[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0391010A - Nc data generating method for working of cylinder material - Google Patents

Nc data generating method for working of cylinder material

Info

Publication number
JPH0391010A
JPH0391010A JP22749789A JP22749789A JPH0391010A JP H0391010 A JPH0391010 A JP H0391010A JP 22749789 A JP22749789 A JP 22749789A JP 22749789 A JP22749789 A JP 22749789A JP H0391010 A JPH0391010 A JP H0391010A
Authority
JP
Japan
Prior art keywords
machining
tool
working
workpiece
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22749789A
Other languages
Japanese (ja)
Inventor
Kunichika Fukuoka
福岡 邦親
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22749789A priority Critical patent/JPH0391010A/en
Publication of JPH0391010A publication Critical patent/JPH0391010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To eliminate a need of coordinate value calculation and projection calculation dependent upon manual work by adding the working order of a working object and an index to data from the expansion figure of a working object cylinder material and the working object different in working method respectively to generate tool operation data of each working. CONSTITUTION:The working order of the working object and an index are added to data from the expansion figure of a working object 11 and the working object different in working method respectively, and the working object different in working method is divided to three kinds of working as follows; the tool operation is defined as motion along the expansion figure and a tool 12 is operated on the projection shape in the X-axis direction to generate operation data at the time of moving only the tool 12 to perform working, and the tool operation is defined with one degree as one length unit to generate operation data at the time of rotating only the working object 11 to perform working, and the tool operation is defined with one degree as one length unit in the X-axis direction and is defined as motion along the expansion figure in the Y-axis direction to generate operation data at the time of simultaneously operating the tool 12 and the working object 11 to perform working. Thus, coordinate value calculation and projection calculation dependent upon manual work are unnecessary, and calculation error is reduced though the number of working objects is large.

Description

【発明の詳細な説明】 〔概 要〕 コンピュータ援用設計を利用し作成された円筒物の展開
図をもとにフライス加工を行うためのNCデータを作成
する円筒物加工用NCデータ作威力法に関し、 手作業による座標値の計算、投影計算を必要とせず、加
工対象が多い場合も計算誤りが少なくてすむようにする
ことを目的とし、 加工対象物の展開図からのデータに、加工対象の加工順
および加工方法の異なる加工対象にインデックスを付加
し、加工方法の異なる加工対象は工具のみ作動させる加
工、加工対象物のみが回転する加工、および工具および
加工対象物が同時に作動する加工に分け、工具のみ作動
させる加工の時は、工具動作は展開図形に沿った動きと
し、X軸方向は投影形状での作動として動作データを作
成し、加工対象物のみが回転する加工の時は工具動作を
1度/1長さ単位として動作データを作威し、工具およ
び加工対象物が同時に作動する加工の時は、X軸方向は
1度/1長さ単位として、Y軸方向は展開図形に添った
動きとし動作データを作成するように構成する。
[Detailed Description of the Invention] [Summary] This invention relates to an NC data creation method for cylindrical object machining that creates NC data for milling based on a development view of a cylindrical object created using computer-aided design. , with the aim of eliminating the need for manual coordinate value calculations and projection calculations and reducing calculation errors even when there are many objects to be machined. Indexes are added to workpieces with different processing orders and processing methods, and workpieces with different processing methods are divided into machining in which only the tool operates, machining in which only the workpiece rotates, and machining in which the tool and workpiece operate simultaneously. When machining only the tool is operated, the tool motion is set to move along the developed shape, and the motion data is created assuming that the X-axis direction is operated in the projected shape.When the machining is performed when only the workpiece rotates, the tool motion is The motion data is created in 1 degree/1 length unit, and when machining where the tool and workpiece operate simultaneously, the X-axis direction is set in 1 degree/1 length unit, and the Y-axis direction is set along the developed shape. The system is configured to create motion data based on the motions that occur.

