JPH0391715A - Optical isolator - Google Patents
Optical isolatorInfo
- Publication number
- JPH0391715A JPH0391715A JP23012489A JP23012489A JPH0391715A JP H0391715 A JPH0391715 A JP H0391715A JP 23012489 A JP23012489 A JP 23012489A JP 23012489 A JP23012489 A JP 23012489A JP H0391715 A JPH0391715 A JP H0391715A
- Authority
- JP
- Japan
- Prior art keywords
- analyzer
- polarizer
- optical isolator
- light
- faraday rotator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 9
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 230000010287 polarization Effects 0.000 description 10
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光アイソレー夕に関し、特に光通信や光情報処
理に使用される光アイソレータに関する.
〔従来の技術〕
従来、この種の光アイソレー夕は、第3図(a)に示す
ように、偏光子l、ファラデー回転子2、検光子3及び
永久磁石4から構成され、光アイソレータ透過後の各反
射点からを戻り光を遮断する機能を有する。従来、光ア
イソレータの挿入損失は、偏光子,検光子にローション
プリズムや偏光ビームスプリッター,平行平板の複屈折
材料を用いた場合、入射光偏波依存を有していたが、第
3図(b)に示すように、くさび状の複屈折材料を使う
ことで挿入損失が入射偏波に依存しない光アイソレータ
が開発されている,(359年度,信学会全国大会.1
103)
〔発明が解決しようとする課題〕
上述した従来の偏光無依存な挿入損失の得られる光アイ
ソレー夕は、偏光子及び検光子がくさび形状の複屈折材
料になっているためにその加工が難しく、また光アイソ
レータ個々に偏光子及び検光子の相対角度を調整固定し
なければならない為、量産性が悪く、価格が高いものと
なるなどの欠点がある。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical isolator, and particularly to an optical isolator used in optical communication and optical information processing. [Prior Art] Conventionally, this type of optical isolator is composed of a polarizer 1, a Faraday rotator 2, an analyzer 3, and a permanent magnet 4, as shown in FIG. 3(a). It has the function of blocking the returning light from each reflection point. Conventionally, the insertion loss of an optical isolator has depended on the polarization of the incident light when a Rochon prism, polarizing beam splitter, or parallel plate birefringent material is used as a polarizer or analyzer. ), an optical isolator whose insertion loss does not depend on the incident polarization has been developed by using a wedge-shaped birefringent material.
103) [Problems to be Solved by the Invention] The above-mentioned conventional optical isolator that provides polarization-independent insertion loss has problems in processing because the polarizer and analyzer are made of wedge-shaped birefringent material. This method is difficult, and since the relative angles of the polarizer and analyzer must be adjusted and fixed for each optical isolator, there are drawbacks such as poor mass production and high cost.
本発明は偏光子,ファラデー回転子,検光子,永久磁石
からなり、前記偏光子及び前記検光子に平行平板の複屈
折材料を用いた光アイソレータに於いて、前記検光子を
分割し厚みを前記偏光子のF7倍とした第1の検光子と
、厚みを前記偏光子と等しくした第2の検光子と、前記
偏光子と前記第1の検光子の間に配置した第1のファラ
デー回転子と、前記第1の検光子と前記第2の検光子の
間に配置した第2のファラデー回転子とを有している.
〔実施例〕
まず、本発明の一実施例の光アイソレー夕の動作原理に
ついて第2図を用いて説明する。第2図(a)は本実施
例に係る各素子の分解斜視図、第2図(b)及び(c)
は順方向及び逆方向における各素子通過時の光の動作状
況を示す説明図である。The present invention is an optical isolator consisting of a polarizer, a Faraday rotator, an analyzer, and a permanent magnet, and in which the polarizer and the analyzer are made of parallel plate birefringent material. A first analyzer having a thickness F7 times that of a polarizer, a second analyzer having a thickness equal to that of the polarizer, and a first Faraday rotator disposed between the polarizer and the first analyzer. and a second Faraday rotator disposed between the first analyzer and the second analyzer. [Embodiment] First, the operating principle of an optical isolator according to an embodiment of the present invention will be explained with reference to FIG. FIG. 2(a) is an exploded perspective view of each element according to this example, and FIG. 2(b) and (c)
FIG. 2 is an explanatory diagram showing the operation status of light when passing through each element in the forward direction and the reverse direction.
