[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0387084A - Narrow bandwidth laser equipment - Google Patents

Narrow bandwidth laser equipment

Info

Publication number
JPH0387084A
JPH0387084A JP1286840A JP28684089A JPH0387084A JP H0387084 A JPH0387084 A JP H0387084A JP 1286840 A JP1286840 A JP 1286840A JP 28684089 A JP28684089 A JP 28684089A JP H0387084 A JPH0387084 A JP H0387084A
Authority
JP
Japan
Prior art keywords
light
wavelength
phase shifter
output
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1286840A
Other languages
Japanese (ja)
Other versions
JPH0797680B2 (en
Inventor
Nobuaki Furuya
古谷 伸昭
Takuhiro Ono
小野 拓弘
Naoya Horiuchi
直也 堀内
Keiichiro Yamanaka
山中 圭一郎
Takeo Miyata
宮田 威男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1286840A priority Critical patent/JPH0797680B2/en
Priority to DE69031884T priority patent/DE69031884T2/en
Priority to EP90103985A priority patent/EP0402570B1/en
Priority to US07/487,080 priority patent/US4985898A/en
Priority to CA002011361A priority patent/CA2011361C/en
Priority to KR1019900003141A priority patent/KR930002821B1/en
Priority to US07/626,145 priority patent/US5150370A/en
Publication of JPH0387084A publication Critical patent/JPH0387084A/en
Publication of JPH0797680B2 publication Critical patent/JPH0797680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0811Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain the most suitable laser equipment for an exposing light source free from the fluctuation of selected wavelength and the decrease of output, by installing a wavelength selecting element, a quarter-wavelength phase shifter, and a polarization separator, converting the polarization of a weak oscillation light in a narrow bandwidth with a quarter-wavelength phase shifter, amplifying the light with laser medium, and outputting the light from the polarization separator. CONSTITUTION:The propagation direction of a light 8 amplified by medium in a discharging tube 1 is divided by a polarization separator 5, in response to the component of a polarized light, and one component is radiated as an output light 7. The other component light is made to travel through the polarization separator 5; the wavelength of the above light 9 is selected by a Fabry-Perot etalon 6 and a total reflection mirror 2; the reflected light 10 is again made to travel through the separator 5, and amplified with the medium, this amplified light 11 is made to enter a quarter-wavelength phase shifter 4. After that, the light 11 is again made to travel through the phase shifter 4 by the phase shifter 4 and the total reflection mirror 3, thereby forming a light 12. As the result of two times travelling, the same effect as the travelling of a half-wavelength phase shifter is obtained, thereby transforming the light 11 polarized in one direction into the reflected light 12 having both polarization components. Hence the deformation and the deterioration of the etalon 6 can be remarkably reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路の超微細加工時に用いられる露
光用光源である狭帯域化レーザ装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a band-narrowing laser device that is an exposure light source used in ultra-fine processing of semiconductor integrated circuits.

従来の技術 従来よう、半導体集積回路の微細パターンの露光用光源
としてエキシマレーザが注目されている。
2. Description of the Related Art Excimer lasers have been attracting attention as a light source for exposing fine patterns of semiconductor integrated circuits.

エキシマL/−fハレーザ媒質としてクリプトン、キセ
ノン等の希ガスとふっ素、塩素等のハロゲンガスを組み
合わせることによp353nmから193nmの間のい
くつかの波長でパターン露光に十分な出力を有する発振
線を得ることができる。
By combining a rare gas such as krypton or xenon with a halogen gas such as fluorine or chlorine as an excimer L/-f laser medium, an oscillation line with sufficient output for pattern exposure at several wavelengths between 353 nm and 193 nm is produced. Obtainable.

これらエキシマレーザの利得バンド幅は約1nmと広く
、光共振器と組み合わせて発振させた場合、発振線が0
.5nm程度の帯域幅(半値全幅)を持つ。このように
比較的広い帯域幅を持っレーザ光を露光用光源として用
いた場合、N先光学系に色収差を補正した結像光学系を
採用する必要がある。ところが、波長が350 nm以
下の紫外域では、結像光学系に用いるレンズの光学材料
f)R択の幅が限られ1色収差の補正が困難となる。エ
キシマレーザを露光装置に用いる場合、レーザ発振線の
帯域幅を0.005nm程度にまで単色化できれば色収
差補正をしない結像光学系が利用可能となり1露光装置
の光学系の簡略化さらには露光装置全体の小型化、価格
の低減を実現できる。
The gain bandwidth of these excimer lasers is as wide as approximately 1 nm, and when oscillated in combination with an optical resonator, the oscillation line is 0.
.. It has a bandwidth (full width at half maximum) of about 5 nm. When a laser beam having such a relatively wide bandwidth is used as an exposure light source, it is necessary to employ an imaging optical system that corrects chromatic aberration as the N-point optical system. However, in the ultraviolet region where the wavelength is 350 nm or less, the range of optical materials for lenses used in the imaging optical system is limited, making it difficult to correct monochromatic aberration. When using an excimer laser in an exposure device, if the bandwidth of the laser oscillation line can be made monochromatic to about 0.005 nm, an imaging optical system that does not correct chromatic aberration can be used, which will simplify the optical system of the exposure device. The overall size and price can be reduced.