〔産業上の利用分野〕[Industrial application field]

本発明は、コンピュータ援用設計(CAD)を利用し作
威された円筒物の展開図をもとにフライス加工を行うた
めのNC(数値制御〉データを作成する円筒物加工用N
Cデータ作成方法に関する。
The present invention is a cylindrical object processing machine that creates NC (numerical control) data for milling based on a development diagram of a cylindrical object created using computer-aided design (CAD).
This relates to a C data creation method.

〔従来の技術〕[Conventional technology]

従来、円筒物のフライス加工用NCデータを作成する場
合、CAD機能で作成された展開図をもとに、加工技術
者がNGデータパンチャーを利用して、手作業で作威し
ている。
Conventionally, when creating NC data for milling a cylindrical object, a processing engineer manually creates it using an NG data puncher based on a developed diagram created with a CAD function.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の従来技術によって手作業を行う場合、1つの加工
対象物に複数の加工対象があると、非常に入力数が多く
なる。また、NCデータが、各加工対象からの相対座標
で指定されるか、絶対座標で指定されるかなどによって
誤りも多く発生するという課題があった。
When performing manual work using the above-mentioned conventional technology, if one workpiece has a plurality of workpieces, the number of inputs becomes extremely large. Additionally, there is a problem in that many errors occur depending on whether the NC data is specified using relative coordinates or absolute coordinates from each processing object.

従って、本発明の目的は、手作業による座標値の計算、
投影計算を必要とせず、加工対象が多い場合も計算誤り
が少なくてすむようにすることにある。
Therefore, an object of the present invention is to manually calculate coordinate values,
The purpose is to eliminate the need for projection calculations and reduce calculation errors even when there are many objects to be processed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては、第1図に例示されるように、コンピ
ュータ援用設計を利用し作成された加工対象円筒物の展
開図をもとに、フライス加工を行うためのNCデータを
作成する円筒物加工用NCデータ作成方法であって、前
記展開図からのデータに、加工対象物の円筒軸方向であ
るY軸方向の図形サイズは原寸とし、展開図の加工対象
物の円筒形の円周方向であるX軸方向は全体を360単
位として1単位長さを1度とし、加工原点を展開図の中
心にとり、加工対象物の半径を与えた条件下で(S1)
、加工対象の加工順をインデックスとして付加し(S2
)、加工方法の異なる加工対象として、工具のみが作動
する加工、加工対象物のみが回転する加工、および工具
および加工対象物が同時に作動する加工に分けて各々イ
ンデックスを付加し(S3)、加工順の1つ以前の図形
に近い今回の図形要素の端点の位置を加工の開始点とし
、図形の逆の端点を加工停止位置とし、工具のみ作動さ
せる加工の時は、工具動作は展開図形に沿った動きとし
、X軸方向は投影形状での作動として動作データを作成
し(S4)、加工対象物のみが回転する加工の時は、工
具動作を1度/1長さ単位として動作データを作威し(
S5)、工具および加工対象物が同時に作動する加工の
時は、X軸方向は1度/1長さ単位として、Y軸方向は
展開図形に添った動きとし(S6)動作データを作成す
るようにした円筒物加工用NCデータ作成方法が提供さ
れる。
In the present invention, as illustrated in FIG. 1, cylindrical object processing involves creating NC data for milling based on a developed view of the cylindrical object to be machined created using computer-aided design. A method for creating NC data for use in the developed drawing, wherein the figure size in the Y-axis direction, which is the cylindrical axis direction of the workpiece, is the original size, and the figure size in the circumferential direction of the cylindrical shape of the workpiece in the developed view is In a certain X-axis direction, the entire unit is 360 units, 1 unit length is 1 degree, the machining origin is set at the center of the developed view, and the radius of the workpiece is given (S1)
, the processing order of the processing object is added as an index (S2
), indexes are added to machining targets with different machining methods for machining in which only the tool operates, machining in which only the workpiece rotates, and machining in which the tool and the workpiece operate simultaneously (S3). The position of the end point of the current figure element that is close to the previous figure in the sequence is the start point of machining, the opposite end point of the figure is the machining stop position, and when machining only the tool is operated, the tool movement is based on the developed figure. Create motion data for the motion along the X-axis, and for the projected shape in the X-axis direction (S4), and when machining only the workpiece rotates, create motion data with the tool motion in units of 1 degree/1 length. Author (
S5) When machining in which the tool and workpiece operate simultaneously, the X-axis direction is set to 1 degree/1 length unit, and the Y-axis direction is set to move along the developed figure (S6) to create motion data. A method of creating NC data for machining a cylindrical object is provided.

