[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0391978A - Semiconductor laser-excitated solid-state laser device - Google Patents

Semiconductor laser-excitated solid-state laser device

Info

Publication number
JPH0391978A
JPH0391978A JP22854389A JP22854389A JPH0391978A JP H0391978 A JPH0391978 A JP H0391978A JP 22854389 A JP22854389 A JP 22854389A JP 22854389 A JP22854389 A JP 22854389A JP H0391978 A JPH0391978 A JP H0391978A
Authority
JP
Japan
Prior art keywords
semiconductor laser
solid
face
wavelength
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22854389A
Other languages
Japanese (ja)
Inventor
Hideo Nagai
秀男 永井
Masahiro Kume
雅博 粂
Yuichi Shimizu
裕一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22854389A priority Critical patent/JPH0391978A/en
Publication of JPH0391978A publication Critical patent/JPH0391978A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a subminiature harmonics conversion device by a method wherein a non-linear optical crystal, a solid laser medium, an aspherical lens, and a semiconductor laser chip are housed in the sam package in this order. CONSTITUTION:A nonlinear optical crystal 2, a solid laser medium 1, a lens 3, and a semiconductor laser chip 4 are housed in the same package in this sequence. That is, an optical resonator is composed of an end face 1A of the solid laser medium 1 closer to the semiconductor laser chip 4 and an end face 2B of the nonlinear optical crystal 2 on the further side from the semiconductor laser chip 4. Semiconductor laser rays are collected through the lens 3, and the end faces of the solid laser medium 1 are excited in an axial direction. By this setup, a subminiature stable semiconductor laser excitated solid laser formed in an integral structure can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光ディスクの記録再生やレーザ応用計測等に用
いられる超小型の半導体レーザ励起固体レーザ装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an ultra-small semiconductor laser-excited solid-state laser device used for recording and reproducing optical discs, laser applied measurement, and the like.

従来の技術 固体レーザ装置の励起には、従来、アークランブやフラ
ッシュランプ等が用いられてきたが、励起効率が良くな
いためにレーザ全体の効率は悪く、ランプやレーザ媒質
の放熱の点から、装置は大型とならざるを得なかった。
Conventional technology Conventionally, arc lamps, flash lamps, etc. have been used to excite solid-state laser devices, but due to poor excitation efficiency, the overall efficiency of the laser is poor, and the device had to be large.

ところが近年、半導体レーザの高出力化に伴い、これを
固体レーザの励起源として用いる試みがなされるように
なってきた。半導体レーザを用いると、固体レーザの吸
収帯に波長を合わせることができ、励起効率は非常に良
くなる。しかも余分なスペクトルの吸収による発熱がな
いために放熱も楽になり、小型で高効率の固体レーザが
実現できる。
However, in recent years, with the increase in the output power of semiconductor lasers, attempts have been made to use them as an excitation source for solid-state lasers. When a semiconductor laser is used, the wavelength can be matched to the absorption band of a solid-state laser, resulting in extremely high excitation efficiency. Moreover, since there is no heat generated due to absorption of excess spectrum, heat dissipation is also easier, making it possible to create a compact and highly efficient solid-state laser.

一方、KTiOPO+ (KTP)結晶などの非線形光
学結晶を用いて固体レーザ光を高調波に変換して、緑色
や青色の可視光を得る方法も従来から知られており、先
述の半導体レーザ励起による固体レーザ光の高調波を利
用する試みもなされるようになってきた。
On the other hand, a method of converting solid-state laser light into harmonics using a nonlinear optical crystal such as KTiOPO+ (KTP) crystal to obtain green or blue visible light is also known. Attempts have also been made to utilize harmonics of laser light.

