[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03897A - Production of flame-retardant paper or flame-retardant board - Google Patents

Production of flame-retardant paper or flame-retardant board

Info

Publication number
JPH03897A
JPH03897A JP13264989A JP13264989A JPH03897A JP H03897 A JPH03897 A JP H03897A JP 13264989 A JP13264989 A JP 13264989A JP 13264989 A JP13264989 A JP 13264989A JP H03897 A JPH03897 A JP H03897A
Authority
JP
Japan
Prior art keywords
paper
flame
inorganic compound
dispersion
retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13264989A
Other languages
Japanese (ja)
Other versions
JPH0450437B2 (en
Inventor
Yoshihiro Saito
芳廣 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Paper Mills Ltd
Original Assignee
Hokuetsu Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Paper Mills Ltd filed Critical Hokuetsu Paper Mills Ltd
Priority to JP13264989A priority Critical patent/JPH03897A/en
Publication of JPH03897A publication Critical patent/JPH03897A/en
Publication of JPH0450437B2 publication Critical patent/JPH0450437B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

PURPOSE:To obtain the title paper and board having excellent flame retardance in improved yield without using an organic yield-improving agent, etc., exerting bad influence on the flame retardance by making slurry containing cellulose fiber, watercontaining inorganic compound and glass fiber at a specific ratio into paper. CONSTITUTION:Slurry containing 5-60wt.%, preferably 10-40wt.% cellulose fiber as solid content, 15-94wt.%, preferably 40-90wt.% water-containing inorganic compound (preferably aluminum hydroxide, magnesium hydroxide, gypsum 2 hydrate or calcium aluminate) as solid content and 0.05-80wt.%, preferably 0.1-40wt.% glass fiber having <=4mum diameter as solid content is made into paper to provide the aimed paper and board.

Description

【発明の詳細な説明】 [産業上の利用分署] 本発明は難燃紙または難燃ボードの製造方法に関し、更
に詳しくはセルロース繊維、含水無機化合物及び直径4
μm以下のガラス繊維を含有するスラリーを調成し、通
常の抄紙方法により抄造するようにしたものであって、
含水無機化合物の歩留が高く、かつ優れた難燃性を有す
る難燃紙または難燃ボードの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Branch] The present invention relates to a method for producing flame retardant paper or flame retardant board, and more particularly, the present invention relates to a method for manufacturing flame retardant paper or board.
A slurry containing glass fibers of μm or less is prepared and paper is made by a normal paper making method,
The present invention relates to a method for producing flame-retardant paper or flame-retardant board that has a high yield of hydrous inorganic compounds and excellent flame retardancy.

[従来の技術] 近年、建築物の高層化、大規模化、集中化に伴って建築
物の難燃化や防火対策が重要視されている。
[Background Art] In recent years, as buildings become taller, larger, and more concentrated, fire retardancy and fire prevention measures are becoming more important.

従来から建築物の難燃化や防火対策上、各種建材に難燃
性を付与する難燃紙または難燃ボードが使用されている
BACKGROUND ART Flame-retardant paper or flame-retardant board, which imparts flame retardancy to various building materials, have traditionally been used to make buildings flame-retardant and to prevent fires.

従来のこの種の難燃紙または難燃ボードとしては、アス
ベスト繊維を主成分とするもの、難燃化薬剤処理を施し
たもの、あるいは水酸化アルミニウム粉体を多量に含有
せしめたもの等が一般に知られている。
Conventional flame-retardant paper or boards of this type generally include those whose main component is asbestos fiber, those treated with flame-retardant chemicals, or those containing large amounts of aluminum hydroxide powder. Are known.

アスベスト繊維を主成分とするものは、アスベスト繊維
を少量のセルロース繊維に混合して抄造したものである
Materials whose main component is asbestos fibers are made by mixing asbestos fibers with a small amount of cellulose fibers.

また難燃化薬剤処理を施したものは、難燃剤として有機
リン化合物、含リン含窒素有機化合物、スルファミン酸
塩、無機リン酸塩、含ハロゲン化合物及びアンチモン系
化合物の1種又はこれらの複合系をセルロース繊維に内
添あるいは抄造後に含浸または塗布せしめて、紙中ある
いはボード中に含ませたものである。
In addition, those treated with flame retardant chemicals may contain organic phosphorus compounds, phosphorus-containing nitrogen-containing organic compounds, sulfamates, inorganic phosphates, halogen-containing compounds, and antimony compounds, or a combination thereof. It is contained in paper or board by adding it internally to cellulose fibers or impregnating or coating it after papermaking.

さらに水酸化アルミニウム粉体を多量に含有せしめて製
造した紙あるいはボードは、通常使用される水酸化アル
ミニウムがギブサイト結晶構造を有し、200〜300
°Cにて結晶水を脱水するため、優れた難燃効果を示す
とともに有毒ガスや発煙の心配もなく、取扱い作業面や
公害等の衛生面での問題がないため、現状においては安
全な難燃紙あるいは難燃ボードといえる。
Furthermore, paper or board manufactured by containing a large amount of aluminum hydroxide powder has a gibbsite crystal structure, and the aluminum hydroxide that is commonly used has a gibbsite crystal structure,
Since the crystal water is dehydrated at °C, it exhibits excellent flame retardant effects, there is no worry of toxic gas or smoke, and there are no hygiene issues such as handling or pollution, so it is currently safe. It can be said to be burnt paper or flame retardant board.

[発明が解決しようとする課題] しかしながら、上記アスベスト繊維を主成分とするもの
は、優れた難燃性を示するという利点な有している反面
、アスベスト繊維は特定物質に指定されており、近年、
肺癌の原因物質であるとされて以来、公害防止および作
業環境衛生面の観点からその使用が厳しく制限され、一
部の国では使用が禁止されている現状である。
[Problems to be Solved by the Invention] However, while the above-mentioned materials containing asbestos fiber as a main component have the advantage of exhibiting excellent flame retardancy, asbestos fiber is designated as a specified substance, recent years,
Since it was found to be a causative agent of lung cancer, its use has been severely restricted from the viewpoint of pollution prevention and work environment hygiene, and its use is currently prohibited in some countries.

また難燃化薬剤処理を施して製造した紙あるいはボード
は、難燃剤の含有量が増えると黄変し易くなり、また加
温時に著しい変色が生じて商品価値の低下を招くという
問題がある。加えて、発火時に有毒ガスを発生したり、
発煙が生じ安全対策上も大きな問題を抱えている。
Moreover, paper or board manufactured by applying flame retardant chemical treatment has the problem that it tends to yellow when the content of flame retardant increases, and also causes significant discoloration when heated, leading to a decrease in commercial value. In addition, it produces toxic gas when ignited,
This creates smoke and poses a major safety problem.

この点、水酸化アルミニウム粉体を多量に含有せしめて
製造した紙あるいはボードは、上記する各種利点を有し
ているものの、水酸化アルミニウムの如き含水無機化合
物を多量に含有するスラリーは保水性能に乏しく、抄造
網上に供給した場合、短時間のうちに網目よりスラリー
中の水が濾過、脱水し、該脱水過程が急激であるため、
スラリー中の含水無機化合物も水と一緒に抄造網の下に
流れ落ちてしまう傾向が強いという難点がある。
In this regard, although paper or board manufactured by containing a large amount of aluminum hydroxide powder has the various advantages mentioned above, slurry containing a large amount of water-containing inorganic compounds such as aluminum hydroxide has poor water retention performance. If the water in the slurry is insufficient and is fed onto a papermaking mesh, the water in the slurry will be filtered and dehydrated through the mesh in a short period of time, and the dehydration process will be rapid.
There is a drawback in that the water-containing inorganic compounds in the slurry also tend to flow down the papermaking net together with the water.

この傾向は難燃紙あるいは難燃ボードの表面平滑性の向
上などを図るべく、細径の含水無機化合物を適用した場
合においてさらに顕著となる。
This tendency becomes even more pronounced when a small-diameter hydrous inorganic compound is applied to improve the surface smoothness of flame-retardant paper or flame-retardant boards.

このように含水無機化合物を紙中あるいはボード中に定
着させて高い歩留を獲得することは技術的に非常に難し
いのが現状である。そこで、これを解決するために、従
来から各種の有機系歩留向上剤を使用したり、あるいは
SBR,NBR、アクリル系などのラテックスを添加す
る方法が行なわれている。
At present, it is technically very difficult to obtain a high yield by fixing a water-containing inorganic compound in paper or board. In order to solve this problem, various organic retention aids have been used, or SBR, NBR, acrylic latexes, etc. have been added.