順方向に於いて、任意の偏波成分を持つ入射光は厚さt
の平行平板の偏光子1により常光と異常光に分離され、
異常光或分は、{(〜O.it)だけ水平右方向に平行
移動し、第1のファラデー回転子21に入射する(b点
)。第1のファラデー回転子21によって常光,異常光
に分離されたそれぞれの偏波光は、入射光方向からみて
左回りに45度その偏波方向が回転し、第1の検光子3
1に入射する(C点)。第1の検光子31は厚み「丁t
の平行平板の複屈折材料であり、偏光子1で異常光とし
て分離された偏波光をFて1だけ左下方に平行移動させ
、第2のファラデー回転子22に入射する(d点)。第
2のファラデー回転子22によって、それぞれの偏波光
は入射光方向からみて左回りに45度その偏波方向が回
転し、第2の検光子32に入射する(e点〉。第2の検
光子32は厚みtの平行平板の複屈折材料であり、偏光
子1で異常光として分離された偏波光をgだけ上方に平
行移動させる(f点)。以上の動作により偏光子1に於
いて分離された各偏波光は、第2の検光子32を通過後
再び合或され、且つその位置は偏光子1に入射した位置
と同じになる。In the forward direction, the incident light with any polarization component has a thickness t
It is separated into ordinary light and extraordinary light by a parallel plate polarizer 1,
A certain portion of the extraordinary light is translated horizontally to the right by {(~O.it) and is incident on the first Faraday rotator 21 (point b). Each of the polarized lights separated into ordinary light and extraordinary light by the first Faraday rotator 21 has its polarization direction rotated by 45 degrees counterclockwise when viewed from the direction of the incident light, and then passes through the first analyzer 3.
1 (point C). The first analyzer 31 has a thickness of
The polarized light separated as extraordinary light by the polarizer 1 is moved in parallel to the lower left by F1, and is incident on the second Faraday rotator 22 (point d). The polarization direction of each polarized light is rotated by the second Faraday rotator 22 by 45 degrees counterclockwise when viewed from the direction of the incident light, and the polarized light is incident on the second analyzer 32 (point e>. The photon 32 is a parallel plate birefringent material with a thickness t, and it causes the polarized light separated as extraordinary light by the polarizer 1 to be translated upward by g (point f). The separated polarized lights are combined again after passing through the second analyzer 32, and their positions are the same as the positions where they entered the polarizer 1.
次に逆方向に於いて、第2の検光子32によって任意の
偏波或分をもつ入射光は、常光と異常光に分離され、異
常光成分は順方向からみて下方にgだけ平行移動し、第
2のファラデー回転子22に入射する(e点)。第2の
ファラデー回転子22によって順方向からみて45度左
まわりに回転し、第1の検光子31に入射する(d点)
。第1の検光子31によって第2の検光子32を常光で
透過した光が異常光或分となり、順方向からみて右上方
にF丁1だけ.平行移動し、第1のファラデー回転子2
1に入射する(C点〉。第1のファラデー回転子21に
よって順方向からみて45度左まわりに回転し、偏光子
1に入射する(b点)。偏光子1によって第1の検光子
31を常光で透過した光が異常光或分となり、順方向か
らみて水平左方向にgだけ平行移動する(a点)。以上
の動作によって順方向に於ける光アイソレータ透過後の
光結合位置からの戻り光は、その偏波戒分に拘わらず第
1の検光子31,第2の検光子32,偏光子1によって
分離され、光入射位置には戻らず、光アイソレー夕とし
て動作する。Next, in the reverse direction, the incident light with arbitrary polarization is separated by the second analyzer 32 into ordinary light and extraordinary light, and the extraordinary light component is translated downward by g when viewed from the forward direction. , enters the second Faraday rotator 22 (point e). It is rotated counterclockwise by 45 degrees when viewed from the forward direction by the second Faraday rotator 22, and enters the first analyzer 31 (point d).
. The light transmitted by the first analyzer 31 and the second analyzer 32 as ordinary light becomes a certain amount of extraordinary light, and when viewed from the forward direction, there is only F-1 in the upper right. Translated, the first Faraday rotator 2
1 (point C).The first Faraday rotator 21 rotates the light 45 degrees counterclockwise when viewed from the forward direction, and the light enters the polarizer 1 (point b). The light that has passed through the optical isolator in the forward direction becomes extraordinary light and moves in parallel by g horizontally to the left (point a). The returned light is separated by the first analyzer 31, second analyzer 32, and polarizer 1 regardless of its polarization, does not return to the light incident position, and operates as an optical isolator.
