[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0394814A - Deodorizing method with photocatalyst - Google Patents

Deodorizing method with photocatalyst

Info

Publication number
JPH0394814A
JPH0394814A JP1228520A JP22852089A JPH0394814A JP H0394814 A JPH0394814 A JP H0394814A JP 1228520 A JP1228520 A JP 1228520A JP 22852089 A JP22852089 A JP 22852089A JP H0394814 A JPH0394814 A JP H0394814A
Authority
JP
Japan
Prior art keywords
photocatalyst
gas
catalyst
corrugated
malodor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1228520A
Other languages
Japanese (ja)
Other versions
JPH07114925B2 (en
Inventor
Shuzo Tokumitsu
修三 徳満
Tomoko Ikeda
知子 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1228520A priority Critical patent/JPH07114925B2/en
Publication of JPH0394814A publication Critical patent/JPH0394814A/en
Publication of JPH07114925B2 publication Critical patent/JPH07114925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To allow the decomposition reaction of a malodor with a photo- catalyst to proceed efficiently by corrugating the photocatalyst supporting a semiconductor, introducing gas contg. the malodor and irradiating the photocatalyst with UV. CONSTITUTION:Alumina-silica ceramic paper is corrugated at a specified height of corrugation and a specified pitch and a titania sol is impregnated into the corrugated paper, dried and heat-treated to support titanium oxide. The resulting photocatalyst 1 is set on the bottom of a reactor and air contg. a malodor is discharged from a cylinder. A UV lamp 3 is then lighted to irradiate the photocatalyst with UV. Since the photocatalyst is corrugated, a turbulent flow is generated to increase the efficiency of contact of the photocatalyst with the gas and the amt. of the photocatalyst irradiated with UV is increased even in a narrow space.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、家庭やオフィス内の悪臭(調理臭・食品臭・
たばこ臭・体臭・ペットおよびトイレの臭いなど)の脱
臭のため用いられている光触媒による脱臭方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is useful for eliminating bad odors (cooking odors, food odors, etc.) in homes and offices.
This invention relates to a deodorizing method using a photocatalyst, which is used to deodorize tobacco odors, body odors, pet and toilet odors, etc.

従来の技術 家庭やオフィス内で発生する悪臭(調理臭・食品臭・た
ばこ臭・ベットおよびトイレ臭など)の成分は、窒素化
合物(アンモニア・アミン類・インドール・スカトール
など)、硫黄化合物(硫化水素・メチルメルカブタン・
硫化メチル・二硫化メチル・二硫化ジメチル等)、アル
デヒド類(ホルムアルデヒド・アセトアルデヒドなど〉
、ケトン類(アセトンなど)、アルコール類(メタノー
ル・エタノールなど)、脂肪酸および芳香族化合物など
、多種多様である。
Conventional technology The components of bad odors (cooking odor, food odor, tobacco odor, bed and toilet odor, etc.) that occur in homes and offices are nitrogen compounds (ammonia, amines, indole, skatole, etc.) and sulfur compounds (hydrogen sulfide).・Methylmercabutane・
methyl sulfide, methyl disulfide, dimethyl disulfide, etc.), aldehydes (formaldehyde, acetaldehyde, etc.)
, ketones (acetone, etc.), alcohols (methanol, ethanol, etc.), fatty acids, and aromatic compounds.

従来、このような悪臭を脱臭する方法として、悪臭物質
と薬剤とを科学反応させる方法、芳香剤で悪臭物質をマ
スキングする方法、活性炭やゼオライトなどで悪臭物質
を吸着する方法および、これらの方法を組み合わせて用
いる方法があった。
Conventionally, methods for deodorizing such bad odors include a method of causing a chemical reaction between a malodorous substance and a drug, a method of masking the malodorous substance with an air freshener, a method of adsorbing the malodorous substance with activated carbon or zeolite, etc. There are ways to use them in combination.

しかし、これらの方法は脱臭能力が低下したり材料を使
い切ったりすると新しいものと交換する必要があった。
However, with these methods, when the deodorizing ability deteriorates or the material is used up, it is necessary to replace it with a new one.