〔作 用〕[For production]

前述の方法を用いれば、CADを利用して作成された円
筒物の展開図と記入規則に従って作成された付加インデ
ックス等によって、手動作業によることなくNCフライ
ス盤を制御するデータの作成がコンピュータを用いて可
能トナル。
By using the method described above, data for controlling the NC milling machine can be created using a computer without manual work, using a development diagram of a cylindrical object created using CAD and additional indexes created according to entry rules. Possible tonal.

〔実施例〕 本発明の一実施例としての円筒物加工用NCデータ作成
方法の処理過程が第1図に示される。
[Example] FIG. 1 shows the processing steps of a method for creating NC data for machining a cylindrical object as an example of the present invention.

まず本発明が適用される加工対象物は第2図にその一例
が示される。すなわち円筒形状の物体11の側面に加工
がなされる。この円筒形状の加工対象物1■の側面部の
展開図が第3図に示される。この展開図は、加工対象物
の円筒軸の方向をY軸とし、円筒体の円周方向をX軸と
する。
First, an example of a workpiece to which the present invention is applied is shown in FIG. That is, the side surface of the cylindrical object 11 is processed. A developed view of the side surface of this cylindrical workpiece 1 is shown in FIG. In this developed view, the direction of the cylindrical axis of the workpiece is the Y axis, and the circumferential direction of the cylindrical body is the X axis.

第1図におけるNCデータ作成方法の処理過程S1から
36が説明される。これらの処理によりCADシステム
の下流にCAM(Computer Aided Ma
nu−f actur ing)システムを結合し手作
業の削減を図るものである。CADシステムで作成され
た展開図にCAMシステムの理解できる記号を付加し、
さらに、CAMシステム側で理解できる規則を設け、C
AMシステム側で特別な処理ができるようにする。
Processing steps S1 to 36 of the NC data creation method in FIG. 1 will be explained. Through these processes, CAM (Computer Aided Mathematics) is installed downstream of the CAD system.
The aim is to reduce manual labor by combining the Nu-F Acturing) system. Add understandable symbols of the CAM system to the development drawing created with the CAD system,
Furthermore, rules that can be understood by the CAM system are established, and C
Enable special processing on the AM system side.

まず、過程S1で記入規則が設定される。すなわち、 A、 (1)展開図のY軸方向の図形サイズは原寸とす
る。
First, in step S1, entry rules are set. That is, A. (1) The figure size in the Y-axis direction of the developed view is the original size.

(2)展開図のX軸方向は、360単位とする。(2) The X-axis direction of the developed view is 360 units.

(1度/1長さ単位) (3)加工原点を、展開図の中心とする。(1 degree/1 length unit) (3) Make the processing origin the center of the developed view.

付加記号としては、 B、 (1)加工対象物の半径を付加する。As an additional symbol, B. (1) Add the radius of the workpiece.

