反応室内
にいかなる形状の金属板を設けたとしても異常放電を生
しることはない。
■7は小孔を多数有する金属メッシュ板で、活性種供給
口7とヒータ10間に基板9と活性種供給口7及び反応
ガス供給口2を囲むように基板9に近接して設けられて
いる。この金属メッシュ板17の孔の大きさは主として
反応室1内の圧力に依存して決められいる。このプラズ
マ分離型マイクロ波プラズマCVD法による薄膜形戒装
置は、反応室1内が電気的に中性であるために反応室内
にいかなる形状の金属板を設けたとしても異常放電を生
しることはない。
本実施例の薄膜形成装置においては、基板9に対して膜
を形成するには従来装置と同様に反応ガス供給口2から
第1の反応ガスとしてシランガス3を基板9上に供給し
、また第2の反応ガスとして酸素原子を含むガス4をマ
イクロ波プラズマ放電管5に供給することにより生威さ
れる活性種、即ち活性化酸素8が活性種供給口7から基
板9上に導入され、活性化酸素8とシランガス3が基板
近傍の空間で化学気相反応を起こし、前駆体I3を形威
し、この前駆体13が基板9表面で反応を起こしてシリ
コン酸化膜の形成を行なうのであるが、第2図に示すよ
うに、反応室内に供給された活性化酸素8のうち基板9
外周部に拡散するものは多孔金属板17の金属面との衝
突によりエネルギーを失い、基底状態の失活酸素18と
なって多孔を通過する。また基板9上で形威された前駆
体13のうち基板9外周部に拡散するものは多孔金属板
17と接触し、多孔金属板17がヒータ近傍にあり、比
較的基板温度に近いために薄膜となって多孔金属板17
に蒸着する。即ち、基板9での薄膜形戒反応に関与しな
い基板外周部に拡散する前駆体13は膜となって多孔金
属板17にトラッブされる。
を形成するには従来装置と同様に反応ガス供給口2から
第1の反応ガスとしてシランガス3を基板9上に供給し
、また第2の反応ガスとして酸素原子を含むガス4をマ
イクロ波プラズマ放電管5に供給することにより生威さ
れる活性種、即ち活性化酸素8が活性種供給口7から基
板9上に導入され、活性化酸素8とシランガス3が基板
近傍の空間で化学気相反応を起こし、前駆体I3を形威
し、この前駆体13が基板9表面で反応を起こしてシリ
コン酸化膜の形成を行なうのであるが、第2図に示すよ
うに、反応室内に供給された活性化酸素8のうち基板9
外周部に拡散するものは多孔金属板17の金属面との衝
突によりエネルギーを失い、基底状態の失活酸素18と
なって多孔を通過する。また基板9上で形威された前駆
体13のうち基板9外周部に拡散するものは多孔金属板
17と接触し、多孔金属板17がヒータ近傍にあり、比
較的基板温度に近いために薄膜となって多孔金属板17
に蒸着する。即ち、基板9での薄膜形戒反応に関与しな
い基板外周部に拡散する前駆体13は膜となって多孔金
属板17にトラッブされる。
このような構威においては、上述のように活性化酸素8
のうち基板9外周部に拡散しようとするものは多孔金属
板17の金属面との衝突によりエネルギーを失い、失活
酸素18となって多孔を通過するので、基板9を囲む多
孔金属板l7より外側の部分では前駆体形戒反応に必要
な活性化酸素8の存在確率が極めて低くなり、このため
、生戒される前駆体13も微量となり、従来、比較的室
温に近い低温の反応室壁に前駆体13が付着することに
よって生じていた微細粒子状反応生戒物14の発生量を
低減できる。また上記構戒においては前駆体形戒反応に
伴うケξカルルミネッセンスの発生は基板面上に限られ
るために、膜形戒速度と強い相関関係にあるルミネッセ
ンス強度を多孔基板板13の多孔を通して反応室壁に設
けた計測用窓19から精度よく計測することができる。
のうち基板9外周部に拡散しようとするものは多孔金属
板17の金属面との衝突によりエネルギーを失い、失活
酸素18となって多孔を通過するので、基板9を囲む多
孔金属板l7より外側の部分では前駆体形戒反応に必要
な活性化酸素8の存在確率が極めて低くなり、このため
、生戒される前駆体13も微量となり、従来、比較的室
温に近い低温の反応室壁に前駆体13が付着することに
よって生じていた微細粒子状反応生戒物14の発生量を
低減できる。また上記構戒においては前駆体形戒反応に
伴うケξカルルミネッセンスの発生は基板面上に限られ
るために、膜形戒速度と強い相関関係にあるルミネッセ
ンス強度を多孔基板板13の多孔を通して反応室壁に設
けた計測用窓19から精度よく計測することができる。
なお、上記実施例では多孔金属板17は1重に基板9と
活性種供給口7及び反応ガス供給口2を囲むように設け
たが、これは本発明の第2の実施例として第3図に示す
ように、多孔金属板17を2つ設り、2重に基板9と活
性種供給口7及び反応ガス供給口2を囲むように設けて
も良い。この場合、第4図に示すように多孔金属板17
aと17bの多孔位置を交互に段違いとなるようにすれ
ば、活性種8及び前駆体13の多孔金属板17との接触
確率が高くなるため、微細粒子状反応生戒物の発生はさ
らに低減され、低発塵化の効果は高まる。
活性種供給口7及び反応ガス供給口2を囲むように設け
たが、これは本発明の第2の実施例として第3図に示す