特に、脱臭性能が尽きても外観的に変化のない吸着剤や
脱臭剤では、脱臭性能の低下を使用者が感じたときに交
換の時期に達したとして交換するものであったが、いず
れにしてもこの交換作業は煩わしいものであった。
In particular, with respect to adsorbents and deodorizers that do not change in appearance even when their deodorizing performance is exhausted, users would replace them when they felt that their deodorizing performance had deteriorated, indicating that it was time to replace them. However, this replacement work was troublesome.

そこで従来から光触媒作用を使用して脱臭しようという
試みがなされている。これは酸化チタン等の半導体に紫
外線を照射し、これによって励起された半導体を利用し
て有機物を酸化分解するもので、活性炭では脱臭しにく
いアルデヒド類を初めとしてあらゆる悪奥の分解に利用
されている。
Therefore, attempts have been made to deodorize using photocatalytic action. This method irradiates semiconductors such as titanium oxide with ultraviolet rays, and uses the semiconductors excited by this to oxidize and decompose organic substances.It is used to decompose all kinds of evil substances, including aldehydes, which are difficult to deodorize with activated carbon. There is.

発明が解決しよ・うとする課題 前記した光触媒の性能を決定づける要因として、紫外線
強度・触媒量・ガスと触媒の接触効串などがある。そこ
で触媒量を増したり、悪臭と触媒との接触効甲を上げる
目的で案内フィンを設ζ』ることか行われても′1る。
Problems to be Solved by the Invention Factors that determine the performance of the photocatalyst described above include the intensity of ultraviolet rays, the amount of catalyst, and the contact effect between gas and catalyst. Therefore, the amount of catalyst may be increased, or guide fins may be installed in order to increase the effectiveness of contact between the foul odor and the catalyst.

しかしこのような従来の方法は,案内フィンによって紫
外線が遮られ、紫外線の弱い所や影の所ができ、返一)
で反応が進上なかー)たり、逆に奥いのある中間生成物
が生じ、脱臭速度を141めることが困難であるという
課題を存ずるものであった。
However, with this conventional method, the guide fins block the ultraviolet rays, creating areas where the ultraviolet rays are weak or in shadows.
The problem is that the reaction does not progress or, conversely, deep intermediate products are produced, making it difficult to increase the deodorization rate.

本発明は、前記従来の;1!題を解決するちのであって
、光触媒作用による悪臭の分解反応を効率的に進ませる
ここができる光触媒による脱臭方法キ提供することを目
的と゛4るちのである。
The present invention improves the above-mentioned conventional features; 1! The purpose of this invention is to provide a photocatalytic deodorizing method that can efficiently proceed with the photocatalytic decomposition reaction of malodors.

課題を解決するためのF段 Ail記目的を達成するために、本発明は、半導体を担
持した波板状の触媒と獣臭を含む気体のa在下で、.前
記触媒に紫外線を照射する光触媒1、よる脱臭方法とす
るものである,, 作  用 触媒の形状を波板状にし7たことで、触媒表[む1で乱
流が起こりガスとの接触効率があがるうえ、狭い空間で
あっても紫外線の当たる触媒量が増え、かつ紫外線が照
射される触媒量を増加させる、二,L′ができる。
In order to achieve the object described in step F for solving the problems, the present invention provides a process in which a corrugated plate-shaped catalyst supporting a semiconductor and a gas containing animal odor are present. This is a deodorizing method using a photocatalyst 1 in which the catalyst is irradiated with ultraviolet rays.By making the shape of the catalyst into a corrugated plate, turbulent flow occurs on the catalyst surface, which increases the contact efficiency with the gas. In addition, the amount of catalyst exposed to ultraviolet rays increases even in a narrow space, and the amount of catalyst irradiated with ultraviolet rays increases.

実施例 以下、第1図・第2図・第3図を用いて本発明の実施例
について説明する。
Embodiments Hereinafter, embodiments of the present invention will be described using FIGS. 1, 2, and 3.