(2)加工対象の加工順をインデックスとして付加する
。(S2) (3)加工方法の異なる対象は、インデックスを付加す
る。(S3) (i)工具12のみ動く加工二K(第4図参照)(ii
)加工対象物のみが回転する加工:R(第5図参照) (iii )工具および加工対象物が同時に動く加工:
KR(第6図参照) 過程S3で分けられた加工方法に、R,KRに応じて過
程S4,35.S6を実行する。
(2) Add the processing order of the processing object as an index. (S2) (3) Add an index to objects with different processing methods. (S3) (i) Machining 2K in which only the tool 12 moves (see Figure 4) (ii
) Machining in which only the workpiece rotates: R (see Figure 5) (iii) Machining in which the tool and workpiece move simultaneously:
KR (see Fig. 6) Processes S4, 35, . Execute S6.

過程S4では、加工順およびにインデックスと展開図の
形状の入力より、加工順の1つ以前の図形に近い今回の
図形要素の端点の位置を加工の始点とする。そして、図
形の逆の端点を加工停止位置とする。この間の工具動作
を、図形に沿った動きとし動作データを作成する。X軸
方向の場合は投影形状での動きとする。(第7図参照)
過程S5では、加工順およびRインデックスと展開図の
形状の人力より、加工順の1つ以前の図形に近い今回の
図形要素の端点の位置を加工の始点とする。そして、図
形の逆の端点を加工停止位置とする。この間の工具動作
を、1度/(長さ単位、例えば1度であれば1単位とし
動作データを作成する。(第8図および第9図参照)過
程S6では、加工順およびKRインデックスと展開図の
形状の入力より、加工順の1つ以前の図形に近い今回の
図形要素の端点の位置を加工の始点とし、図形の逆の端
点を加工停止位置とする。
In step S4, based on the input of the machining order, the index, and the shape of the developed view, the position of the end point of the current graphic element that is close to the previous figure in the machining order is set as the starting point of machining. Then, the opposite end point of the figure is set as the machining stop position. The tool motion during this time is defined as a motion along the figure, and motion data is created. In the case of the X-axis direction, the movement is in the projected shape. (See Figure 7)
In step S5, the position of the end point of the current graphic element, which is close to the previous figure in the machining order, is set as the starting point of the machining, based on the manual input of the machining order, the R index, and the shape of the developed view. Then, the opposite end point of the figure is set as the machining stop position. The tool movement during this time is set to 1 degree/(length unit, for example, 1 degree is 1 unit) to create movement data. (See Figures 8 and 9) In step S6, the machining order and KR index are By inputting the shape of the figure, the position of the end point of the current graphic element that is close to the previous figure in the machining order is set as the start point of machining, and the opposite end point of the figure is set as the machining stop position.

この間の工具動作をX軸方向は、1度/1長さ単位、1
度であればl単位、として動作データを作成し、Y軸方
向は、図形に沿った動きとして(例えばm単位)動作デ
ータを作成する。(第10図、第11図参照) 以降の処理は通常のCAM処理と同じ<NC工作機用の
ポストプロセッシングを通しNCデータ化する。
During this time, the tool movement in the X-axis direction is 1 degree/1 length unit, 1
In the case of degrees, motion data is created in units of l, and in the Y-axis direction, motion data is created as movements along the figure (for example, in units of m). (See Figures 10 and 11) The subsequent processing is the same as normal CAM processing.The process is converted into NC data through post-processing for NC machine tools.

次に具体的な加工例について第12図を用いて説明する
。図中1・K・210および2.に、Z20はCAD付
加文字情報であって、左端の1および2は加工順を、K
は加エタイブ(この例では工具のみ動く加工)を、21
0および220はそれぞれ工具の加工深さが10mmお
よび20mmであることを示す。
Next, a specific processing example will be explained using FIG. 12. In the figure, 1.K.210 and 2. , Z20 is CAD additional character information, 1 and 2 on the left end indicate the processing order, and K
is the machining type (in this example, machining where only the tool moves), 21
0 and 220 indicate that the machining depth of the tool is 10 mm and 20 mm, respectively.