ように、多孔金属板17を2つ設り、2重に基板9と活
性種供給口7及び反応ガス供給口2を囲むように設けて
も良い。この場合、第4図に示すように多孔金属板17
aと17bの多孔位置を交互に段違いとなるようにすれ
ば、活性種8及び前駆体13の多孔金属板17との接触
確率が高くなるため、微細粒子状反応生戒物の発生はさ
らに低減され、低発塵化の効果は高まる。
また、これまでに説明した実施例では多孔金属板l7は
基板9と活性種供給口7及び反応ガス供給口2を囲むよ
うに設けたが、これはさらに本発明の第3の実施例とし
て第5図に示すように多孔金属板13は基板9と活性種
供給口7だけを取り囲むように設けてもよい。この場合
、第6図に示すように第1の反応ガス分子3は多孔金属
板l3の外側より多孔を通って基板面上に供給される。
基板9と活性種供給口7及び反応ガス供給口2を囲むよ
うに設けたが、これはさらに本発明の第3の実施例とし
て第5図に示すように多孔金属板13は基板9と活性種
供給口7だけを取り囲むように設けてもよい。この場合
、第6図に示すように第1の反応ガス分子3は多孔金属
板l3の外側より多孔を通って基板面上に供給される。
以上のようにこの発明によれば、基板を収容し上記基板
を保持し加熱するヒータ,第1の反応ガ9 10 スを供給する反応ガス供給口,及び第2の反応ガスを励
起することにより生成される活性種を供給する活性種供
給口を有する反応室とを備え、上記基板上に第1の反応
ガスと活性種の反応により薄膜を形成するものにおいて
、活性種供給口とヒータ間に基板と活性種供給口を囲む
ように、小孔を多数有する金属多孔板を基板に近接して
設けるようにしたので、前駆体形成反応が基板面上に限
定され、なおかつ前駆体の基板外周部.反応室内壁への
拡散が防止されるために、発塵の原因となる微細粒子状
反応生戊物が発生することなく、薄膜形戒反応が進行す
る低発塵プロセスが得られる効果がある。また、基板面
上でのみケごカルルミネッセンスが生じるために、高精
度インシチュモニタリングが可能となる効果がある。
を保持し加熱するヒータ,第1の反応ガ9 10 スを供給する反応ガス供給口,及び第2の反応ガスを励
起することにより生成される活性種を供給する活性種供
給口を有する反応室とを備え、上記基板上に第1の反応
ガスと活性種の反応により薄膜を形成するものにおいて
、活性種供給口とヒータ間に基板と活性種供給口を囲む
ように、小孔を多数有する金属多孔板を基板に近接して
設けるようにしたので、前駆体形成反応が基板面上に限
定され、なおかつ前駆体の基板外周部.反応室内壁への
拡散が防止されるために、発塵の原因となる微細粒子状
反応生戊物が発生することなく、薄膜形戒反応が進行す
る低発塵プロセスが得られる効果がある。また、基板面
上でのみケごカルルミネッセンスが生じるために、高精
度インシチュモニタリングが可能となる効果がある。
第l図はこの発明の第1の実施例による薄膜形威装置の
内部を示す断面構威図、第2図は第1図における反応室
内部を示す断面構戒図、第3図はこの発明の第2の実施
例による薄膜形戒装置の内部を示す断面構或図、第4図
は第3図における反応室内部を示す断面構威図、第5図
はさらにこの発明の第3の実施例による薄膜形成装置の
内部を示す断面構或図、第6図は第5図における反応室
内部を示す断面構或図、第7図は従来の薄膜形戒装置を
示す図、第8図は第7図における反応室内部を示す断面
構或図である。 図において、1は反応室、2は反応ガス供給口、3は第
lの反応ガス、4は第2の反応ガス、5吐マイクロ波プ
ラズマ放電管、6はマイクロ波エネルギー、7は活性種
供給口、8は活性種、9は基板、lOはヒータ、11は
ガス排気孔、12は反応後のガス、l3は前駆体、15
は光ファイバー16は分光光度計、17は多孔金属板、
18は失活酸素、19は計測用窓である。 なお図中同一符号は同一又は相当部分を示す。
内部を示す断面構威図、第2図は第1図における反応室
内部を示す断面構戒図、第3図はこの発明の第2の実施
例による薄膜形戒装置の内部を示す断面構或図、第4図
は第3図における反応室内部を示す断面構威図、第5図
はさらにこの発明の第3の実施例による薄膜形成装置の
内部を示す断面構或図、第6図は第5図における反応室
内部を示す断面構或図、第7図は従来の薄膜形戒装置を
示す図、第8図は第7図における反応室内部を示す断面
構或図である。 図において、1は反応室、2は反応ガス供給口、3は第
lの反応ガス、4は第2の反応ガス、5吐マイクロ波プ
ラズマ放電管、6はマイクロ波エネルギー、7は活性種
供給口、8は活性種、9は基板、lOはヒータ、11は
ガス排気孔、12は反応後のガス、l3は前駆体、15
は光ファイバー16は分光光度計、17は多孔金属板、
18は失活酸素、19は計測用窓である。 なお図中同一符号は同一又は相当部分を示す。
Claims (1)
- (1) 基板を収容し、上記基板を保持し加熱するヒー
タと、 第1の反応ガスを供給する反応ガス供給口と、第2の反
応ガスを励起することにより生成される活性種を供給す
る活性種供給口とを有する反応室を備え、 上記第1の反応ガスと上記活性種の反応により上記基板