広い帯域幅を持つレーザ光を単色化するには。To make laser light with a wide bandwidth monochromatic.

狭い透過帯域を持つ波長選択フィルターを通せば。Pass it through a wavelength selective filter with a narrow transmission band.

良い。しかしこの方法ではレーザ出力が著しく減衰し、
露光用光源として実用に供することができない。そこ、
で、波長選択素子を共振器内に設置し出力を減衰させる
ことなく単色化する方法が一般に採用されている。この
−例として、例えば特開昭63−160287号公報記
載の構成が知られている。
good. However, with this method, the laser output is significantly attenuated,
It cannot be used practically as a light source for exposure. There,
Generally, a method is adopted in which a wavelength selection element is installed inside a resonator to make the output monochromatic without attenuating it. As an example of this, the configuration described in Japanese Patent Laid-Open No. 63-160287 is known.

以下、簡単にその構成を説明すると、第7図にその構成
を示すように、全反射鏡1o2.および半透過鏡103
からなる光共振器内に放電管101が置かれ、放電管1
01には希ガスとハロゲンガスを含む媒質ガスが封入さ
れておシ、放電励起によってレーザ発振する。光共振器
中には波長選択素子であるファプリベローエタロン10
4が設itされている。このような構成のエキシマレー
ザ装置では、ファプリベローエタロン)04で選択され
た特定の波長の光106.107.108.109だけ
が増幅、発振するので、非常に狭い帯域幅でかつ高い出
力の出力光105を得ることができる。
The structure will be briefly explained below. As shown in FIG. 7, the total reflection mirror 1o2. and semi-transparent mirror 103
A discharge tube 101 is placed in an optical resonator consisting of
01 is filled with a medium gas containing a rare gas and a halogen gas, and generates laser oscillation by discharge excitation. In the optical resonator, there is a Fabry bellow etalon 10 which is a wavelength selection element.
4 is set. In an excimer laser device with such a configuration, only the light 106, 107, 108, 109 of a specific wavelength selected by the fiber bellow etalon (04) is amplified and oscillated. Output light 105 can be obtained.

発明が解決しようとする課題 しかし、従来の狭帯域化レーザ装置では、光共戊 振器内に定挫する高いエネルギーの光が波長選択素子を
通過するため、波長選択素子の変形や劣化を招き選択波
長の変動や、出力の低下が発生し、その結果、1!光装
置の光源として用いた場合、製品に不良を生じるなどの
課題があったQ本発明はこのような課題を解決するため
なされたもので。
Problems to be Solved by the Invention However, in conventional narrowband laser devices, high-energy light that is trapped in the optical resonator passes through the wavelength selection element, leading to deformation and deterioration of the wavelength selection element. Fluctuations in the selected wavelength and reduction in output occur, resulting in 1! When used as a light source for an optical device, there were problems such as defects in the product.The present invention was made to solve these problems.

波長選択素子の変形、劣化による波長変動や出力の低下
がない狭帯域化レーザ装置を提供することを目的とする
It is an object of the present invention to provide a narrowband laser device that is free from wavelength fluctuations and output decreases due to deformation and deterioration of wavelength selection elements.

課題を解決するための手段 上記目的を達成するため、本発明の技術的解決手段は、
レーザ媒質と前記レーザ媒質を貫く共振器光路に第1、
及び第2の反射鏡とからなる光共振器と専記共振器光路
中に波長位相器と偏光分離器とを具備し、かつ前記レー
ザ媒質から前記偏光分離器を通シ出力光が出力される出
力光路以外の前記共振器光路中に設置した波長選択素子
とを具備したものである。
Means for Solving the Problems In order to achieve the above object, the technical solution of the present invention is as follows:
a laser medium and a resonator optical path passing through the laser medium;
and a second reflecting mirror, and a wavelength phase shifter and a polarization separator are provided in the optical path of the dedicated resonator, and output light is output from the laser medium through the polarization separator. A wavelength selection element is provided in the optical path of the resonator other than the output optical path.