しかしこれらの有機系助剤を添加することは難燃性に悪
影響を及ぼすことになるため、こうした有機系助剤を使
わずに、水酸化アルミニウムの如き含水無機化合物を紙
中あるいはボード中に高歩留させ得る難燃紙または難燃
ボードの製法の開発が急がれていた。
However, adding these organic auxiliaries has a negative effect on flame retardancy, so instead of using these organic auxiliaries, it is preferable to add hydrated inorganic compounds such as aluminum hydroxide to the paper or board. There has been an urgent need to develop a manufacturing method for flame-retardant paper or flame-retardant board that can be produced at high yields.

本発明は上記の課題を解決するためになされたもので、
含水無機化合物の歩留が高く、かつ優れた難燃性を有す
る難燃紙または難燃ボードを合理的、効果的に製造する
方法を提供することを目的とするものである。
The present invention was made to solve the above problems,
The object of the present invention is to provide a method for rationally and effectively producing flame-retardant paper or flame-retardant board that has a high yield of hydrous inorganic compounds and excellent flame retardancy.

[課題を解決するための手段] 本発明に係る難燃紙または難燃ボードの製造方法は、セ
ルロース繊維を固形分で5〜60重量%、含水無機化合
物を固形分で15〜94重量%、直径4μm以下のガラ
ス繊維を固形分で0.05〜80重量%含有するスラリ
ーを調成して抄造することを特徴とするものである。
[Means for Solving the Problems] The method for producing flame-retardant paper or flame-retardant board according to the present invention comprises cellulose fibers in a solid content of 5 to 60% by weight, a water-containing inorganic compound in a solid content of 15 to 94% by weight, The method is characterized in that a slurry containing glass fibers having a diameter of 4 μm or less in a solid content of 0.05 to 80% by weight is prepared and then made into paper.

上記した含水無機化合物としては、水酸化アルミニウム
、水酸化マグネシウム、水酸化カルシウム、2水和石こ
う及びアルミン酸化カルシウム等を挙げることができる
。これらの化合物は何れも分子内に結晶水を持ち、化学
的に類似した構造を有する。また、含水無機化合物はそ
の種類によって、分解温度及び吸熱量に幾分差があるが
、高温加熱時に分解して吸熱作用により難燃効果を示す
という点では全く共通している。従って、基本的に前記
含水無機化合物のいずれを用いてもよいが入手価格等の
経済性をも考慮すると、水酸化アルミニウムが最適であ
る。
Examples of the above-mentioned hydrated inorganic compounds include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, gypsum dihydrate, and calcium aluminoxide. All of these compounds have water of crystallization in their molecules and have chemically similar structures. In addition, although there are some differences in decomposition temperature and endothermic amount depending on the type of hydrated inorganic compounds, they are completely common in that they decompose when heated to high temperatures and exhibit a flame retardant effect due to endothermic action. Therefore, basically any of the above-mentioned hydrous inorganic compounds may be used, but aluminum hydroxide is most suitable when considering economical efficiency such as acquisition price.

本発明に係るスラリー中の直径4μm以下のガラス繊維
の含有率範囲は、固形分で0.05〜80重量%好まし
くは0.1〜40重量%である。その含有率が0.05
重量%未満では、スラリー中の保水性能の向上効果及び
含水無機化合物の歩留向上効果が十分に得られない。ま
た反対に、その含有率が80重量%を超えた場合には、
セルロース繊維の過少により十分な強度を有する難燃紙
または難燃ボードを得ることができない。
The content range of glass fibers having a diameter of 4 μm or less in the slurry according to the present invention is 0.05 to 80% by weight, preferably 0.1 to 40% by weight in terms of solid content. Its content is 0.05
If it is less than % by weight, the effect of improving the water retention performance in the slurry and the effect of improving the retention of water-containing inorganic compounds cannot be sufficiently obtained. Conversely, if the content exceeds 80% by weight,
Due to the insufficient amount of cellulose fibers, flame retardant paper or board with sufficient strength cannot be obtained.

含水無機化合物の含有率の範囲は、固形分で15〜94
重量%好ましくは40〜90重量%である。その含有率
が15重量%未満では十分な難燃性が得られない。反対
に94重量%を超えた場合は、含水無機化合物の過多に
より十分な強度を有する難燃紙または難燃ボードを得る
ことができない。
The content of the water-containing inorganic compound ranges from 15 to 94% in terms of solid content.
The weight percent is preferably 40 to 90 weight percent. If the content is less than 15% by weight, sufficient flame retardancy cannot be obtained. On the other hand, if it exceeds 94% by weight, the amount of water-containing inorganic compounds will be too large, making it impossible to obtain flame-retardant paper or flame-retardant board with sufficient strength.

セルロース繊維の含有率の範囲は、固形分で5〜60重
量%好ましくは10〜40重量%である。その含有率が
5重量%未満では十分な強度が得られずまた60重量%
を超えた場合は、有機物質の過多により十分な難燃性を
有する難燃紙または難燃ボードを得ることができない。
The content of cellulose fibers ranges from 5 to 60% by weight, preferably from 10 to 40% by weight, based on solid content. If the content is less than 5% by weight, sufficient strength cannot be obtained;
If the amount exceeds 20%, it is impossible to obtain flame-retardant paper or flame-retardant board with sufficient flame retardancy due to the excessive amount of organic substances.

セルロース繊維、含水無機化合物及び直径4μm以下の
ガラス繊維を含有するスラリーは、以下の如くして調成
することができる。
A slurry containing cellulose fibers, a hydrous inorganic compound, and glass fibers with a diameter of 4 μm or less can be prepared as follows.

■所定量のセルロース繊維分散液に直径4μm以下のガ
ラス繊維の所定量あるいはその分散液の所定量を加えて
撹拌混合する。次いで、このようにして得た分散液に含
水無機化合物あるいはその分散液の所定量を加えて撹拌
混合し所望のスラリーを得る。
(2) A predetermined amount of glass fibers having a diameter of 4 μm or less or a predetermined amount of the dispersion is added to a predetermined amount of the cellulose fiber dispersion and mixed by stirring. Next, a predetermined amount of a water-containing inorganic compound or its dispersion is added to the dispersion thus obtained and mixed with stirring to obtain a desired slurry.

■所定量のセルロース繊維と直径4μm以下のガラス繊
維を同時に分散し、これに含水無機化合物あるいはその
分散液の所定量を加えて撹拌し、所望のスラリーな得る
(2) A predetermined amount of cellulose fibers and glass fibers with a diameter of 4 μm or less are simultaneously dispersed, and a predetermined amount of a hydrous inorganic compound or its dispersion is added and stirred to obtain a desired slurry.

■所定量のセルロース繊維分散液に含水無機化合物ある
いはその分散液の所定量を加えて撹拌混合する。次いで
、このようにして得た分散液に直径4μm以下のガラス
繊維あるいはその分散液の所定量を加えて撹拌混合し、
所望のスラリーを得る。
(2) A predetermined amount of a hydrous inorganic compound or its dispersion is added to a predetermined amount of a cellulose fiber dispersion and mixed by stirring. Next, a predetermined amount of glass fibers having a diameter of 4 μm or less or a dispersion thereof is added to the dispersion thus obtained, and the mixture is stirred and mixed.
Obtain the desired slurry.

■直径4μm以下のガラス繊維分散液の所定量に含水無
機化合物あるいはその分散液の所定量を加えて撹拌混合
する。次いで、このようにして得た分散液にセルロース
繊維あるいはその分散液の所定量を加えて撹拌混合し、
所望のスラリーを得る。
(2) A predetermined amount of a water-containing inorganic compound or its dispersion is added to a predetermined amount of a glass fiber dispersion having a diameter of 4 μm or less, and the mixture is stirred. Next, a predetermined amount of cellulose fibers or a dispersion thereof is added to the dispersion thus obtained and mixed by stirring.
Obtain the desired slurry.

上記したスラリーの調成方法において、セルロース繊維
、含水無機化合物及び直径4μm以下のガラス繊維の添
加方法及び添加順序等は任意であり、必要に応じて叩解
処理等を施してもよい。
In the method for preparing the slurry described above, the method and order of addition of the cellulose fibers, the hydrous inorganic compound, and the glass fibers with a diameter of 4 μm or less are arbitrary, and beating treatment or the like may be performed as necessary.

また本発明に係るスラリーには、必要に応じて炭素繊維
、ロックウール繊維等の無機質繊維、ナイロン、ポリエ
ステル、ポリプロピレン等の各種合成繊維、合成樹脂あ
るいは着色のための合成染料等を含有せしめてもよい。
Furthermore, the slurry according to the present invention may contain inorganic fibers such as carbon fibers and rock wool fibers, various synthetic fibers such as nylon, polyester, and polypropylene, synthetic resins, or synthetic dyes for coloring, as necessary. good.