第1図は、酸化チタンを川持した波仮状の光触媒の斜視
図である。この構成は、厚さ0. 5mmの−i′ルミ
ヲーシリ力質のセラミックベーバを、波の高さ4mm、
ピッチ約71に成型し、ヂタ!.〆ゾルを含浸し,、乾
燥した後、温度400℃〜70o℃で熱処理して酸化チ
タンを担持させたものである。なお本実施例においては
、酸化ヂタンの担持量は杓400g/dとした。第2図
は、尤触媒反応のr)ンバスでの分解率を測定する流通
式測定装置を示し゛rいる,、2はスデンレスで構成し
た反3: Hで、底面に幅30. 5+++m、長さ1
20tlImの光触媒2a4・セットし、この対面には
石英板の窓2k)を設{Jている。窓21)の真I二に
は紫外線月3を設けている。2c・2dは邪魔板であっ
て、共にF方に5mmの隙間をイfしてし1る。4は悪
臭ガスの入ったボンへ、5は空俄の入ったボンベである
.,6a・6bはそれぞれボ〉へから吐出されるガスの
JE力4一調節4″るレギュレータ、7a・7hは流噴
調節器、8は2種類のガスを均一にず昆合するための混
合器である。
FIG. 1 is a perspective view of a wave-shaped photocatalyst in which titanium oxide is suspended. This configuration has a thickness of 0. A 5 mm -i'lumiwosiri ceramic beaver with a wave height of 4 mm,
Molded to a pitch of about 71, it looks great! .. After being impregnated with a final sol and dried, it is heat-treated at a temperature of 400°C to 70°C to support titanium oxide. In this example, the amount of supported titane oxide was 400 g/d. Figure 2 shows a flow measuring device for measuring the decomposition rate in a catalytic reaction bath. 5+++m, length 1
A photocatalyst 2a4 of 20tlIm was set, and a quartz plate window 2k) was installed on the opposite side. An ultraviolet light moon 3 is provided at the center of the window 21). 2c and 2d are baffle plates, and both have a gap of 5 mm in the F direction. 4 is a cylinder containing foul-smelling gas, and 5 is an empty cylinder. , 6a and 6b are regulators that adjust the JE force of the gas discharged from the bottom, 7a and 7h are flow jet regulators, and 8 is a mixer for mixing two types of gas without uniformity. It is a vessel.

9は、バイパス側と反応側を切り替える玉方コック、1
0はそれぞれの要素を結ぶ配管で、ガラく・フッソ樹脂
・ステン1ノ乙等で構成されている.,11・12・1
3はガスのサンプリング用のゴム栓である。なお紫外線
灯3には消費電力10b1の殺菌灯G I、 10を用
い、光触媒2a表向の紫外線強度が3.0mW (波長
250nmにおいて)になるようにセットし,た。また
ガスのトータル流量は2e./’ tn i nになる
ように流量調節器7a・7bを調節した。
9 is a Tamakata cock that switches between the bypass side and the reaction side; 1
0 is the piping that connects each element, and is made of glass, fluorine resin, stainless steel, etc. , 11・12・1
3 is a rubber stopper for gas sampling. A germicidal lamp GI, 10 with a power consumption of 10b1 was used as the ultraviolet lamp 3, and was set so that the intensity of the ultraviolet light on the surface of the photocatalyst 2a was 3.0 mW (at a wavelength of 250 nm). Also, the total flow rate of gas is 2e. The flow rate regulators 7a and 7b were adjusted so that /' tn i n.

次にこの流通式測定装置の操作方法を説明する。光触媒
2aを反応器2{Jセットし、三方−1ツク9をバイパ
ス側に開くように1,た後、ボンへ4・5を開け悪鷺ガ
スと空気を出し、流量調節器7;1・7bを適当に調節
してしばらくの間放置1−る。ガスの流れが安定した時
点で、ゴム桂↓1よりシリンジでガスをザンブリングし
、ガスク「】マトグラフィで分析し濃度の測定を行う。
Next, a method of operating this flow-type measuring device will be explained. After setting the photocatalyst 2a in the reactor 2{J, opening the three-way screw 9 to the bypass side, open the holes 4 and 5 to the bong to let out the Akasagi gas and air, and then the flow rate regulator 7; Adjust 7b appropriately and leave it for a while. Once the gas flow has stabilized, samble the gas with a syringe from Gomu Katsura ↓1, analyze it with Gask ``] matography, and measure the concentration.