作   用 本発明は、レーザ媒質を貫き波長選択素子を通る光共振
器で作られた特定の偏波面の光が波長位相器で偏波面を
変換されてレーザ媒質で増幅された後に、レーザ媒質か
ら偏光分離器を通シ、出力光として出力される。そのた
め、波長選択素子を通過する光エネルギーはレーザ媒質
の増幅率で出力光を割算した程度に低下するので、波長
選択素子の変形、劣化は著しく低減するものである。
Effects of the present invention The light of a specific polarization plane created by an optical resonator that passes through a laser medium and passes through a wavelength selection element is converted into a polarization plane by a wavelength phase shifter and amplified by the laser medium. It passes through a polarization separator and is output as output light. Therefore, the light energy passing through the wavelength selection element is reduced to the extent that the output light is divided by the amplification factor of the laser medium, so deformation and deterioration of the wavelength selection element is significantly reduced.

実施例 以下、第1図を参照しながら本発明の第1実施例につい
て説明する。
EXAMPLE Hereinafter, a first example of the present invention will be described with reference to FIG.

第1図は本発明の狭帯域化レーザ装置の構成図である。FIG. 1 is a block diagram of a band narrowing laser device of the present invention.

第1図において、希ガスとハロゲンの混合気体をレーザ
媒質とする放電管1と全反射鏡2.3からなる光共振器
にょシ、紫外域でレーザ発振する。光共振器の作る共振
器光路中には174波長位相器4と偏光分離器5が置か
れ、放電管1のレーザ媒質で増幅された出力光8は偏光
分離器5を通シ、出力光7となって出力される。
In FIG. 1, an optical resonator consisting of a discharge tube 1 and a total reflection mirror 2.3 using a mixture of rare gas and halogen as a laser medium oscillates as a laser in the ultraviolet region. A 174-wavelength phase shifter 4 and a polarization separator 5 are placed in the resonator optical path created by the optical resonator, and the output light 8 amplified by the laser medium of the discharge tube 1 passes through the polarization separator 5, and the output light 7 is output.

上記の出力光7,8が通る出力光路以外の共振器光路中
に波長選択素子であるファプリベローエタロン6が置か
れ、特定の狭い帯域の波長だけが選択的に光共振器を形
成することによって、特定の狂い波長の光だけがレーザ
発振する。
A Fabry bellows etalon 6, which is a wavelength selection element, is placed in the resonator optical path other than the output optical path through which the output lights 7 and 8 pass, and only wavelengths in a specific narrow band selectively form an optical resonator. As a result, only light with a specific out-of-range wavelength oscillates as a laser.

以上のような第1図の構成にかいて、以下その動作につ
き説明する。
The operation of the configuration shown in FIG. 1 as described above will be explained below.

放電管1のレーザ媒質で増幅された光8は偏光の成分に
よシ偏光分離器5で伝播方向が分かれ、一方の偏光成分
が出力光7となっ°て出力され、る。
The propagation direction of the light 8 amplified by the laser medium of the discharge tube 1 is separated by the polarization separator 5 depending on the polarization component, and one polarization component is output as the output light 7.

他の一方の偏光成分の光は偏光分離器5を通過し、光9
となって77プリペローエタン6と全反射鏡2で波長が
選択されて反射光10となシ再び偏光分離器5を通過し
、レーザ媒質で増幅された光11となって174波長位
相器4に入る01/4波長位相器4と全反射鏡3で光1
1は174波長位相器4を2度通過して反射光12とな
るが、2度の通過で172波長位相器の通過と同等にな
り1一方向に偏光している光11Fi両方の偏光成分を
含む反射光12となる〇一般に1/4波長位相器4を光
の通過する軸を中心に回転させる事で反射鏡12の両方
の偏光成分強度比率を任意に設定する事が可能である。
The other polarized light component passes through the polarization separator 5, and the light 9
Then, the wavelength is selected by the 77 prepero ethane 6 and the total reflection mirror 2, and the reflected light 10 passes through the polarization separator 5 again, and becomes the light 11 amplified by the laser medium, which is sent to the 174 wavelength phase shifter 4. Light 1 enters the 01/4 wavelength phase shifter 4 and the total reflection mirror 3.
1 passes through the 174-wavelength phaser 4 twice and becomes the reflected light 12, but the two passes are equivalent to passing through the 172-wavelength phaser, and the light 11 which is polarized in one direction 11Fi combines the polarization components of both. In general, by rotating the quarter wavelength phase shifter 4 around the axis through which the light passes, it is possible to arbitrarily set the intensity ratio of both polarized light components of the reflecting mirror 12.