さらに本発明に係るスラリーに、必要に応じて各種の有
機系歩留向上剤あるいはSBR,NBR、アクリル系の
ラテックス等を配合することにより含水無機化合物の歩
留をさらに向上せしめることもできる。
Furthermore, the retention of water-containing inorganic compounds can be further improved by blending various organic retention improvers or SBR, NBR, acrylic latex, etc. with the slurry according to the present invention, if necessary.

さらにまた用途によっては、難燃紙あるいは難燃ボード
の機械的強度及び後加工適性の改善等を図るべく、本発
明に係るスラリーに乾燥及び湿潤紙力増強剤、サイズ剤
、耐水化剤等を配合すべきことは言うまでもない。
Furthermore, depending on the application, dry and wet paper strength enhancers, sizing agents, waterproofing agents, etc. may be added to the slurry according to the present invention in order to improve the mechanical strength and post-processing suitability of flame-retardant paper or flame-retardant board. Needless to say, they should be combined.

こうして得たスラリー即ち、セルロース繊維、含水無機
化合物及び直径4μm以下のガラス繊維を含有するスラ
リーを用いて、本発明に係る難燃紙あるいは難燃ボード
を製造するには、通常の抄造法に従って行なえばよい。
In order to manufacture the flame retardant paper or flame retardant board according to the present invention using the slurry thus obtained, that is, the slurry containing cellulose fibers, a hydrous inorganic compound, and glass fibers with a diameter of 4 μm or less, a normal papermaking method can be used. Bye.

即ち、通常の長網、丸網あるいは傾斜網等の抄造網上に
セルロース繊維、含水無機化合物及び直径4μm以下の
ガラス繊維を含有するスラリーを供給し、濾過、脱水し
た後、圧搾、乾燥することにより所望の難燃性を有する
難燃紙あるいは難燃ボードが得られる。また必要により
各種コンビネーション網や多槽丸網及び各種ラミネータ
ーなどにより紙層な24以上重ね合せてもよい。さらに
用途によつては、得られた難燃紙あるいは難燃ボードに
各種塗料の吹付けもしくは塗布あるいは印刷などの表面
処理を施したりあるいは、化粧板、レザー、合成樹脂膜
等を貼り合わせするなどして、該難燃紙あるいは難燃ボ
ードの付加価値を一段と高めることができることは言う
までもない。
That is, a slurry containing cellulose fibers, a water-containing inorganic compound, and glass fibers with a diameter of 4 μm or less is supplied onto a paper-made mesh such as a regular fourdrinier, circular mesh, or inclined mesh, filtered and dehydrated, and then compressed and dried. A flame retardant paper or a flame retardant board having the desired flame retardancy can be obtained by this method. If necessary, 24 or more paper layers may be stacked using various combination nets, multi-tank circular nets, various laminators, etc. Furthermore, depending on the application, the resulting flame-retardant paper or board may be subjected to surface treatments such as spraying or coating with various paints or printing, or may be laminated with decorative boards, leather, synthetic resin films, etc. Needless to say, the added value of the flame retardant paper or board can be further increased.

本発明に係る難燃紙あるいは難燃ボードは、含水無機化
合物及び直径4μm以下のガラス繊維を含有するだけて
、優れた難燃性を発揮するが、従来慣用の難燃剤の併用
を妨げるものではない。
The flame retardant paper or flame retardant board according to the present invention exhibits excellent flame retardancy because it contains a hydrous inorganic compound and glass fibers with a diameter of 4 μm or less, but this does not prevent the use of conventional flame retardants in combination. do not have.

併用可能な難燃剤としては、有機リン化合物、含リン含
窒素有機化合物、スルファミン置場、無機リン酸塩、含
ハロゲン化合物及びアンチモン系化合物等の公知の難燃
剤を挙げることができる。
Examples of flame retardants that can be used in combination include known flame retardants such as organic phosphorus compounds, phosphorus-containing nitrogen-containing organic compounds, sulfamine compounds, inorganic phosphates, halogen-containing compounds, and antimony compounds.

また該難燃剤の使用方法としては、セルロース繊維、含
水無機化合物及び直径4μm以下のガラス繊維を含有す
るスラリー中に内添せしめるか抄造工程途中あるいは抄
造後に含浸または塗布せしめて紙あるいはボード中に含
ませる等の方法が挙げられる。たたし、この場合、含水
無機化合物及び直径4μm以下のガラス繊維の含有量を
考慮して難燃剤の含有量を定めるべきことは当然である
[作用] 本発明における含水無機化合物を多量に含有するスラリ
ーの保水性能の向上効果及び該含水無機化合物の紙ある
いはボード中への歩留向上効果の発現機構の詳細につい
ては未だ不明であるが、セルロース繊維とガラス繊維と
の物理的、化学的相互作用並びにセルロース繊維とガラ
ス繊維と含水無機化合物との物理的、化学的相互作用に
よるものと考えられる。即ち、ガラス繊維の直径が4μ
m以下の場合、あたかも、合成高分子における架橋構造
の如くセルロース繊維とガラス繊維による3次元複合網
状構造が生成する。この3次元複合網状構造が含水無機
化合物を包み込み、セルロース繊維とガラス繊維と含水
無機化合物との間に強固な結合を生じる0通常の抄造工
程における水力学的流動撹乱力の作用下においても該含
水無機化合物は水力学的流れ作用に対する追従力を失い
、セルロース繊維とガラス繊維よりなる3次元複合網状
構造内に定着せしめられ、ひいては含水無機化合物を内
包したセルロース繊維とガラス繊維による3次元網状構
造は抄造網上において適度な抵抗となり、含水無機化合
物を多量に含有するスラリーの保水性能を高めるととも
に前記したセルロース繊維とガラス繊維による3次元網
状構造中への含水無機化合物の定着効果と、この水力学
的濾水脱水作用の低減効果とが互いに相乗し合い、結果
的に該含水無機化合物の紙あるいはボード中へめたたけ
て特異な相乗効果が認められることから、上記した如き
物理的作用のみならず何らかの化学的作用も関与してい
るものと考えられる。
The flame retardant can be used by adding it internally to a slurry containing cellulose fibers, a hydrous inorganic compound, and glass fibers with a diameter of 4 μm or less, or by impregnating or coating it during or after the papermaking process and incorporating it into paper or board. Examples of methods include: However, in this case, it is natural that the content of the flame retardant should be determined in consideration of the content of the hydrated inorganic compound and the glass fiber with a diameter of 4 μm or less. Although the details of the mechanism of improving the water retention performance of slurry and the retention of water-containing inorganic compounds in paper or board are still unknown, the physical and chemical interactions between cellulose fibers and glass fibers are unknown. This is thought to be due to the physical and chemical interactions between cellulose fibers, glass fibers, and water-containing inorganic compounds. That is, the diameter of the glass fiber is 4μ
m or less, a three-dimensional composite network structure of cellulose fibers and glass fibers is generated, just like a crosslinked structure in a synthetic polymer. This three-dimensional composite network structure envelops the water-containing inorganic compound, creating a strong bond between the cellulose fibers, glass fibers, and the water-containing inorganic compound. The inorganic compound loses its ability to follow the hydrodynamic flow action and is fixed in a three-dimensional composite network structure composed of cellulose fibers and glass fibers. It provides appropriate resistance on the papermaking net, improves the water retention performance of the slurry containing a large amount of hydrated inorganic compounds, and also improves the fixation effect of the hydrated inorganic compounds in the three-dimensional network structure of cellulose fibers and glass fibers, and this hydraulics. The effects of reducing the filtration and dehydration effects are synergistic with each other, and as a result, the water-containing inorganic compound is absorbed into the paper or board, resulting in a unique synergistic effect. It is thought that some chemical action is also involved.

[実施例コ 次に本発明を以下の実施例に基いてさらに具体的に説明
する。
[Examples] Next, the present invention will be explained in more detail based on the following examples.

本実施例中の各項目の測定は次の方法により行なった。Each item in this example was measured by the following method.

■ 米坪: J I S P−8118による。■Yonetsubo: According to JIS P-8118.

■ 厚さ及び密度: J I S P−8118による
■Thickness and density: According to JIS P-8118.

■ 難燃性:UL94規格V−Oによる。■Flame retardancy: Based on UL94 standard V-O.

■ 濾水性: J I S P−8121による。■ Freeness: According to JIS P-8121.