肖び流量調節器7a・71)を調節して、混合ガスが設
定流量・設定濃度に安定した段階で、紫外線灯3を点灯
し光触媒2aに5分間紫外線を照射する。次に、三方コ
ック9を反応側に開くように切り替えて5分間放置1る
。その後人[]のゴム栓12、出〔Jのゴム栓13,よ
りそれぞれシリンジでガ7,発り・ンプリングし、ガス
夕日マトグラフィで濃度分析を10分間隔で120分間
行う。この人1」・出1−1のガス濃度を次式に代入し
て、光触媒2aによる悪臭ガスの分解率mを求める。
When the mixed gas stabilizes at the set flow rate and set concentration by adjusting the flow rate regulators 7a and 71), the ultraviolet lamp 3 is turned on and the photocatalyst 2a is irradiated with ultraviolet light for 5 minutes. Next, switch the three-way cock 9 to open to the reaction side and leave it for 5 minutes. Thereafter, the rubber stoppers 12 and 13 are injected and compressed using syringes, respectively, and concentration analysis is performed using gas sunset chromatography at 10-minute intervals for 120 minutes. By substituting the gas concentration of "This person 1" and output 1-1 into the following equation, the decomposition rate m of malodorous gas by the photocatalyst 2a is determined.

m= (1−b/a)XIOO 但し,m;分解率(%〉 a:入口悪臭ガス濃度 b=出口悪臭ガス濃度 なおこの分解率は、各時間の分解率が安定した時点での
平均分解率である。
m = (1-b/a) rate.

以下に、本実験例の波板状の光触媒と従来の平板状の光
触媒について分解率を比較測定した結果を示す。なお比
較のために用いた平板状の光触媒は、厚さ0.5mmの
アルミナーシリカ質のセラミックペーパーにチタニアゾ
ルを含浸した後、乾燥後約400℃〜700℃で熱処理
して、酸化チタンを約300g/J担持させたものであ
る。悪臭ガスとしては、15ppmのアセトアルデヒド
を使用した。この測定結果を第1表に示す。
Below, the results of comparing the decomposition rates of the corrugated photocatalyst of this experimental example and the conventional flat photocatalyst are shown. The flat photocatalyst used for comparison was made by impregnating a 0.5 mm thick alumina-silica ceramic paper with titania sol, drying it and then heat-treating it at about 400°C to 700°C to remove titanium oxide. 300g/J was loaded. As the malodorous gas, 15 ppm of acetaldehyde was used. The measurement results are shown in Table 1.

第  1  表 この結果から明らかなように、波板状の光触媒を使用す
ることによって、分解率を3割以上向上させることがで
きる。
Table 1 As is clear from the results, by using the corrugated photocatalyst, the decomposition rate can be improved by 30% or more.

次に第二の実験例について説明する。本実験例では、前
記第一の実験例で使用した酸化チタンの触媒に加えて、
酸化チタンと酸化タングステンの混合触媒を使用した。
Next, a second experimental example will be explained. In this experimental example, in addition to the titanium oxide catalyst used in the first experimental example,
A mixed catalyst of titanium oxide and tungsten oxide was used.