発明が解決しようとする課題 第2図に半導体レーザ励起Nd : YAGレーザの構
成図を示す。同一パッケージ内にNd : YAGロッ
ド1,KTP結晶2,セルフォックレンズ7,半導体レ
ーザチップ4の順に収められている。YAGレーザの共
振器内にKTP結晶が挿入されたかたちにするためにY
AGロッド1の出射側端面1−BとKTP結晶2の励起
側端面2−Aは波長1.06μmに対してHRコーティ
ングが施されている。また、共振器内での損失を減すた
めに、共振器内部のYAGロッド1とKTP結晶2の端
面1−A,2−Bは、波長1.06μmに対してARコ
ーティングが施されている。また、波長0.81μmの
励起用半導体レーザ光を効率よ<YAGロッド1に集光
するために、KTP結晶2の両端面2−A,2−BとY
AGロッド1の励起側端面1−Aは波長0.81μmに
対してARコーティングしてある。さらに、Nd : 
YAGレーザ光の高調波である波長0.53μmの光を
効率よく出射するために、KTP結晶2の励起側端面2
−Aは波長0.53μmに対してHRコーティングを、
それ以外の各端面2−B,l−A.1−BはARコーテ
ィングを施してある。この各波長に対するコーティング
をまとめたものが表1である。
Problems to be Solved by the Invention FIG. 2 shows a block diagram of a semiconductor laser pumped Nd:YAG laser. A Nd:YAG rod 1, a KTP crystal 2, a SELFOC lens 7, and a semiconductor laser chip 4 are housed in this order in the same package. In order to make the KTP crystal inserted into the resonator of the YAG laser, Y
The exit side end face 1-B of the AG rod 1 and the excitation side end face 2-A of the KTP crystal 2 are coated with HR coating for a wavelength of 1.06 μm. Furthermore, in order to reduce loss within the resonator, the end faces 1-A and 2-B of the YAG rod 1 and KTP crystal 2 inside the resonator are coated with an AR coating for a wavelength of 1.06 μm. . In addition, in order to efficiently focus the excitation semiconductor laser beam with a wavelength of 0.81 μm onto the YAG rod 1, both end surfaces 2-A, 2-B and Y
The excitation side end face 1-A of the AG rod 1 is AR coated for a wavelength of 0.81 μm. Furthermore, Nd:
In order to efficiently emit light with a wavelength of 0.53 μm, which is a harmonic of YAG laser light, the excitation side end face 2 of the KTP crystal 2
-A is HR coating for wavelength 0.53μm,
Other end faces 2-B, l-A. 1-B is AR coated. Table 1 summarizes the coatings for each wavelength.

この表1からわかるように各端面は、3f!lHの波長
に対してARあるいはHRコーティングしなければなら
ず、非常にコーティングが困難であることがわかる。複
雑な多層コーティングを施すと、効率面や歩留りの点で
不利になるのでできるだけコーティングを簡素にするこ
とが望ましい。
As can be seen from Table 1, each end face is 3f! AR or HR coating must be applied to the lH wavelength, which proves to be extremely difficult to coat. Applying a complex multilayer coating is disadvantageous in terms of efficiency and yield, so it is desirable to simplify the coating as much as possible.

課題を解決するための手段 YAGロッドとKTP結晶の端面コーティングを簡素に
するために本発明の固体レーザ装置は、KTP結晶,N
d : YAGロッド,非球面レンズ,半導体レーザチ
ップの順に並べて構成されている。
Means for Solving the Problems In order to simplify the end face coating of the YAG rod and the KTP crystal, the solid-state laser device of the present invention uses KTP crystal, N
d: Consists of a YAG rod, an aspherical lens, and a semiconductor laser chip arranged in this order.

作用 以上の構戊により、一体化された超小型で安定な半導体
レーザ励起固体レーザが可能となる。
The structure, which is more than functional, makes it possible to create an integrated ultra-small and stable semiconductor laser-excited solid-state laser.