■ 含水無機化合物の歩留: による。■ Yield of hydrated inorganic compounds: by.

(セルロース繊維分散液の調成) 市販の針葉樹系晒硫酸塩バルブをテストビータにて難解
及び叩解し、濃度1.40重量%、濾水度225mf2
C3Fなるセルロース繊維分散液■を得た。
(Preparation of cellulose fiber dispersion) A commercially available softwood-based bleached sulfate bulb was difficult to break and beaten using a test beater to obtain a solution with a concentration of 1.40% by weight and a freeness of 225mf2.
A cellulose fiber dispersion liquid (C3F) was obtained.

次いで市販の針葉樹系晒硫酸塩バルブを離解機にて離解
し濃度1.38重量%、濾水度710m、I2  C3
Fなるセルロース繊維分散液■を得た。
Next, a commercially available softwood bleached sulfate bulb was disintegrated using a disintegrator to obtain a concentration of 1.38% by weight, freeness of 710m, and I2C3.
A cellulose fiber dispersion (2) named F was obtained.

実施例1 セルロース繊維分散液1045gに直径0.65μmの
ガラス繊維(以下、ガラス繊維αと略称する)0゜37
5gを加え、さらに水を454.625 g加え離解機
にて撹拌混合し、セルロース繊維とガラス繊維αの合計
含有率が1重量%のセルロース繊維とガラス繊維αの混
合分散液Aを得た。
Example 1 Glass fibers with a diameter of 0.65 μm (hereinafter abbreviated as glass fiber α) were added to 1045 g of cellulose fiber dispersion at 0°37
Then, 454.625 g of water was added and mixed with stirring using a disintegrator to obtain a mixed dispersion A of cellulose fibers and glass fibers α having a total content of cellulose fibers and glass fibers α of 1% by weight.

混合分散液A 125gに水酸化アルミニウム粉体く平
均粒径3.6μmである。以下同じ)8gt添加し、撹
拌機にて十分に分散混合し、十研式テスト抄紙機にて手
抄を行い、含水無機化合物含有紙aを得た。
Aluminum hydroxide powder was added to 125 g of mixed dispersion liquid A and had an average particle size of 3.6 μm. 8 gt (the same applies hereinafter) was added, sufficiently dispersed and mixed using a stirrer, and hand-made using a Juken-type test paper machine to obtain paper a containing a hydrous inorganic compound.

含水無機化合物含有紙aについて、米坪、厚さ、密度、
含水無機化合物の歩留及び難燃性をそれぞれ測定し、そ
の結果を第1表及び第1図に示した。
Regarding hydrated inorganic compound-containing paper a, tsubo, thickness, density,
The yield and flame retardance of the hydrated inorganic compound were measured, and the results are shown in Table 1 and Figure 1.

実施例2〜5 実施例1において、セルロース繊維分散液■1018g
にガラス繊維α 0.75gを加えた場合(実施例2)
、あるいはセルロース繊維分散液■964gにガラス繊
維α 1.5gを加えた場合(実施例3)、あるいはセ
ルロース繊維分散液■804gにガラス繊維α 3.7
5gを加えた場合(実施例4)あるいはセルロース繊維
分散液■536gにガラス繊維α 7.5gを加えた場
合(実施例5)以外は実施例1と同様にしてセルロース
繊維とガラス繊維αの合計含有率が1重量%のセルロー
ス繊維とガラス繊維αの混合分散液B(実施例2)、混
合分散液C(実施例3)、混合分散液D(実施例4)、
混合分散液E(実施例5)をそれぞれ得て、含水無機化
合物含有紙b(実施例2)、含水無機化合物含有紙C(
実施例3)、含水無機化合物含有紙d(実施例4)、含
水無機化合物含有紙e(実施例5)をそれぞれ得た。
Examples 2 to 5 In Example 1, 1018 g of cellulose fiber dispersion ■
When 0.75g of glass fiber α is added to (Example 2)
, or when 1.5 g of glass fiber α was added to 964 g of cellulose fiber dispersion ■ (Example 3), or when 3.7 g of glass fiber α was added to 804 g of cellulose fiber dispersion ■
The total amount of cellulose fiber and glass fiber α was prepared in the same manner as in Example 1, except when 5 g of glass fiber α was added (Example 4) or when 7.5 g of glass fiber α was added to 536 g of cellulose fiber dispersion (Example 5). Mixed dispersion B (Example 2), mixed dispersion C (Example 3), mixed dispersion D (Example 4) of cellulose fiber and glass fiber α with a content of 1% by weight,
Mixed dispersion liquid E (Example 5) was obtained, and water-containing inorganic compound-containing paper B (Example 2) and water-containing inorganic compound-containing paper C (
Example 3), paper d containing a hydrous inorganic compound (Example 4), and paper e containing a hydrous inorganic compound (Example 5) were obtained.

含水無機化合物含有紙す、c、d、eについて、米坪、
厚さ、密度、含水無機化合物の歩留及び難燃性をそれぞ
れ測定し、その結果を第1表及び第1図に示した。
Regarding paper sheets containing hydrous inorganic compounds, c, d, e, yonetsubo,
The thickness, density, yield of hydrated inorganic compound, and flame retardancy were measured, and the results are shown in Table 1 and Figure 1.

実施例6〜8 実施例6の場合は実施例3において、実施例7の場合は
実施例4において、実施例8の場合は実施例5において
、それぞれガラス繊維αの代りに直径3μmのガラス繊
維(以下、ガラス繊維βと略称する)を用いる以外は、
実施例6の場合は実施例3と、実施例7の場合は実施例
4と、実施例8の場合は実施例5とそれぞれ同様にして
セルロース繊維とガラス繊維βの合計含有率が1重量%
のセルロース繊維とガラス繊維βめ混合分散液F(実施
例6)、混合分散液G(実施例7)、混合分散液H(実
施例8)をそれぞれ得て、含水無機化合物含有紙で(実
施例6)、含水無機化合物含有紙g(実施例7)、含水
無機化合物含有紙h(実施例8)をそれぞれ得た。
Examples 6 to 8 In the case of Example 6, in Example 3, in the case of Example 7, in Example 4, and in the case of Example 8, in Example 5, a glass fiber with a diameter of 3 μm was used instead of glass fiber α. (hereinafter abbreviated as glass fiber β)
The total content of cellulose fiber and glass fiber β was 1% by weight in the same manner as in Example 3 for Example 6, Example 4 for Example 7, and Example 5 for Example 8.
A mixed dispersion F (Example 6), a mixed dispersion G (Example 7), and a mixed dispersion H (Example 8) of cellulose fiber and glass fiber β were obtained, respectively, and a water-containing inorganic compound-containing paper (implementation) was obtained. Example 6), paper g containing a hydrous inorganic compound (Example 7), and paper h containing a hydrous inorganic compound (Example 8) were obtained.

含水無機化合物含有紙f、g、hについて、米坪、厚さ
、密度、含水無機化合物の歩留及び難燃性をそれぞれ測
定し、その結果を第1表及び第1図に示した。
The basis weight, thickness, density, yield of hydrated inorganic compound, and flame retardance of papers f, g, and h containing hydrated inorganic compounds were measured, and the results are shown in Table 1 and FIG. 1.

実施例9 セルロース繊維分散液■725gに直径1μmのガラス
繊維(以下、ガラス繊維γと略称する)5gを加え、さ
らに水770gを加え、難解機にて撹拌混合し、セルロ
ース繊維とガラス繊維γの合計含有率が1重量%のセル
ロース繊維とガラス繊維γの混合分散液工を得た。
Example 9 5 g of glass fibers with a diameter of 1 μm (hereinafter abbreviated as glass fiber γ) were added to 725 g of cellulose fiber dispersion ■, and 770 g of water was further added, and the mixture was stirred and mixed in a difficult-to-dissolve machine to dissolve cellulose fibers and glass fiber γ. A mixed dispersion of cellulose fiber and glass fiber γ having a total content of 1% by weight was obtained.

混合分散液I  125gに水酸化アルミニウム粉体8
g?添加し、撹拌機にて十分に分散混合し、十研式テス
ト抄紙機にて手抄を行い、含水無機化合物含有紙iを得
た。
Mixed dispersion I 125g and aluminum hydroxide powder 8
G? The mixture was added, sufficiently dispersed and mixed using a stirrer, and hand-sheeted using a Juken-type test paper machine to obtain paper i containing water-containing inorganic compounds.

含水無機化合物含有紙1について、米坪、厚さ、密度、
含水無機化合物の歩留及び難燃性をそれぞれ測定し、そ
の結果を第1表に示した。
Regarding hydrated inorganic compound-containing paper 1, tsubo, thickness, density,
The yield and flame retardance of the hydrated inorganic compound were measured, and the results are shown in Table 1.