この混合触媒は、厚さ0.5mmのアルミナーシリカ質
のセラミックペーパーにチタニアゾルを含浸し乾燥した
後、約400℃〜700℃で熱処理し、その後メタタン
グステン酸アンモニウムを含浸して再び熱処理する等の
方法で、酸化チタンと酸化タングステンを担持させたも
のである。この場合、酸化チタンと酸化タングステンの
比率は重量比で85+15であり、担持量はトータルで
約600g/Jとした。なお本実施例においては、波の
高さは2mm、ピッチは3Iとした。比較のために用い
た従来品は前記第一の実験例と同様、平板状とした。ま
た、使用した触媒の大きさは、いずれも直径63mmと
した。 以上の条件で以下の手順で実験を行った。先ず
酸化チタンと酸化タングステンの混合触媒を、第3図に
示すステンレスの台27に載せ、内容積36eのアルミ
ニウム製の反応器22の中に、紫外線灯23からの距離
が100mmとなるように調節する。紫外線灯23には
IOWの殺菌灯を用い、このときの波長250nmでの
紫外線強度は1..6beW/cJであった。この反応
器22の中に、アセトアルデヒドの飽和ガスをサンプリ
ングロ24より注入し、ファン25で撹拌して濃度を均
一にし、ガスクロマトグラフのピーク面積が10000
0(アセトアルデヒド濃度で70ppmに相当する)を
示した瞬間から30分間の平均での1分間当たりの分解
率を触媒の分解性能とした。次に酸化チタン触媒につい
て、硫化水素の分解性能を測定した。この場合、紫外線
灯23としては100Wの殺菌灯を用い、触媒26はこ
の紫外線灯23から1001の距離に置いた。このとき
波長250nmでの紫外線強度は17mW/cnfであ
った。硫化水素の初期濃度は70ppmよりやや高めに
調整し、前紀アセチアルデヒドの場合と同様にしてガス
クロマトグラフィを使用して分解性能を求めた。硫化水
素の分解性能は、濃度70ppmを示した瞬間から30
分間の平均での1分間当たりの分解率とした。
This mixed catalyst is prepared by impregnating an alumina-siliceous ceramic paper with a thickness of 0.5 mm with titania sol, drying it, heat-treating it at about 400°C to 700°C, and then impregnating it with ammonium metatungstate and heat-treating it again. This method supports titanium oxide and tungsten oxide. In this case, the ratio of titanium oxide to tungsten oxide was 85+15 by weight, and the total amount supported was about 600 g/J. In this example, the wave height was 2 mm and the pitch was 3I. The conventional product used for comparison was in the form of a flat plate, similar to the first experimental example. Further, the size of the catalyst used was 63 mm in diameter in all cases. An experiment was conducted under the above conditions and according to the following procedure. First, a mixed catalyst of titanium oxide and tungsten oxide was placed on a stainless steel stand 27 shown in FIG. do. An IOW germicidal lamp is used as the ultraviolet lamp 23, and the ultraviolet intensity at a wavelength of 250 nm is 1. .. It was 6beW/cJ. Acetaldehyde saturated gas is injected into the reactor 22 from the sampling chamber 24 and stirred with a fan 25 to make the concentration uniform, and the peak area of the gas chromatograph is 10,000.
The average decomposition rate per minute for 30 minutes from the moment when the acetaldehyde concentration showed 0 (corresponding to 70 ppm in acetaldehyde concentration) was defined as the decomposition performance of the catalyst. Next, the hydrogen sulfide decomposition performance of the titanium oxide catalyst was measured. In this case, a 100W germicidal lamp was used as the ultraviolet lamp 23, and the catalyst 26 was placed at a distance of 1001 from the ultraviolet lamp 23. At this time, the intensity of ultraviolet rays at a wavelength of 250 nm was 17 mW/cnf. The initial concentration of hydrogen sulfide was adjusted to be slightly higher than 70 ppm, and the decomposition performance was determined using gas chromatography in the same manner as in the case of acetialdehyde. The decomposition performance of hydrogen sulfide is 30% from the moment the concentration shows 70ppm.
The decomposition rate was expressed as the average decomposition rate per minute.

この結果を第2表に示す。The results are shown in Table 2.

第  2  表 注:AA アセトアルデヒド このようにアセトアルデヒドの分解性能においては3割
以上、硫化水素においては5vJ以上波板状の方が効率
が良い。
Table 2 Note: AA Acetaldehyde As shown above, the corrugated plate shape is more efficient in decomposing acetaldehyde by 30% or more, and more than 5 vJ in hydrogen sulfide.