上に薄膜を形成する薄膜形成装置において、 上記活性種供給口と上記ヒータとの間に、少なくとも上
記基板と上記活性種供給口を取り囲むように、小孔を多
数有する多孔金属板を設けたことを特徴とする薄膜形成
装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1229951A JPH0394069A (ja) | 1989-09-05 | 1989-09-05 | 薄膜形成装置 |
US07/542,148 US5192370A (en) | 1989-09-05 | 1990-06-22 | Method and apparatus for forming thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1229951A JPH0394069A (ja) | 1989-09-05 | 1989-09-05 | 薄膜形成装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0394069A true JPH0394069A (ja) | 1991-04-18 |
Family
ID=16900271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1229951A Pending JPH0394069A (ja) | 1989-09-05 | 1989-09-05 | 薄膜形成装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US5192370A (ja) |
JP (1) | JPH0394069A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005220424A (ja) * | 2004-02-06 | 2005-08-18 | Mitsubishi Heavy Ind Ltd | 製膜カバーおよび真空処理装置 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4301188C2 (de) * | 1993-01-19 | 2001-05-31 | Leybold Ag | Vorrichtung zum Beschichten oder Ätzen von Substraten |
JP3419045B2 (ja) * | 1993-10-20 | 2003-06-23 | 松下電器産業株式会社 | 磁気記録媒体の製造方法 |
US5628829A (en) | 1994-06-03 | 1997-05-13 | Materials Research Corporation | Method and apparatus for low temperature deposition of CVD and PECVD films |
US5975912A (en) | 1994-06-03 | 1999-11-02 | Materials Research Corporation | Low temperature plasma-enhanced formation of integrated circuits |
US5665640A (en) | 1994-06-03 | 1997-09-09 | Sony Corporation | Method for producing titanium-containing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor |
US5558717A (en) * | 1994-11-30 | 1996-09-24 | Applied Materials | CVD Processing chamber |
KR0152324B1 (ko) * | 1994-12-06 | 1998-12-01 | 양승택 | 웨이퍼 측면파지 이송 반도체 제조장치 |
US5610106A (en) * | 1995-03-10 | 1997-03-11 | Sony Corporation | Plasma enhanced chemical vapor deposition of titanium nitride using ammonia |
US5772771A (en) * | 1995-12-13 | 1998-06-30 | Applied Materials, Inc. | Deposition chamber for improved deposition thickness uniformity |
US6902683B1 (en) * | 1996-03-01 | 2005-06-07 | Hitachi, Ltd. | Plasma processing apparatus and plasma processing method |
US5735960A (en) * | 1996-04-02 | 1998-04-07 | Micron Technology, Inc. | Apparatus and method to increase gas residence time in a reactor |