■および■は加工順1の加工における始点と終点の図形
位置を示し、■および■は加工順2の加工におけるそれ
ぞれ始点と終点の図形位置を示す。
■ and ■ indicate the graphic positions of the starting point and end point in machining of machining order 1, and ■ and ■ indicate the graphic positions of the starting point and end point, respectively, of machining of machining order 2.

この例の場合の出力(NC)データは下記の左側のよう
になり、右側にその内容を解説する。左端は単なるステ
ップ番号である。
The output (NC) data in this example is as shown on the left side below, and its contents are explained on the right side. The left end is just a step number.

(1)   X0YOZO・・・原点指定(2)   
X(DY■  ・・・図形位置のへの移動、X■は図形
情報より回転 角に変換 (3)   210     ・・・加工深さまで工具
を下げる (4〉X■Y■  ・・・図形位置■への移動(■−■
の間を加工) (5)   20     ・・・工具を上げる(6)
X■Y■  ・・・図形位置■への移動(7)   Z
20     ・・・加工深さまで工具を下げる (8)Y■    ・・・図形位置■への移動(9) 
  20     ・・・工具を上げる(10)   
X OY OZ O・・・原点へ戻る前述の加工例にお
けるプログラムの変換方式を説明する。く )内の番号
は前述のステップ番号に対応する。
(1) X0YOZO...Origin specification (2)
X (DY■ ...Move the figure position to, X■ is converted to rotation angle from the figure information (3) 210 ... Lower the tool to the machining depth (4〉X■Y■ ...Figure position■ Move to (■−■
Machining between) (5) 20 ... Raise the tool (6)
X■Y■ ...Move to figure position■ (7) Z
20 ... Lower the tool to the machining depth (8) Y ■ ... Move to the figure position ■ (9)
20 ... Raise the tool (10)
X OY OZ O...Return to origin The program conversion method in the above machining example will be explained. The numbers in ) correspond to the step numbers mentioned above.

(1)原点の指定情報を出力する。(1) Output the origin specification information.

(2)加工順の若い方の図形要素の端点の位置のうち原
点に近い位置(例の場合図形位置の)に工具を移動する
命令を出力する。
(2) Output a command to move the tool to a position closer to the origin (in the example, the position of the figure) among the end points of the figure elements that are younger in the machining order.

各図形要素の端点位置を調べ、X軸の動きは回転に変え
る。
Check the end point position of each graphic element, and change the movement on the X axis to rotation.

(3)付加文字情報からZの加工深さを読み取り、加工
位置まで工具を下げる命令を出力する。
(3) Read the Z machining depth from the additional character information and output a command to lower the tool to the machining position.

(4)図形の要素の別の端点(■)に工具を動かす命令
を出力する。
(4) Output a command to move the tool to another end point (■) of the graphic element.

別の端点位置は、(2)と同様CADの図形情報から読
み出す。
Another end point position is read from the CAD graphic information as in (2).

(5)工具をもとに戻す命令を出力しくZ=0)、1つ
の図形要素における加工を終了。
(5) Output a command to return the tool to its original position (Z=0) and finish machining on one graphic element.

(6)次の加工j@の若い図形要素の現在の位置に近い
端点へ工具を移動する命令を出力する。
(6) Output a command to move the tool to the end point near the current position of the young graphic element of the next machining j@.

(例の場合、図形位置■となる) (7)付加文字情報から、Zの加工深さを読み取り、加
工位置まで工具を下げる命令を出す。
(In the example, the figure position is ■) (7) Read the machining depth of Z from the additional character information and issue a command to lower the tool to the machining position.

(8)図形要素の別の端点に工具を動かす命令を出力す
る。
(8) Output a command to move the tool to another endpoint of the graphical element.

(9)工具をもとに戻す命令を出力する。(9) Output a command to return the tool to its original position.