次に、本実施例の構或について図面を参照して説明する
。第1図は本実施例を示す縦断面図である。Next, the structure of this embodiment will be explained with reference to the drawings. FIG. 1 is a longitudinal sectional view showing this embodiment.
本実施例は1關厚のルチルを用いた偏光子1、L.P.
E法(液相成長法)により育或した(GdBi)3 I
Gよりなる第1,第2のファラデー回転子21,22.
r丁IIlm厚のルチルを用いた第1の検光子31、1
關厚のルチル用いた第2の検光子32を有し、また永久
磁石4にはプラスチックマグネットを使用している。In this example, polarizer 1, L. P.
(GdBi)3I grown by E method (liquid phase growth method)
First and second Faraday rotators 21, 22 .
The first analyzer 31, 1 using rutile with a thickness of 100 mm
It has a second analyzer 32 made of thick rutile, and a plastic magnet is used as the permanent magnet 4.
本実施例による光アイソレー夕をLDモジュール内に実
装した場合、複屈折材料の常光、異常光に対する屈折率
の相違から、光アイソレータ透過後の偏波光の焦点位置
が光路方向で前後する。しかしこのずれ量は、LDモジ
ュール内に於ける結合系で、その像倍率が10倍程度の
とき、約O.2dBの結合損失増加でしかなく、LDモ
ジュール内に実装する光アイソレー夕として極めて有効
である。When the optical isolator according to this embodiment is mounted in an LD module, the focal position of the polarized light after passing through the optical isolator shifts back and forth in the optical path direction due to the difference in refractive index of the birefringent material for ordinary light and extraordinary light. However, this amount of deviation is approximately O. The increase in coupling loss is only 2 dB, making it extremely effective as an optical isolator mounted in an LD module.
以上説明したように本発明は、平行平板の複屈折材料を
用いた偏波依存性の無い光アイソレータであって、光ア
イソレータの原価・を削減することができる。またLD
モジュールに光アイソレー夕を内蔵する際、LD素子の
出射光偏波に対して挿入損失が最小になるように光アイ
ソレー夕を回転調整しなければならなかったが、本発明
の光アイソレー夕では回転調整する必要がなくなり.組
立工数の大幅な削減が図れる。更に、ビグテール、タイ
プ光アイソレータモジュールとして、この光アイソレー
夕を使用することも可能である.As explained above, the present invention is an optical isolator that uses a parallel plate birefringent material and has no polarization dependence, and can reduce the cost of the optical isolator. Also LD
When incorporating an optical isolator into a module, it was necessary to adjust the rotation of the optical isolator so that the insertion loss was minimized with respect to the polarization of the output light of the LD element. There is no need to make adjustments. The assembly man-hours can be significantly reduced. Furthermore, it is also possible to use this optical isolator as a big-tail type optical isolator module.
第1図は本発明の一実施例の縦断面図、第2図(a)は
本実施例に係る各素子の分解斜視図、第2図(b)及び
(C)は順方向及び逆方向における各素子通過時の光の
動作状況を示す説明図、第3図(a).(b)は従来の
光アイソレータの二例を示す縦断面図である。
1・・・偏光子、21・・・第1のファラデー回転子、
22・・・第2のファラデー回転子、31・・・第1の
検光子、32・・・第2の検光子、4・・・永久磁石、
2・・・ファラデー回転子、3・・・検光子。Fig. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, Fig. 2 (a) is an exploded perspective view of each element according to this embodiment, and Fig. 2 (b) and (C) are forward and reverse directions. An explanatory diagram showing the operation status of light when passing through each element in FIG. 3(a). (b) is a vertical cross-sectional view showing two examples of a conventional optical isolator. 1... Polarizer, 21... First Faraday rotator,
22... Second Faraday rotator, 31... First analyzer, 32... Second analyzer, 4... Permanent magnet,
2...Faraday rotator, 3...analyzer.