実施例10〜11 実施例9において、ガラス繊維γの代りに、実施例10
の場合はガラス繊維αを、実施例11の場合は直径0.
32μmのガラス繊維をそれぞれ用いる場合以外は、実
施例9と同様にしてセルロース繊維とガラス繊維の合計
含有率が1重量%のセルロース繊維とガラス繊維αの混
合分散液J(実施例10)を、実施例11の場合はセル
ロース繊維と直径0.32μmのガラス繊維(以下、ガ
ラス繊維δと略称する)の混合分散液Kをそれぞれ得て
、含水無機化合物含有紙j(実施例10)、含水無機化
合物含有紙k(実施例11)をそれぞれ得た含水無機化
合物含有紙j、kについて、米坪、厚さ、密度、含水無
機化合物の歩留及び難燃性をそれぞれ測定し、その結果
を第1表に示した。
Examples 10 to 11 In Example 9, instead of glass fiber γ, Example 10
In the case of Example 11, the glass fiber α was used, and in the case of Example 11, the diameter was 0.
A mixed dispersion J (Example 10) of cellulose fibers and glass fiber α with a total content of cellulose fibers and glass fibers of 1% by weight was prepared in the same manner as in Example 9 except when using 32 μm glass fibers, respectively. In the case of Example 11, a mixed dispersion K of cellulose fibers and glass fibers with a diameter of 0.32 μm (hereinafter abbreviated as glass fiber δ) was obtained, and paper j containing a hydrous inorganic compound (Example 10) and a hydrous inorganic compound were obtained. The grammage, thickness, density, yield of the hydrated inorganic compound, and flame retardancy were measured for the hydrated inorganic compound-containing papers j and k obtained from the compound-containing paper k (Example 11), respectively, and the results were It is shown in Table 1.

比較例1 実施例1において、直径0、.65μmのガラス繊維を
加えない以外は実施例1と同様にして、セルロース繊維
含有率が1重量%のセルロース繊維分散液りを得て、含
水無機化合物含有紙1を得た。
Comparative Example 1 In Example 1, diameters of 0, . A cellulose fiber dispersion liquid having a cellulose fiber content of 1% by weight was obtained in the same manner as in Example 1 except that the 65 μm glass fiber was not added, and a water-containing inorganic compound-containing paper 1 was obtained.

含水無機化合物含有紙1について、米坪、厚さ、密度、
含水無機化合物の歩留及び難燃性をそれぞれ測定し、そ
の結果を第1表及び第1図に示した。
Regarding hydrated inorganic compound-containing paper 1, tsubo, thickness, density,
The yield and flame retardance of the hydrated inorganic compound were measured, and the results are shown in Table 1 and Figure 1.

比較例2〜6 比較例2の場合は実施例1において、比較例3の場合は
実施例2において、比較例4の場合は実施例3において
、比較例5の場合は実施例4において、比較例6の場合
は実施例5において、それぞれガラス繊維αの代りに直
径5μmのガラス繊維(以下、ガラス繊維εと略称する
)を用いる以外は、比較例2の場合は実施例1と、比較
例3の場合は実施例2と、比較例4の場合は実施例3と
、比較例5の場合は実施例4と、比較例6の場合は実施
例5とそれぞれ同様にして、セルロース繊維とガラス繊
維εの合計含有率が1重量%のセルロース繊維とガラス
繊維εの混合分散液M(比較例2)、混合分散液N(比
較例3)、混合分散液O(比較例4)、混合分散液P(
比較例5)を、混合分散液Q(比較例6)それぞれ得て
、含水無機化合物含有紙m(比較例2)、含水無機化合
物含有紙n(比較例3)、含水無機化合物含有紙0(比
較例4)、含水無機化合物含有紙p(比較例5)、含水
無機化合物含有紙q(比較例6)をそれぞれ得た。
Comparative Examples 2 to 6 Comparative Example 2 in Example 1, Comparative Example 3 in Example 2, Comparative Example 4 in Example 3, Comparative Example 5 in Example 4, Example 6 is the same as Example 5, except that a glass fiber with a diameter of 5 μm (hereinafter abbreviated as glass fiber ε) is used instead of the glass fiber α, and Comparative Example 2 is the same as Example 1, and the comparative example is Cellulose fibers and glass Mixed dispersion M (comparative example 2), mixed dispersion N (comparative example 3), mixed dispersion O (comparative example 4), mixed dispersion of cellulose fiber and glass fiber ε with a total fiber ε content of 1% by weight Liquid P (
Comparative Example 5) and mixed dispersion Q (Comparative Example 6) were obtained, and paper m containing a hydrous inorganic compound (Comparative Example 2), paper n containing a hydrous inorganic compound (Comparative Example 3), paper containing a hydrous inorganic compound 0 ( Comparative Example 4), paper p containing a hydrous inorganic compound (Comparative Example 5), and paper q containing a hydrous inorganic compound (Comparative Example 6) were obtained.

含水無機化合物含有紙m、n、as P、 qについて
、米坪、厚さ、密度、含水無機化合物の歩留及び難燃性
をそれぞれ測定し、その結果を第1表及び第1図に示し
た。
The tsubo, thickness, density, yield of hydrated inorganic compounds, and flame retardance of papers m, n, as P, and q containing hydrated inorganic compounds were measured, and the results are shown in Table 1 and Figure 1. Ta.

比較例7 実施例9において、ガラス繊維γを加えない以外は、実
施例9と同様にしてセルロース繊維含有率が1重量%の
セルロース繊維分散液Rを得て、含水無機化合物含有紙
rを得た。
Comparative Example 7 A cellulose fiber dispersion R with a cellulose fiber content of 1% by weight was obtained in the same manner as in Example 9, except that glass fiber γ was not added, and a paper r containing a hydrous inorganic compound was obtained. Ta.

含水無機化合物含有紙rについて、米坪、厚さ、密度、
含水無機化合物の歩留及び難燃性をそれぞれ測定し、そ
の結果を第1表に示した。
Regarding paper r containing hydrous inorganic compounds, tsubo, thickness, density,
The yield and flame retardance of the hydrated inorganic compound were measured, and the results are shown in Table 1.

実施例12 実施例9で得たセルロース繊維とガラス繊維γの混合分
散液1 300gに水酸化アルミニウム粉体5gを添加
し、撹拌機にて十分に分散混合し、十研式テスト抄紙機
にて手抄を行い、含水無機化合物を含有する紙層な得た
。同様の操作をさらに2回行い、得られた合計3枚の含
水無機化合物を含有する紙層な湿潤状態にて重ね合わせ
た後、常法にて圧搾、乾燥し含水無機化合物含有ボード
Sを得た。含水無機化合物含有ボードSについて、米坪
、厚さ、密度、含水無機化合物の歩留及び難燃性をそれ
ぞれ測定しその結果を第2表に示した。
Example 12 5 g of aluminum hydroxide powder was added to 300 g of mixed dispersion 1 of cellulose fiber and glass fiber γ obtained in Example 9, thoroughly dispersed and mixed using a stirrer, and processed using a Juken test paper machine. A paper layer containing a hydrous inorganic compound was obtained by hand-making. The same operation was carried out two more times, and the resulting three paper layers containing the hydrated inorganic compound were superimposed in a wet state, and then compressed and dried in a conventional manner to obtain the hydrated inorganic compound-containing board S. Ta. Regarding the hydrated inorganic compound-containing board S, the basis weight, thickness, density, yield of hydrated inorganic compound, and flame retardance were measured, and the results are shown in Table 2.

実施例13 混合分散液I  400gに水酸化アルミニウム粉体4
.5gを添加する以外は実施例12と同様にして、含水
無機化合物含有ボードtを得た。
Example 13 Aluminum hydroxide powder 4 to 400 g of mixed dispersion I
.. A water-containing inorganic compound-containing board t was obtained in the same manner as in Example 12 except that 5 g was added.

含水無機化合物含有ボードtについて、米坪、厚さ、密
度、含水無機化合物の歩留及び難燃性をそれぞれ測定し
、その結果を第2表に示した。
Regarding the hydrated inorganic compound-containing board t, the basis weight, thickness, density, yield of hydrated inorganic compound, and flame retardance were measured, and the results are shown in Table 2.

実施例14 実施例9で得た混合分散液I 3000gに水酸化アル
ミニウム粉体45 gを添加し、撹拌機にて十分に分散
混合し、標準角型テスト抄紙機にて手抄を行い、含水無
機化合物含有ボードUを得た。
Example 14 45 g of aluminum hydroxide powder was added to 3000 g of the mixed dispersion I obtained in Example 9, thoroughly dispersed and mixed using a stirrer, and hand-made using a standard square test paper machine. An inorganic compound-containing board U was obtained.