EP0958401B1 (en) | 1996-06-28 | 2004-09-08 | Lam Research Corporation | Apparatus and method for high density plasma chemical vapor deposition or etching |
US6013155A (en) * | 1996-06-28 | 2000-01-11 | Lam Research Corporation | Gas injection system for plasma processing |
US5976623A (en) * | 1996-12-03 | 1999-11-02 | Lucent Technologies Inc. | Process for making composite films |
US6184158B1 (en) | 1996-12-23 | 2001-02-06 | Lam Research Corporation | Inductively coupled plasma CVD |
US6042687A (en) * | 1997-06-30 | 2000-03-28 | Lam Research Corporation | Method and apparatus for improving etch and deposition uniformity in plasma semiconductor processing |
JPH11135443A (ja) * | 1997-10-31 | 1999-05-21 | Canon Inc | 堆積膜の形成装置及び形成方法 |
US6120605A (en) * | 1998-02-05 | 2000-09-19 | Asm Japan K.K. | Semiconductor processing system |
KR100406173B1 (ko) * | 2000-06-13 | 2003-11-19 | 주식회사 하이닉스반도체 | 촉매 분사 수단을 구비한 히터 블록 |
US20030092278A1 (en) * | 2001-11-13 | 2003-05-15 | Fink Steven T. | Plasma baffle assembly |
TW589396B (en) * | 2003-01-07 | 2004-06-01 | Arima Optoelectronics Corp | Chemical vapor deposition reactor |
GB2415707A (en) * | 2004-06-30 | 2006-01-04 | Arima Optoelectronic | Vertical hydride vapour phase epitaxy deposition using a homogenising diaphragm |
US7691203B2 (en) * | 2006-01-27 | 2010-04-06 | Air Water Inc. | Film forming apparatus |
US20070281105A1 (en) * | 2006-06-02 | 2007-12-06 | Nima Mokhlesi | Atomic Layer Deposition of Oxides Using Krypton as an Ion Generating Feeding Gas |
US20070277735A1 (en) * | 2006-06-02 | 2007-12-06 | Nima Mokhlesi | Systems for Atomic Layer Deposition of Oxides Using Krypton as an Ion Generating Feeding Gas |
US20070281082A1 (en) * | 2006-06-02 | 2007-12-06 | Nima Mokhlesi | Flash Heating in Atomic Layer Deposition |
US20100024732A1 (en) * | 2006-06-02 | 2010-02-04 | Nima Mokhlesi | Systems for Flash Heating in Atomic Layer Deposition |
KR100849929B1 (ko) * | 2006-09-16 | 2008-08-26 | 주식회사 피에조닉스 | 반응 기체의 분사 속도를 적극적으로 조절하는 샤워헤드를구비한 화학기상 증착 방법 및 장치 |
JP5109376B2 (ja) | 2007-01-22 | 2012-12-26 | 東京エレクトロン株式会社 | 加熱装置、加熱方法及び記憶媒体 |
WO2008143088A1 (ja) * | 2007-05-18 | 2008-11-27 | Ulvac, Inc. | プラズマ処理装置及び防着部材の製造方法 |
JP5424744B2 (ja) * | 2009-07-01 | 2014-02-26 | 株式会社フェローテック | 分割環状リブ型プラズマ処理装置 |