発明の効果 以上の説明から明らかなように本発明の光触媒による脱
臭方法は、光触媒を波板状とすることにより、その面積
を増すことができ同時に悪臭気体との接触効率を高める
ことができ、光触媒作用による悪臭の分解反応を効率よ
・く進ませることができ、極めて有効な発明である。
Effects of the Invention As is clear from the above explanation, in the deodorizing method using a photocatalyst of the present invention, by making the photocatalyst into a corrugated plate shape, the area of the photocatalyst can be increased, and at the same time, the efficiency of contact with malodorous gases can be increased. It is an extremely effective invention that allows the decomposition reaction of bad odors to proceed efficiently through photocatalytic action.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の光触媒の実施例を示す斜視図、12
図は同分解性能を測定する流通式試験装置の概略図、第
3図は同バッチ式試験装置の断101図である。 1・2a・2G・・・光触媒、3・23・・・紫外線灯
FIG. 1 is a perspective view showing an example of the photocatalyst of the present invention, 12
The figure is a schematic diagram of a flow-type test device for measuring the decomposition performance, and FIG. 3 is a cross-sectional view of the same batch-type test device. 1.2a.2G...photocatalyst, 3.23...ultraviolet lamp.

Claims (1)

【特許請求の範囲】[Claims] 半導体を担持した波板状の触媒と悪臭を含む気体の存在
下で、前記触媒に紫外線を照射する光触媒による脱臭方
法。
A deodorizing method using a photocatalyst, in which the catalyst is irradiated with ultraviolet rays in the presence of a corrugated catalyst supporting a semiconductor and a gas containing a bad odor.
JP1228520A 1989-09-04 1989-09-04 Photocatalytic deodorization method Expired - Lifetime JPH07114925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228520A JPH07114925B2 (en) 1989-09-04 1989-09-04 Photocatalytic deodorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228520A JPH07114925B2 (en) 1989-09-04 1989-09-04 Photocatalytic deodorization method

Publications (2)

Publication Number Publication Date
JPH0394814A true JPH0394814A (en) 1991-04-19
JPH07114925B2 JPH07114925B2 (en) 1995-12-13

Family

ID=16877712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228520A Expired - Lifetime JPH07114925B2 (en) 1989-09-04 1989-09-04 Photocatalytic deodorization method

Country Status (1)

Country Link
JP (1) JPH07114925B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630679A1 (en) * 1992-11-10 1994-12-28 Toto Ltd. Air treating method using photocatalyst under interior illumination
WO1995028220A1 (en) * 1994-04-18 1995-10-26 Attia Yosry A Aerogel materials and system for the capture and separation of gases and vapors with aerogel materials
WO1996037281A1 (en) * 1995-05-26 1996-11-28 Minnesota Mining And Manufacturing Company Bench top uv-activated odor filtration device
US5593737A (en) * 1995-05-23 1997-01-14 United Technologies Corporation Photocatalytic semiconductor coating process
US5616532A (en) * 1990-12-14 1997-04-01 E. Heller & Company Photocatalyst-binder compositions
US5790934A (en) * 1996-10-25 1998-08-04 E. Heller & Company Apparatus for photocatalytic fluid purification
WO1998041482A1 (en) * 1997-03-14 1998-09-24 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning appliances
US5849200A (en) * 1993-10-26 1998-12-15 E. Heller & Company Photocatalyst-binder compositions
US5865959A (en) * 1995-05-23 1999-02-02 United Technologies Corporation Back-side illuminated organic pollutant removal system
US6054227A (en) * 1997-03-14 2000-04-25 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning appliances
EP0812619B1 (en) * 1996-06-12 2003-11-26 Eastman Kodak Company Inorganic transparent photocatalytic composition
EP1375444A1 (en) * 1997-03-14 2004-01-02 PPG Industries Ohio, Inc. Photocatalytically-activated self-cleaning appliances