Claims (1)
、前記偏光子及び前記検光子に平行平板の複屈折材料を
用いた光アイソレータに於いて、前記検光子を分割し厚
みを前記偏光子の√2倍とした第1の検光子と、厚みを
前記偏光子と等しくした第2の検光子と、前記偏光子と
前記第1の検光子の間に配置した第1のファラデー回転
子と、前記第1の検光子と前記第2の検光子の間に配置
した第2のファラデー回転子とを有することを特徴とす
る光アイソレータ。In an optical isolator consisting of a polarizer, a Faraday rotator, an analyzer, and a permanent magnet, and using a parallel plate birefringent material for the polarizer and the analyzer, the analyzer is divided and the thickness of the polarizer is a first analyzer with a thickness multiplied by √2, a second analyzer with a thickness equal to that of the polarizer, and a first Faraday rotator disposed between the polarizer and the first analyzer; An optical isolator comprising a second Faraday rotator disposed between the first analyzer and the second analyzer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23012489A JPH0391715A (en) | 1989-09-04 | 1989-09-04 | Optical isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23012489A JPH0391715A (en) | 1989-09-04 | 1989-09-04 | Optical isolator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0391715A true JPH0391715A (en) | 1991-04-17 |
Family
ID=16902945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23012489A Pending JPH0391715A (en) | 1989-09-04 | 1989-09-04 | Optical isolator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0391715A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03196115A (en) * | 1989-12-26 | 1991-08-27 | Furukawa Electric Co Ltd:The | Optical isolator |
JPH05127122A (en) * | 1991-09-12 | 1993-05-25 | Shinkosha:Kk | Optical isolator |
JPH0575726U (en) * | 1992-03-19 | 1993-10-15 | 並木精密宝石株式会社 | Optical isolator |
US5774264A (en) * | 1994-01-28 | 1998-06-30 | Namiki Precision Jewel Co., Ltd. | Polarization independent optical isolator |
US6288826B1 (en) * | 2000-01-05 | 2001-09-11 | Jds Uniphase Inc. | Multi-stage optical isolator |
-
1989
- 1989-09-04 JP JP23012489A patent/JPH0391715A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03196115A (en) * | 1989-12-26 | 1991-08-27 | Furukawa Electric Co Ltd:The | Optical isolator |
JPH05127122A (en) * | 1991-09-12 | 1993-05-25 | Shinkosha:Kk | Optical isolator |
JPH0575726U (en) * | 1992-03-19 | 1993-10-15 | 並木精密宝石株式会社 | Optical isolator |
US5774264A (en) * | 1994-01-28 | 1998-06-30 | Namiki Precision Jewel Co., Ltd. | Polarization independent optical isolator |
US6288826B1 (en) * | 2000-01-05 | 2001-09-11 | Jds Uniphase Inc. | Multi-stage optical isolator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5204771A (en) | Optical circulator | |
US5682446A (en) | Polarization mode dispersion-free circulator | |
US6249619B1 (en) | Optical isolator | |
US5923472A (en) | 3-port optical circulator/switch with mirror | |
EP0474237B1 (en) | Prism optical device and polarizer using it | |
US6360034B1 (en) | Reflection based nonmoving part optical switch | |
JPH0990279A (en) | Polarization independent type optical isolator and optical circulator | |
JPH04191703A (en) | Deflection independency optical part | |
EP0863425A2 (en) | Optical device for splitting an input beam into two orthogonal polarization states | |
US6246518B1 (en) | Reflection type optical isolator | |
JPH0391715A (en) | Optical isolator | |
JP3289386B2 (en) | Color liquid crystal display | |
US6407861B1 (en) | Adjustable optical circulator | |
JPH02188715A (en) | Optical isolator | |
JPH0668584B2 (en) | Optical isolator | |
JPH0246419A (en) | Optical isolator | |
JP2721879B2 (en) | Self-temperature compensated optical isolator | |
JPH0477713A (en) | Optical isolator independent of polarization | |
JPH085977A (en) | Variable wavelength liquid crystal optical filter | |
US20020110305A1 (en) | Reflective optical circulator | |
JPS6257012B2 (en) | ||
JP2869677B2 (en) | Optical isolator | |
JP2002296544A (en) | 3-port miniaturized optical circulator | |
JP3154169B2 (en) | Optical circulator | |
JP2594856B2 (en) | Non-reciprocal light element |