CN102732860B (zh) * | 2011-04-14 | 2015-01-14 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 反应腔及具有其的化学气相沉积设备 |
US9695510B2 (en) * | 2011-04-21 | 2017-07-04 | Kurt J. Lesker Company | Atomic layer deposition apparatus and process |
US9982346B2 (en) | 2011-08-31 | 2018-05-29 | Alta Devices, Inc. | Movable liner assembly for a deposition zone in a CVD reactor |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5827656B2 (ja) * | 1976-11-17 | 1983-06-10 | 株式会社東芝 | プラズマcvd装置 |
JPS59193265A (ja) * | 1983-03-14 | 1984-11-01 | Stanley Electric Co Ltd | プラズマcvd装置 |
JPS59207620A (ja) * | 1983-05-10 | 1984-11-24 | Zenko Hirose | アモルフアスシリコン成膜装置 |
JPH0666268B2 (ja) * | 1986-06-18 | 1994-08-24 | 日本電気株式会社 | マイクロ波プラズマcvd装置 |
JPS63258017A (ja) * | 1987-04-15 | 1988-10-25 | Mitsubishi Electric Corp | 半導体製造装置 |
JP2701363B2 (ja) * | 1988-09-12 | 1998-01-21 | 三菱電機株式会社 | 半導体装置の製造方法及びそれに使用する薄膜形成装置 |
-
1989
- 1989-09-05 JP JP1229951A patent/JPH0394069A/ja active Pending
-
1990
- 1990-06-22 US US07/542,148 patent/US5192370A/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005220424A (ja) * | 2004-02-06 | 2005-08-18 | Mitsubishi Heavy Ind Ltd | 製膜カバーおよび真空処理装置 |
Also Published As
Publication number | Publication date |
---|---|
US5192370A (en) | 1993-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0394069A (ja) | 薄膜形成装置 | |
US5010842A (en) | Apparatus for forming thin film | |
JPH03146674A (ja) | 拡散プラズマによって補助された化学処理装置 | |
JP4933894B2 (ja) | 気化器モジュール | |
JPH02234419A (ja) | プラズマ電極 | |
JPH0645886B2 (ja) | 堆積膜形成法 | |
JP2990551B2 (ja) | 成膜処理装置 | |
US4844945A (en) | Process for producing patterns in dielectric layers formed by plasma enhanced chemical vapor deposition (PECVD) | |
JP3112520B2 (ja) | 光cvd装置 | |
JPH031531A (ja) | 半導体製造装置 | |
JPH0645885B2 (ja) | 堆積膜形成法 | |
JPH0797690A (ja) | プラズマcvd装置 | |
JPH0382768A (ja) | 金属酸化薄膜形成方法およびその装置 | |
JPH0341722A (ja) | 薄膜製造装置 | |
JP4074213B2 (ja) | 基板の処理方法及び基板の処理装置 | |
JPH03250626A (ja) | 薄膜形成方法 | |
JPS6338581A (ja) | 機能性堆積膜形成装置 | |
JPS62149881A (ja) | 堆積膜形成装置 | |
JPH0356046Y2 (ja) | ||
JPH0661152A (ja) | 水銀増感型光cvd装置 | |
JPH03241823A (ja) | 気相反応装置 | |
CN118318290A (zh) | 针对沉积腔室和蚀刻腔室的上游工艺监测 | |
JP2005108988A (ja) | 半導体製造装置 | |
JPH0598447A (ja) | 光cvd装置 | |
JPS62142777A (ja) | 堆積膜形成法 |