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159030A (en) * 1987-12-17 1989-06-22 Matsushita Electric Ind Co Ltd Deodorization by photocatalyst and deodorizing apparatus
JPH01189321A (en) * 1988-01-22 1989-07-28 Hitachi Ltd Deodorizer for refrigerator
JPH01189322A (en) * 1988-01-22 1989-07-28 Hitachi Ltd Deodorizing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159030A (en) * 1987-12-17 1989-06-22 Matsushita Electric Ind Co Ltd Deodorization by photocatalyst and deodorizing apparatus
JPH01189321A (en) * 1988-01-22 1989-07-28 Hitachi Ltd Deodorizer for refrigerator
JPH01189322A (en) * 1988-01-22 1989-07-28 Hitachi Ltd Deodorizing device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616532A (en) * 1990-12-14 1997-04-01 E. Heller & Company Photocatalyst-binder compositions
EP0630679A4 (en) * 1992-11-10 1997-07-16 Toto Ltd Air treating method using photocatalyst under interior illumination.
EP0630679A1 (en) * 1992-11-10 1994-12-28 Toto Ltd. Air treating method using photocatalyst under interior illumination
US6093676A (en) * 1993-10-26 2000-07-25 E. Heller & Company Photocatalyst-binder compositions
US5849200A (en) * 1993-10-26 1998-12-15 E. Heller & Company Photocatalyst-binder compositions
US5854169A (en) * 1993-10-26 1998-12-29 E. Heller & Company Photocatalyst-binder compositions
US6080281A (en) * 1994-04-18 2000-06-27 Attia; Yosry A. Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction
WO1995028220A1 (en) * 1994-04-18 1995-10-26 Attia Yosry A Aerogel materials and system for the capture and separation of gases and vapors with aerogel materials
US5593737A (en) * 1995-05-23 1997-01-14 United Technologies Corporation Photocatalytic semiconductor coating process
US5865959A (en) * 1995-05-23 1999-02-02 United Technologies Corporation Back-side illuminated organic pollutant removal system
WO1996037281A1 (en) * 1995-05-26 1996-11-28 Minnesota Mining And Manufacturing Company Bench top uv-activated odor filtration device
EP0812619B1 (en) * 1996-06-12 2003-11-26 Eastman Kodak Company Inorganic transparent photocatalytic composition
WO1998017390A3 (en) * 1996-10-25 1998-10-15 Heller E & Co Apparatus for photocatalytic fluid purification
US5790934A (en) * 1996-10-25 1998-08-04 E. Heller & Company Apparatus for photocatalytic fluid purification
US6054227A (en) * 1997-03-14 2000-04-25 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning appliances
WO1998041482A1 (en) * 1997-03-14 1998-09-24 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning appliances
EP1375444A1 (en) * 1997-03-14 2004-01-02 PPG Industries Ohio, Inc. Photocatalytically-activated self-cleaning appliances

Also Published As

Publication number Publication date
JPH07114925B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
Yu et al. The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds
Hager et al. Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide
Nozawa et al. Removal and decomposition of malodorants by using titanium dioxide photocatalyst supported on fiber activated carbon
JPH0394814A (en) Deodorizing method with photocatalyst
JPH0512967B2 (en)
JPH03106420A (en) Deodorizing method for photo-catalyst
JPH02280818A (en) Deodorizing by photocatalyst
JPH01232966A (en) Deodorizing method by photocatalyst
JPH03157125A (en) Deodorizing method with photocatalyst
Jonidi Jafari et al. Photocatalytic abatement of o‐xylene using adsorption enhanced ZnO/GAC catalyst in a continuous flow reactor: Catalytic potential
JPH01288322A (en) Deodorization by photocatalyst
JPH01293876A (en) Deodorizing apparatus by photocatalyst
JP2596665Y2 (en) Deodorizing and sterilizing equipment for toilets
JPH02169039A (en) Method for regenerating photocatalyst
CN106423138A (en) Method for supporting photocatalyst to surface aluminum alloy material
JPH0290924A (en) Deodorizing with photocatalyst
JPH02280817A (en) Deodorizing apparatus by photocatalyst
JP2004024472A (en) Deodorizer and deodorizing method
JPH02284629A (en) Method for regenerating photocatalyst and deodorizing device with photocatalyst
JPH02268835A (en) Regenerating photocatalyst
JPH01159579A (en) Deodorizer for refrigerator
Chemweno et al. Deactivation of titanium dioxide photocatalyst by oxidation of polydimethylsiloxane and silicon sealant off-gas in a recirculating batch reactor
JPH0631133A (en) Method for purifying air and air cleaner
JP2023124395A (en) Non-circulating deodorizing method of odorous gas and non-circulating deodorizing device
JPH08252562A (en) Treating device for crude dust

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 14