(10)工具を原点に戻す命令を出力する。(10) Output a command to return the tool to the origin.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、円筒物加工におけるNCデータ作戒心
おいて、手作業による座標値の計算および投影計算を必
要とせず、加工対象が多い場合も計算誤りが少なくでき
る。
According to the present invention, it is not necessary to manually calculate coordinate values and projection calculations, and calculation errors can be reduced even when there are many objects to be processed, with consideration given to NC data in processing cylindrical objects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としての円筒物加工用NCC
データ作方方法処理過程を示す図、第2図は加工対象物
の一例を示す斜視図、第3図は第2図の加工対象物の展
開図、第4図は工具のみ動く加工を説明する図、第5図
は加工対象物のみが回転する加工を説明する図、 第6図は工具および加工対象物が同時に動く加工を説明
する図、 第7図はX軸方向の投影形状を説明する図、第8図は加
工対象物が回転する加工を説明する斜視図、 第9図は第8図の加工対象物の展開図、第10図は工具
および加工対象物が同時に動く加工を説明する斜視図、 第11図は第10図の加工対象物の展開図、および第1
2図は実施例を用いたー加工例の展開図である。 図において、 11・・・加工対象物、 12・・・工具、 31〜S6・・・実施例の処理過程、 である。
Figure 1 shows an NCC for processing cylindrical objects as an embodiment of the present invention.
Figure 2 is a perspective view showing an example of the workpiece to be processed, Figure 3 is a developed view of the workpiece in Figure 2, and Figure 4 explains processing in which only the tool moves. Figure 5 is a diagram explaining machining in which only the workpiece rotates, Figure 6 is a diagram explaining machining in which the tool and workpiece move simultaneously, and Figure 7 is a diagram explaining the projected shape in the X-axis direction. Figure 8 is a perspective view explaining machining in which the workpiece rotates, Figure 9 is a developed view of the workpiece in Figure 8, and Figure 10 explains machining in which the tool and workpiece move simultaneously. A perspective view, Figure 11 is a developed view of the workpiece in Figure 10, and
Figure 2 is a developed view of a processing example using the embodiment. In the figure, 11...workpiece, 12...tool, 31-S6...processing process of the example.

Claims (1)

【特許請求の範囲】 コンピュータ援用設計を利用し作成された加工対象円筒
物の展開図をもとに、フライス加工を行うためのNCデ
ータを作成する円筒物加工用NCデータ作成方法であっ
て、 前記展開図からのデータに、 加工対象物の円筒軸方向であるY軸方向の図形サイズは
原寸とし、展開図の加工対象物の円筒形の円周方向であ
るX軸方向は全体を360単位として1単位長さを1度
とし、加工原点を展開図の中心にとり、加工対象物の半
径を与えた条件下で(S1)、 加工対象の加工順をインデックスとして付加し(S2)
、 加工方法の異なる加工対象として、工具のみが作動する
加工、加工対象物のみが回転する加工、および工具およ
び加工対象物が同時に作動する加工に分けて各々インデ
ックスを付加し(S3)、加工順の1つ以前の図形に近
い今回の図形要素の端点の位置を加工の開始点とし、図
形の逆の端点を加工停止位置とし、 工具のみ作動させる加工の時は、工具動作は展開図形に
沿った動きとし、X軸方向は投影形状での作動として動
作データを作成し(S4)、加工対象物のみが回転する
加工の時は、工具動作を1度/1長さ単位として動作デ
ータを作成し(S5)、 工具および加工対象物が同時に作動する加工の時は、X
軸方向は1度/1長さ単位として、Y軸方向は展開図形
に添った動きとし(S6)動作データを作成するように
した円筒物加工用NCデータ作成方法。
[Scope of Claim] A method for creating NC data for machining a cylindrical object, which creates NC data for milling based on a development view of a cylindrical object to be machined created using computer-aided design, comprising: In the data from the developed view, the figure size in the Y-axis direction, which is the cylindrical axis direction of the workpiece, is the original size, and the entire figure size in the X-axis direction, which is the circumferential direction of the cylindrical shape of the workpiece in the developed view, is 360 units. Assuming that 1 unit length is 1 degree, the machining origin is set at the center of the developed diagram, and the radius of the workpiece is given (S1), the machining order of the workpiece is added as an index (S2).
, As machining targets with different machining methods, indexes are added to machining in which only the tool operates, machining in which only the workpiece rotates, and machining in which the tool and the workpiece operate simultaneously (S3), and the machining order is determined. The position of the end point of the current figure element, which is close to the previous figure, is the start point of machining, and the opposite end point of the figure is the machining stop position.When machining only the tool is operated, the tool movement is along the developed figure. In the X-axis direction, create motion data assuming that the tool moves in the projected shape (S4), and when machining only the workpiece rotates, create motion data with the tool motion in units of 1 degree/1 length. (S5), when machining in which the tool and workpiece operate simultaneously,
A method for creating NC data for machining a cylindrical object, in which motion data is created in units of 1 degree/1 length in the axial direction and in accordance with the developed figure in the Y-axis direction (S6).
JP22749789A 1989-09-04 1989-09-04 Nc data generating method for working of cylinder material Pending JPH0391010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22749789A JPH0391010A (en) 1989-09-04 1989-09-04 Nc data generating method for working of cylinder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22749789A JPH0391010A (en) 1989-09-04 1989-09-04 Nc data generating method for working of cylinder material