含水無機化合物含有ボードUについて、米坪、厚さ、密
度、含水無機化合物の歩留及び難燃性をそれぞれ測定し
、その結果を第2表に示した。
Regarding the hydrated inorganic compound-containing board U, the basis weight, thickness, density, yield of hydrated inorganic compound, and flame retardance were measured, and the results are shown in Table 2.

比較例8〜9 比較例8の場合は実施例12において、比較例9の場合
は実施例14において、混合分散液工の代りにそれぞれ
セルロース繊維分散液Rを用いる以外は、比較例8の場
合は実施例12と、比較例9の場合は実施例14とそれ
ぞれ同様にして、含水無機化合物含有ボードV(比較例
8)、含水無機化合物含有ボードW(比較例9〉をそれ
ぞれ得た。
Comparative Examples 8 to 9 Comparative Example 8 except that cellulose fiber dispersion R was used instead of the mixed dispersion in Example 12 for Comparative Example 8 and Example 14 for Comparative Example 9, respectively. In the case of Example 12 and Comparative Example 9, a board V containing a hydrated inorganic compound (Comparative Example 8) and a board W containing a hydrated inorganic compound (Comparative Example 9) were obtained in the same manner as in Example 14.

含水無機化合物含有ボードv、wについて、米坪、厚さ
、密度、含水無機化合物の歩留及び難燃性をそれぞれ測
定し、その結果を第2表に示した実施例15 実施例1で得たセルロース繊維とガラス繊維αの混合分
散液A 200gに水酸化アルミニウム粉体1gを添加
し、撹拌機にて十分に分散混合し、水を加え1000m
+1とし、直径4μm以下のガラス繊維と含水無機化合
物の所定量を含有せしめたセルロース繊維分散スラリー
の濾水度を測定し、その結果を第3表及び第2図に示し
た。
Example 15 The basis weight, thickness, density, yield of the hydrated inorganic compound, and flame retardancy of the hydrated inorganic compound-containing boards v and w were measured, and the results are shown in Table 2. 1 g of aluminum hydroxide powder was added to 200 g of mixed dispersion A of cellulose fibers and glass fibers α, thoroughly dispersed and mixed with a stirrer, and then water was added and the mixture was heated for 1000 m
+1, and the freeness of a cellulose fiber dispersion slurry containing glass fibers with a diameter of 4 μm or less and a predetermined amount of a hydrous inorganic compound was measured, and the results are shown in Table 3 and FIG.

同様に、混合分散液A 100gに水酸化アルミニウム
粉体2gを添加し、撹拌機にて十分に分散混合した後、
水を加え10100Oとし、直径4μm以下のガラス繊
維と含水無機化合物の所定量を含有せしめたセルロース
繊維分散スラリーの濾水度を測定し、その結果を第3表
及び第2図に示した。
Similarly, 2 g of aluminum hydroxide powder was added to 100 g of mixed dispersion A, and after sufficiently dispersing and mixing with a stirrer,
Water was added to bring the slurry to 10,100 O, and the freeness of a cellulose fiber dispersion slurry containing glass fibers with a diameter of 4 μm or less and a predetermined amount of a water-containing inorganic compound was measured, and the results are shown in Table 3 and FIG.

さらに、混合分散液A25gに水酸化アルミニウム粉体
2.75 gを添加し、撹拌機にて十分に分散混合した
後、水を加え10100Oとし、直径4μm以下のガラ
ス繊維と含水無機化合物の所定量を含有せしめたセルロ
ース繊維分散スラリーの濾水度を測定し、その結果を第
3表及び第2図に示した実施例16〜25 実施例15において、混合分散液Aの代りに混合分散液
B(実施例16)を、混合分散液C(実施例17)を、
混合分散液D(実施例18)を、混合分散液E(実施例
19)を、混合分散液F(実施例20)を、混合分散液
G(実施例21)を、混合分散液H(実施例22)を、
混合分散液I(実施例23)を、混合分散液J(実施例
24)を、混合分散液K(実施例25)をそれぞれ用い
る以外は実施例15と同様にして、直径4μm以下のガ
ラス繊維と含水無機化合物の所定量を含有せしめたセル
ロース繊維分散スラリーの濾水度を測定し、その結果を
第3表、第2図及び第3図にそれぞれ示した。
Furthermore, 2.75 g of aluminum hydroxide powder was added to 25 g of mixed dispersion A, and after sufficiently dispersing and mixing with a stirrer, water was added to bring the temperature to 10,100 O, and a predetermined amount of glass fibers with a diameter of 4 μm or less and a water-containing inorganic compound were added. Examples 16 to 25 The freeness of the cellulose fiber dispersion slurry containing the following was measured and the results are shown in Table 3 and Figure 2.In Example 15, mixed dispersion B was used instead of mixed dispersion A. (Example 16), mixed dispersion C (Example 17),
Mixed dispersion D (Example 18), mixed dispersion E (Example 19), mixed dispersion F (Example 20), mixed dispersion G (Example 21), mixed dispersion H (Example 20), Example 22),
Glass fibers with a diameter of 4 μm or less were prepared in the same manner as in Example 15 except that mixed dispersion I (Example 23), mixed dispersion J (Example 24), and mixed dispersion K (Example 25) were used. The freeness of a cellulose fiber dispersion slurry containing a predetermined amount of a water-containing inorganic compound and a water-containing inorganic compound was measured, and the results are shown in Table 3, FIG. 2, and FIG. 3, respectively.

比較例10 比較例1で得たセルロース繊維分散液L 300gに水
を加え10100Oとし、セルロース繊維分散スラリー
の濾水度を測定し、その結果を第3表、第3図及び第4
図にそれぞれ示した。
Comparative Example 10 Water was added to 300 g of the cellulose fiber dispersion L obtained in Comparative Example 1 to make it 10,100 O, and the freeness of the cellulose fiber dispersion slurry was measured. The results are shown in Table 3, Figures 3 and 4.
Each is shown in the figure.

比較例11〜25 比較例10において、セルロース繊維分散液りの代りに
混合分散液A(比較例11)を、混合分散液B(比較例
12)を、混合分散液C(比較例13)を、混合分散液
D(比較例14)を、混合分散液E(比較例15)を、
混合分散液F(比較例16)を、混合分散液G(比較例
17)を、混合分散液H(比較例18)を、混合分散液
I(比較例19)を、混合分散液J(比較例20)を、
混合分散液K(比較例21)を、混合分散液0(比較例
22)を、混合分散液P(比較例23)を、混合分散液
Q(比較例24)を、セルロース繊維分散液R(比較例
25)をそれぞれ用いる以外は、比較例10と同様にし
てガラス繊維を含有せしめたセルロース繊維分散スラリ
ー及びセルロース繊維分散スラリーをそれぞれ得て該セ
ルロース繊維分散スラリーの濾水度を測定し、その結果
な第3表、第2図、第3図及び第4図にそれぞれ示した
Comparative Examples 11 to 25 In Comparative Example 10, mixed dispersion A (Comparative Example 11), mixed dispersion B (Comparative Example 12), and mixed dispersion C (Comparative Example 13) were used instead of the cellulose fiber dispersion. , mixed dispersion D (comparative example 14), mixed dispersion E (comparative example 15),
Mixed dispersion F (Comparative example 16), mixed dispersion G (Comparative example 17), mixed dispersion H (Comparative example 18), mixed dispersion I (Comparative example 19), mixed dispersion J (Comparative example) Example 20),
Mixed dispersion K (Comparative example 21), mixed dispersion 0 (Comparative example 22), mixed dispersion P (Comparative example 23), mixed dispersion Q (Comparative example 24), cellulose fiber dispersion R ( A cellulose fiber-dispersed slurry containing glass fibers and a cellulose fiber-dispersed slurry were obtained in the same manner as in Comparative Example 10, except that Comparative Example 25) was used, and the freeness of the cellulose fiber-dispersed slurry was measured. The results are shown in Table 3, Figure 2, Figure 3 and Figure 4, respectively.