実施例 以下、本発明の一実施例について、図面を引用しながら
説明する。第1図に本発明の半導体レーザ励起固体レー
ザ装置の構造図を示す。同一パッケージ内にKTP結晶
2,Nd : YAGロッド1.非球面レンズ3,半導
体レーザチップ4の順に収められている。YAGロッド
1はNda度1.1%で長さ5 m ,直径3nmであ
る。KTP結晶2は長さ5 m ,直径3間である。共
振器はYAGロッド1の励起側端面1−AとKTP結晶
の出射側端面2−Bのあいだで形成されており、前者は
曲率半導50mの凸面ミラー、後者は平面ミラーになっ
ている。KTP結晶2がNcl:YAGレーザの共振器
に挿入された構造になっており、しかも、レーザ光のビ
ーム径が最も細くなるところにKTP結晶を置くので、
効率よく高調波への交換がおこなわれる。YAGロッド
1の励起側端面1−Aは波長0.8 1 ttmに対し
て反射率0425%以下、波長1.06μmに対して反
射率99.8%以上、もう一方の端面1−Bは、波長0
.81μmに対して反射率99%以上、波長1.06μ
mに対して0.25%以下になる様に多層膜コーティン
グが施されている。またKTP結晶2の励起側端面2−
Aは波長1.06μmに対して反射率0.20%以下、
波長0.53μmに対して反射率99%以上、もう一方
の端面2−Bは波長1.06μmに対して反射率99.
8%以上、波長0.53μmに対して反射率0.2%以
下になるように多層膜コーティングが施してある。これ
ら各端面のコーティングの様子を表2にまとめた。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a structural diagram of a semiconductor laser pumped solid-state laser device of the present invention. KTP crystal 2, Nd:YAG rod 1. An aspherical lens 3 and a semiconductor laser chip 4 are housed in this order. The YAG rod 1 has an Nda degree of 1.1%, a length of 5 m, and a diameter of 3 nm. The KTP crystal 2 has a length of 5 m and a diameter of 3 m. The resonator is formed between the excitation side end face 1-A of the YAG rod 1 and the output side end face 2-B of the KTP crystal, the former being a convex mirror with a curvature of 50 m, and the latter being a flat mirror. The structure is such that the KTP crystal 2 is inserted into the resonator of the Ncl:YAG laser, and the KTP crystal is placed where the beam diameter of the laser beam is the narrowest.
Exchange to harmonics is performed efficiently. The excitation side end face 1-A of the YAG rod 1 has a reflectance of 0425% or less for a wavelength of 0.81 ttm, a reflectance of 99.8% or more for a wavelength of 1.06 μm, and the other end face 1-B wavelength 0
.. Reflectance of 99% or more for 81μm, wavelength 1.06μ
A multilayer film coating is applied so that the amount of 0.25% or less of m is 0.25% or less. In addition, the excitation side end face 2- of the KTP crystal 2
A has a reflectance of 0.20% or less for a wavelength of 1.06 μm,
The reflectance for the wavelength of 0.53 μm is 99% or more, and the other end face 2-B has a reflectance of 99% for the wavelength of 1.06 μm.
A multilayer coating is applied so that the reflectance is 8% or more and the reflectance is 0.2% or less at a wavelength of 0.53 μm. Table 2 summarizes the coating state of each end face.

〈以 下 余 白) 表2 この表2からわかるように、各端面ば2種類の波長に対
してARあるいはHRコーティングすればよく、第3図
及び表1に示したものに比べてコーティングが簡素化で
きていることがわかる。また、上記の順にNd : Y
AGロッド1とKTP結晶2を並べ、上記のコーティン
グを施すことにより、高調波0.53μmの光がYAG
ロッドを再吸収されるのを防ぐことができ、効率よ<0
.53μmの光を出射できる。
(Left below) Table 2 As can be seen from Table 2, each end face only needs to be coated with AR or HR coating for two types of wavelengths, making the coating simpler than that shown in Figure 3 and Table 1. It can be seen that it has been made possible. In addition, in the above order, Nd: Y
By arranging the AG rod 1 and the KTP crystal 2 and applying the above coating, the harmonic light of 0.53 μm is transmitted to the YAG
It can prevent the rod from being reabsorbed, and the efficiency is <0.
.. It can emit light of 53 μm.

半導体レーザ光の波長は、Nd : YAGの吸収帯に
あわせて0.809μmにあわせている。この半導体レ
ーザ光を開口数0.6の非球面レンズ3を通してYAG
ロッド1の端面中心付近に集光している。
The wavelength of the semiconductor laser light is adjusted to 0.809 μm, matching the absorption band of Nd:YAG. This semiconductor laser beam is passed through an aspherical lens 3 with a numerical aperture of 0.6 into a YAG
The light is focused near the center of the end face of the rod 1.

第3図に半導体レーザ駆動電流に対するNd;YAG高
調波出力の関係を示す。駆動電流400mAで16mW
の光出力を得た。
FIG. 3 shows the relationship between the Nd;YAG harmonic output and the semiconductor laser drive current. 16mW at 400mA drive current
of light output was obtained.

発明の効果 本発明の半導体レーザ励起固体レーザ装置は、超小型の
高調波変換装置であり、光ディスクの記録再生や、レー
ザ応用計測等に大きな効果を有する。
Effects of the Invention The semiconductor laser-excited solid-state laser device of the present invention is an ultra-compact harmonic conversion device, and has great effects in recording and reproducing optical discs, laser applied measurement, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体レーザ励起固体レーザ装置の構
造図、第2図は駆動電流に対するNd:YAG高調波出
力を示す図、第3図は従来の半導体レーザ励起固体レー
ザの構造図である。 1・・・・・・Nd : YAGロッド、2・・・・・
・KTP結晶、3・・・・・・非球面レンズ、4・・・
・・・半導体レーザチップ、5・・・・・・PINフォ
トダイオード、6・・曲・ベース、7・・・・・・セル
フォックレンズ。
Fig. 1 is a structural diagram of a semiconductor laser pumped solid-state laser device of the present invention, Fig. 2 is a diagram showing Nd:YAG harmonic output with respect to drive current, and Fig. 3 is a structural diagram of a conventional semiconductor laser pumped solid-state laser. . 1...Nd: YAG rod, 2...
・KTP crystal, 3...Aspherical lens, 4...
... Semiconductor laser chip, 5 ... PIN photodiode, 6 ... Song/base, 7 ... Selfoc lens.