Publications (1)

Publication Number Publication Date
JPH0391010A true JPH0391010A (en) 1991-04-16

Family

ID=16861817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22749789A Pending JPH0391010A (en) 1989-09-04 1989-09-04 Nc data generating method for working of cylinder material

Country Status (1)

Country Link
JP (1) JPH0391010A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303404A (en) * 1987-06-03 1988-12-12 Toshiba Mach Co Ltd Numerical controller
JPS641005A (en) * 1987-02-13 1989-01-05 Mitsubishi Electric Corp Numerical control data generator for three-dimensional working

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641005A (en) * 1987-02-13 1989-01-05 Mitsubishi Electric Corp Numerical control data generator for three-dimensional working
JPS63303404A (en) * 1987-06-03 1988-12-12 Toshiba Mach Co Ltd Numerical controller

Similar Documents

Publication Publication Date Title
Ho et al. Five-axis tool orientation smoothing using quaternion interpolation algorithm
EP2047342B1 (en) Machine tool system control
Shin et al. Reincarnation of G-code based part programs into STEP-NC for turning applications
TWI381256B (en) System, method, and computer readable medium for controlling the movement of a plurality of moveable axes of a machine tool system
JP4233147B2 (en) How to determine an applicable feed rate for a machine tool
EP2252954B1 (en) Method and device for composite machining
JP4644490B2 (en) System and method for drawing complex n-curves for direct control of tool motion
CN104714477A (en) Machining file planning system and machining file generating method
Omirou et al. Integration of new programming capabilities into a CNC milling system
Zietarski System integrated product design, CNC programming and postprocessing for three-axis lathes
Yeh et al. A structured approach to the automatic planning of machining operations for rotational parts based on computer integration of standard design and process data
JPH0391010A (en) Nc data generating method for working of cylinder material
Oyoun Computer Numerical Control (CNC)
JPH0683422A (en) Numerical control method
JPS61160108A (en) Working control method of numerically controlled machine tool
Estrems et al. Trajectory generation in 5-axis milling of freeform surfaces using circular arc approximation and its influence in surface roughness
Karunakaran et al. Swept volume of a generic cutter
JPH0421203B2 (en)
JP2799531B2 (en) How to create NC data
JPH05216524A (en) Robot
US6681144B1 (en) Process and system for working a workpiece through numerically controlled machine tools
Xu et al. Isophote interpolation
JPH0218603A (en) Numerical controller
JPH05346814A (en) Three-dimensional machining method
Ameddah et al. Impeller tool paths programming for rough machining in an intelligent NURBS STEPNC format