比較例26〜3゜ 実施例15において、混合分散液Aの代りにセルロース
繊維分散液L(比較例26)を、混合分散液0(比較例
27)を、混合分散液P(比較例28)を、混合分散液
Q(比較例29)を、セルロース繊維分散液R(比較例
30)をそれぞれ用いる以外は実施例15と同様にして
、含水無機化合物を含有せしめたセルロース繊維分散ス
ラリーの濾水度及びガラス繊維と含水無機化合物を含有
せしめたセルロース繊維分散スラリーの濾水度をそれぞ
れ測定し、その結果を第3表、第2図、第3図及び第4
図にそれぞれ示した。
Comparative Examples 26 to 3° In Example 15, instead of mixed dispersion A, cellulose fiber dispersion L (Comparative Example 26), mixed dispersion 0 (Comparative Example 27), and mixed dispersion P (Comparative Example 28) were used. Filtered cellulose fiber dispersion slurry containing a hydrous inorganic compound was prepared in the same manner as in Example 15 except that mixed dispersion Q (Comparative Example 29) and cellulose fiber dispersion R (Comparative Example 30) were used. The freeness of cellulose fiber dispersion slurry containing glass fibers and hydrated inorganic compounds was measured, and the results are shown in Table 3, Figure 2, Figure 3 and Figure 4.
Each is shown in the figure.

比較例31 水1485gにガラス繊維α 15 gを添加し、離解
機にて離解しガラス繊維含有率が1重量%のガラス繊維
分散液Sを得た。
Comparative Example 31 15 g of glass fiber α was added to 1485 g of water and disintegrated in a disintegrator to obtain a glass fiber dispersion S having a glass fiber content of 1% by weight.

ガラス繊維分散液3300gに水を加え10100Oと
しガラス繊維分散スラリーの濾水度を測定し、その結果
を第3表及び第2図にそれぞれ示した。
The freeness of the glass fiber dispersion slurry was measured by adding water to 3,300 g of the glass fiber dispersion and bringing the temperature to 10,100 O. The results are shown in Table 3 and FIG. 2, respectively.

同様に、ガラス繊維分散液5200gに水酸化アルミニ
ウム粉体1gを添加し、撹拌機にて十分に分散混合した
後、水を加え1000i1とし、含水無機化合物を含有
せしめたガラス繊維分散スラリーの濾水度を測定し、そ
の結果を第3表及び第2図に示した。
Similarly, 1 g of aluminum hydroxide powder was added to 5200 g of the glass fiber dispersion, and the mixture was thoroughly dispersed and mixed using a stirrer, and then water was added to make 1000 l, and the glass fiber dispersion slurry containing the hydrous inorganic compound was filtered. The results are shown in Table 3 and Figure 2.

また同様に、ガラス繊維分散液8 100gに水酸化ア
ルミニウム粉体2gを添加し、撹拌機にて十分に分散混
合した後、水を加えて1000gとし、含水無機化合物
を含有せしめたガラス繊維分散スラリーの濾水度を測定
し、その結果を第3表及び第2図に示した。
Similarly, 2 g of aluminum hydroxide powder was added to 100 g of glass fiber dispersion 8, sufficiently dispersed and mixed with a stirrer, and then water was added to make 1000 g, resulting in a glass fiber dispersion slurry containing a hydrous inorganic compound. The freeness was measured and the results are shown in Table 3 and Figure 2.

さらに、ガラス繊維分散液825gに水酸化アルミニウ
ム粉体2.75 gを添加し、撹拌機にて十分に分散混
合した後、水を加え1000i1とし、含水無機化合物
を含有せしめたガラス繊維分散スラリーの濾水度を測定
し、その結果を第3表及び第2図に示した。
Furthermore, 2.75 g of aluminum hydroxide powder was added to 825 g of the glass fiber dispersion, and after sufficiently dispersing and mixing with a stirrer, water was added to make the glass fiber dispersion slurry of 1000 l. The freeness was measured and the results are shown in Table 3 and Figure 2.

比較例32〜35 比較例31において、ガラス繊維αの代りに、ガラス繊
維β(比較例32)を、ガラス繊維ε(比較例33)を
、ガラス繊維γ(比較例34)を、ガラス繊維δ(比較
例35)をそれぞれ用いる以外は、比較例31と同様に
してガラス繊維分散液T(比較例32)を、ガラス繊維
分散液U(比較例33)を、ガラス繊維分散液V(比較
例34)を、ガラス繊維分散液W(比較例35)をそれ
ぞれ得た。
Comparative Examples 32 to 35 In Comparative Example 31, instead of glass fiber α, glass fiber β (Comparative Example 32), glass fiber ε (Comparative Example 33), glass fiber γ (Comparative Example 34), glass fiber δ Glass fiber dispersion T (Comparative example 32), glass fiber dispersion U (Comparative example 33), glass fiber dispersion V (Comparative example 34) and glass fiber dispersion W (Comparative Example 35) were obtained, respectively.

さらに比較例31において、ガラス繊維分散液Sの代り
に、ガラス繊維分散液T(比較例32)を、ガラス繊維
分散液U(比較例33)を、ガラス繊維分散液V(比較
例34)を、ガラス繊維分散液W(比較例35)をそれ
ぞれ用いる以外は比較例31と同様にして、ガラス繊維
分散スラリーの濾水度及び含水無機化合物を含有せしめ
たガラス繊維分散スラリーの濾水度をそれぞれ測定し、
その結果を第3表、第3図及び第4図にそれぞれ示した
Further, in Comparative Example 31, instead of glass fiber dispersion S, glass fiber dispersion T (comparative example 32), glass fiber dispersion U (comparative example 33), and glass fiber dispersion V (comparative example 34) were used. The freeness of the glass fiber dispersion slurry and the freeness of the glass fiber dispersion slurry containing a hydrous inorganic compound were determined in the same manner as in Comparative Example 31 except that , glass fiber dispersion W (Comparative Example 35) was used, respectively. measure,
The results are shown in Table 3, Figure 3, and Figure 4, respectively.

以下、余白 第1表、第2表及び第1図から明らかなように、直径4
μm以下のガラス繊維の所定量を含有せしめた含水無機
化合物含有セルロース繊維分散スラリーを用いて、通常
の抄紙方法で抄紙することにより、含水無機化合物の紙
あるいはボード中への歩留が飛躍的に向上し、特に該ガ
ラス繊維の含有量がごく微量であってもきわめて顕著な
含水無機化合物の歩留向上効果が得られ、結果的に、き
わめて容易かつ経済的に所望の難燃性を有する難燃紙及
び難燃ボードを製造することができることがわかる。
As is clear from the margin Tables 1 and 2 and Figure 1 below, the diameter is 4
By using a cellulose fiber dispersion slurry containing hydrous inorganic compounds containing a predetermined amount of glass fibers of µm or less in size and making paper using a normal papermaking method, the retention of hydrous inorganic compounds in the paper or board can be dramatically increased. In particular, even if the content of the glass fiber is very small, a very remarkable effect of improving the retention of water-containing inorganic compounds can be obtained, and as a result, it is possible to obtain a flame retardant that has the desired flame retardancy very easily and economically. It can be seen that burnable paper and flame retardant board can be produced.

また第3表、第2図、第3図及び第4図から明らかなよ
うに、直径4μm以下のガラス繊維の所定量をスラリー
中に含有せしめることにより、含水無機化合物を含有す
るスラリーの保水性能が飛躍的に向上し、特に該ガラス
繊維の含有量がごく微量であってもきわめて顕著な保水
性能の向上効果が得られることがわかる。
Furthermore, as is clear from Table 3, FIG. 2, FIG. 3, and FIG. It can be seen that the water retention performance is dramatically improved, and even if the content of the glass fibers is extremely small, an extremely significant improvement in water retention performance can be obtained.

[発明の効果コ 以上、詳述したように本発明は、直径4μm以下のガラ
ス繊維と含水無機化合物の所定量を含有せしめたセルロ
ース繊維分散スラリーを調成し、通常の抄紙方法で抄造
することにより、水酸化アルミニウムの如き含水無機化
合物を多量に含有するスラリーの保水性能が向上するこ
ととなり、難燃性に悪影響を及ぼす有機系歩留向上剤等
を使用しなくとも該含水無機化合物の紙あるいはボード
中への歩留を飛躍的に同上せしめることができる。また
、きわめて容易かつ経済的に所望の難燃性を有する難燃
紙または難燃ボードを製造することができる。
[Effects of the Invention] As detailed above, the present invention involves preparing a cellulose fiber dispersion slurry containing glass fibers with a diameter of 4 μm or less and a predetermined amount of a hydrous inorganic compound, and making paper using a normal papermaking method. As a result, the water retention performance of slurry containing a large amount of hydrated inorganic compounds such as aluminum hydroxide can be improved, and paper made of hydrated inorganic compounds such as aluminum hydroxide can be improved without using organic retention aids that have a negative effect on flame retardancy. Alternatively, the yield into the board can be dramatically increased. Moreover, flame-retardant paper or flame-retardant board having desired flame retardancy can be produced very easily and economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は含水無機化合物の歩留とスラリー中のセルロー
ス繊維とガラス繊維の合計重量に占めるガラス繊維の含
有率との関係図、第2〜4図はスラリーの濾水度とスラ
リー中のセルロース繊維とガラス繊維の合計重量に占め
るガラス繊維の含有率との関係図であり、第2図はガラ
ス繊維αを用いた場合を、第3図はガラス繊維βを用い
た場合を、第4図はガラス繊維Cを用いた場合をそれぞ
れ示す。
Figure 1 shows the relationship between the yield of hydrous inorganic compounds and the content of glass fiber in the total weight of cellulose fibers and glass fibers in the slurry, and Figures 2 to 4 show the freeness of the slurry and the cellulose in the slurry. This is a diagram showing the relationship between the content of glass fiber in the total weight of fibers and glass fibers. Figure 2 shows the case where glass fiber α is used, Figure 3 shows the case where glass fiber β is used, and Figure 4 shows the case where glass fiber β is used. shows the case where glass fiber C was used.