Claims (1)

【特許請求の範囲】[Claims] 同一パッケージ内に非線形光学結晶、固体レーザ媒質、
レンズ、半導体レーザチップがこの順に並べて収められ
ており、前記固体レーザ媒質の前記半導体レーザチップ
に近い方の端面と前記非線形光学結晶の前記半導体レー
ザチップに遠い方の端面とで光共振器を形成しており、
前記レンズで半導体レーザ光を集光して、前記固体レー
ザ媒質を軸方向に端面励起することを特徴とする半導体
レーザ励起固体レーザ装置。
Nonlinear optical crystal, solid-state laser medium,
A lens and a semiconductor laser chip are arranged and housed in this order, and an optical resonator is formed by an end face of the solid-state laser medium closer to the semiconductor laser chip and an end face of the nonlinear optical crystal farther from the semiconductor laser chip. and
A semiconductor laser-excited solid-state laser device, characterized in that the lens condenses semiconductor laser light to end-excite the solid-state laser medium in the axial direction.
JP22854389A 1989-09-04 1989-09-04 Semiconductor laser-excitated solid-state laser device Pending JPH0391978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22854389A JPH0391978A (en) 1989-09-04 1989-09-04 Semiconductor laser-excitated solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22854389A JPH0391978A (en) 1989-09-04 1989-09-04 Semiconductor laser-excitated solid-state laser device

Publications (1)

Publication Number Publication Date
JPH0391978A true JPH0391978A (en) 1991-04-17

Family

ID=16878037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22854389A Pending JPH0391978A (en) 1989-09-04 1989-09-04 Semiconductor laser-excitated solid-state laser device

Country Status (1)

Country Link
JP (1) JPH0391978A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220879A (en) * 1988-02-29 1989-09-04 Sony Corp Laser beam source
JPH0228980A (en) * 1988-07-18 1990-01-31 Sony Corp Laser light source
JPH02161786A (en) * 1988-12-15 1990-06-21 Hamamatsu Photonics Kk Semiconductor laser excitation solid laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220879A (en) * 1988-02-29 1989-09-04 Sony Corp Laser beam source
JPH0228980A (en) * 1988-07-18 1990-01-31 Sony Corp Laser light source
JPH02161786A (en) * 1988-12-15 1990-06-21 Hamamatsu Photonics Kk Semiconductor laser excitation solid laser device

Similar Documents

Publication Publication Date Title
JPH10256638A (en) Solid state laser
JPH07507901A (en) High power compact diode pump tunable laser
JPH1084155A (en) Solid laser
JP2000124533A (en) Solid laser
JPH0391978A (en) Semiconductor laser-excitated solid-state laser device
JPH09246648A (en) Laser beam source and illuminating optical device
CN201345493Y (en) All solid state laser
JP2596462B2 (en) Semiconductor laser pumped solid-state laser device
JPH11177167A (en) Small semiconductor laser excitation solid state laser device
JPH0391979A (en) Semiconductor laser-excitated solid state laser device
JP2666548B2 (en) Semiconductor laser pumped solid-state laser device
JPH0388380A (en) Solid state laser device
CN113270785A (en) Continuous wave 1.5 mu m human eye safety all-solid-state self-Raman laser
JPH06120586A (en) Solid state laser equipment
JPH033377A (en) Semiconductor laser pumping solid-state laser device
JP2002252404A (en) Double wavelength laser device
JP2000183433A (en) Solid-state shg laser
JPH03155687A (en) Semiconductor laser excited solid state laser
JP3101942B2 (en) Microchip laser
JP2006165292A (en) Semiconductor laser excitation solid state laser device
JPH03292784A (en) Semiconductor laser excitation solid-state laser device
JPH04158588A (en) Semiconductor laser exciting solid laser device
JP3151081B2 (en) Semiconductor laser pumped solid-state laser device
JP2000047276A (en) Semiconductor laser excited solid state shg laser device
JPH04268777A (en) Semiconductor laser excitation solid-state laser device and manufacture thereof