Claims (3)

【特許請求の範囲】[Claims] (1)セルロース繊維を固形分で5〜60重量%、含水
無機化合物を固形分で15〜94重量%、直径4μm以
下のガラス繊維を固形分で0.05〜80重量%含有す
るスラリーを調成して抄造することを特徴とする難燃紙
または難燃ボードの製造方法。
(1) Prepare a slurry containing 5-60% by weight of cellulose fibers, 15-94% by weight of hydrated inorganic compounds, and 0.05-80% by weight of glass fibers with a diameter of 4 μm or less. 1. A method for producing flame-retardant paper or board, which comprises forming a flame-retardant paper or a flame-retardant board.
(2)含水無機化合物は水酸化アルミニウム、水酸化マ
グネシウム、水酸化カルシウム、2水和石こう及びアル
ミン酸化カルシウムの中から選ばれた少なくとも1種類
からなる特許請求の範囲第1項記載の難燃紙または難燃
ボードの製造方法。
(2) The flame-retardant paper according to claim 1, wherein the hydrated inorganic compound is at least one selected from aluminum hydroxide, magnesium hydroxide, calcium hydroxide, gypsum dihydrate, and calcium aluminoxide. Or how to make flame retardant boards.
(3)抄造に際しては、紙層を2層以上に重ね合わせて
行なうようにした特許請求の範囲第1項または第2項記
載の難燃紙または難燃ボードの製造方法。
(3) A method for producing flame-retardant paper or a flame-retardant board according to claim 1 or 2, wherein the paper is formed by overlapping two or more paper layers.
JP13264989A 1989-05-29 1989-05-29 Production of flame-retardant paper or flame-retardant board Granted JPH03897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13264989A JPH03897A (en) 1989-05-29 1989-05-29 Production of flame-retardant paper or flame-retardant board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13264989A JPH03897A (en) 1989-05-29 1989-05-29 Production of flame-retardant paper or flame-retardant board

Publications (2)

Publication Number Publication Date
JPH03897A true JPH03897A (en) 1991-01-07
JPH0450437B2 JPH0450437B2 (en) 1992-08-14

Family

ID=15086261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13264989A Granted JPH03897A (en) 1989-05-29 1989-05-29 Production of flame-retardant paper or flame-retardant board

Country Status (1)

Country Link
JP (1) JPH03897A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148798A (en) * 1991-07-11 1993-06-15 Hokuetsu Paper Mills Ltd Flame retardant paper or board
JP2002309500A (en) * 2001-04-11 2002-10-23 Hokuetsu Paper Mills Ltd Sheet-shaped incombustible formed product and method for producing the same
JP2002339297A (en) * 2001-05-18 2002-11-27 Hokuetsu Paper Mills Ltd Sheet-like non-combustible molded body and method for manufacturing the same
JP2002339296A (en) * 2001-05-17 2002-11-27 Hokuetsu Paper Mills Ltd Sheet-like non-combustible decorative material
US6551607B1 (en) 1998-12-31 2003-04-22 Kimberly-Clark Worldwide, Inc. Method for sequestration of skin irritants with substrate compositions
WO2017099198A1 (en) * 2015-12-10 2017-06-15 住友ベークライト株式会社 Flame-retardant sheet-forming body, method for producing flame-retardant sheet-formed product, and method for producing flame-retardant sheet-forming body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112594A (en) * 1980-02-05 1981-09-04 Nisshin Kogyo Kk Production of fire retardant coated paper
JPS575999A (en) * 1980-06-05 1982-01-12 Fuji Kakou Seishi Kk Production of fire retardant paper
JPS59223400A (en) * 1983-05-31 1984-12-15 小泉 洋 Inorganic sheet
JPS6241399A (en) * 1985-08-13 1987-02-23 本州製紙株式会社 Inorganic sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112594A (en) * 1980-02-05 1981-09-04 Nisshin Kogyo Kk Production of fire retardant coated paper
JPS575999A (en) * 1980-06-05 1982-01-12 Fuji Kakou Seishi Kk Production of fire retardant paper
JPS59223400A (en) * 1983-05-31 1984-12-15 小泉 洋 Inorganic sheet
JPS6241399A (en) * 1985-08-13 1987-02-23 本州製紙株式会社 Inorganic sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148798A (en) * 1991-07-11 1993-06-15 Hokuetsu Paper Mills Ltd Flame retardant paper or board
US6551607B1 (en) 1998-12-31 2003-04-22 Kimberly-Clark Worldwide, Inc. Method for sequestration of skin irritants with substrate compositions
JP2002309500A (en) * 2001-04-11 2002-10-23 Hokuetsu Paper Mills Ltd Sheet-shaped incombustible formed product and method for producing the same
JP2002339296A (en) * 2001-05-17 2002-11-27 Hokuetsu Paper Mills Ltd Sheet-like non-combustible decorative material
JP4678631B2 (en) * 2001-05-17 2011-04-27 北越紀州製紙株式会社 Sheet-like incombustible cosmetic material
JP2002339297A (en) * 2001-05-18 2002-11-27 Hokuetsu Paper Mills Ltd Sheet-like non-combustible molded body and method for manufacturing the same
WO2017099198A1 (en) * 2015-12-10 2017-06-15 住友ベークライト株式会社 Flame-retardant sheet-forming body, method for producing flame-retardant sheet-formed product, and method for producing flame-retardant sheet-forming body
JPWO2017099198A1 (en) * 2015-12-10 2018-09-27 住友ベークライト株式会社 Flame retardant papermaking, method for producing flame retardant papermaking molded product, and method for producing flame retardant papermaking

Also Published As

Publication number Publication date
JPH0450437B2 (en) 1992-08-14

Similar Documents

Publication Publication Date Title
US4077833A (en) Fire resistant, bauxite-containing, wood composition board
EP3754102A1 (en) Flame-retardant composite fiber and method for producing same
IE52660B1 (en) Gypsum wallboard paper
DE69223349T2 (en) Paper used as a base paper for gypsum board and process for its manufacture
CN109881528A (en) A kind of flame-retardant decorative body paper and preparation method thereof using fire-retardant plant fiber preparation
JP2652083B2 (en) Method for producing flame-retardant paper or board or flame-retardant molded article
JPH03897A (en) Production of flame-retardant paper or flame-retardant board
JP4866758B2 (en) Non-combustible sheet or non-combustible molded product
JP2520336B2 (en) Flame retardant paper or flame retardant board
CH524713A (en) Non-textile product containing cellulose fibers, in particular paper, and process for the production thereof
JPS59157397A (en) Paperboard for gypsum board
JPS6014685B2 (en) Method for producing nonflammable coated paper
JP4110431B2 (en) Flame retardant paper
JP4214495B2 (en) Separator paper for air conditioning filter
JP2007270368A (en) Nonflammable sheet or nonflammable formed article
JPH0778127B2 (en) Flame-retardant sheet or flame-retardant molded product
JPS59100798A (en) Fire retardant backing paper of wall paper
JP3646239B2 (en) Separator paper for air conditioning filter
JPH01266298A (en) Nonflammable paper for backing of vinyl wallpaper and vinyl wallpaper using said nonflammable paper
JPH06287892A (en) Flameproof paper and its production
CN1151978A (en) Fireproof inorganic decorating board and its prodn
JP2520336C (en)
JPH0450400A (en) Flame retardant paper for baking of vinyl
JPH01132899A (en) Incombustible gypsum board base paper
JP2553230B2 (en) Glass fiber paper manufacturing method