次に、放電管1のレーザ媒質によシ反射光12は増幅さ
れ、出力光8となって偏光分離器5によシ一方の偏光成
分は出力光7となって出力される。また他の一方の偏光
成分は通過して光9となシ発振を継続する。ここで、1
/4波長位相器4は回転して偏光成分比率を変える事で
、出力光7と通過光90割合を任意に変化させて出力光
のレーザ発振結合率が変えられる。この様な構成にする
事によシ、ファプリベローエタロン6に入る発振を継続
する光9に比較して、偏光成分を1/4波長位相器4で
変換された光はレーザ媒質で増幅された後に、偏光分離
器5を通り出力光7となるため、レーザ媒質の増幅率程
度、光9に比較して大きく、相対的に波長選択素子であ
るファプリベローエタロン6の変形、劣化が著しく低減
することとなる。
Next, the reflected light 12 is amplified by the laser medium of the discharge tube 1 to become output light 8, and one polarized light component is outputted by the polarization separator 5 as output light 7. The other polarized light component passes through and continues to oscillate as light 9. Here, 1
By rotating the /4 wavelength phase shifter 4 and changing the polarization component ratio, the ratio of the output light 7 and the passing light 90 can be arbitrarily changed, and the laser oscillation coupling rate of the output light can be changed. With this configuration, compared to the light 9 that continues to oscillate that enters the optical fiber bellows etalon 6, the light whose polarized component is converted by the quarter wavelength phase shifter 4 is amplified by the laser medium. After that, it passes through the polarization separator 5 and becomes the output light 7, so the amplification factor of the laser medium is larger than that of the light 9, and the wavelength selection element Fabry Bellows etalon 6 is relatively deformed and deteriorated significantly. This will result in a reduction.

以上、本発明の構成では大幅に波長選択素子の光負荷を
低減させる事ができる事は明確であるが、さらに定置的
に数式を用いて説明する。
As described above, it is clear that the configuration of the present invention can significantly reduce the optical load on the wavelength selection element, but this will be explained in a more stationary manner using mathematical formulas.

第1図にかいて偏光分離器5が例えばP偏波を通過させ
S偏波を反射して、偏光分離するとして、光8のP波成
分強度をIapt  S波成分強度をI8゜とする。出
力光7はS波成分だけで強度をI7sとし、光9.光1
0.光11はP波成分だけで強度をl9Py 110p
* rltp とする。光12は174波長位相器でS
P波が混るため両方の成分強度をそれぞれI 129e
 I 12pとする。全反射鏡は100%の反射率とし
、ファプリベローエタロン6は損失をAEとしてs  
(1−AI )を透過率とする。また、放電管よシ光が
出る部分は通常、窓があるため、この部分でも光損失を
生ずるので、その損失をAとする。すなわち、(1−A
)が窓部分の透過率とする。また、174波長位相器で
P波の光11が反射光12となった時P波で入った光が
P波で反射光12となる比率をRppとし、S波に変換
される比率を残シの(1−Rpp)とする。レーザ媒質
の微小光での単位長当シの増幅率をg。
In FIG. 1, assuming that the polarization separator 5 separates the polarization by passing the P-polarized wave and reflecting the S-polarized wave, the P-wave component intensity of the light 8 is Iapt, and the S-wave component intensity is I8°. Output light 7 has only the S wave component and has an intensity of I7s, and light 9. light 1
0. Light 11 has an intensity of only P wave component 19Py 110p
*rltp. Light 12 is S with a 174 wavelength phase shifter.
Since the P wave is mixed, the intensity of both components is I 129e.
I shall be 12p. The total reflection mirror has a reflectance of 100%, and the loss of the Fabry Bellow etalon 6 is set to AE.
(1-AI) is the transmittance. In addition, since there is usually a window in the area from which light exits the discharge tube, light loss occurs in this area as well, and this loss is designated as A. That is, (1-A
) is the transmittance of the window part. Also, when P-wave light 11 becomes reflected light 12 in a 174-wavelength phase shifter, Rpp is the ratio at which light entering as P-wave becomes reflected light 12 as P-wave, and the ratio at which the light is converted into S-wave is the remaining signal. (1-Rpp). The amplification factor per unit length of the laser medium for minute light is g.

とし、放電管の長さをLとする。Let the length of the discharge tube be L.

ここで、エキシマレーザの様な高い増幅率のレーザを解
析する時によく適合するとされる解析方法として、リグ
ロッドによるサチュレーション・エフェクトイン・ハイ
ゲイン・レーザ、ジャーナル・オプ・アプライド・フィ
ジックス、第36巻。
Here, an analysis method that is considered to be well suited when analyzing a laser with a high amplification factor such as an excimer laser is the one described by Rigrod, Saturation Effect in High Gain Laser, Journal of Applied Physics, Vol. 36.

No8.2487〜2490頁、1965年、(W、W
No. 8. pp. 2487-2490, 1965, (W, W
.

RIGROD、 ” 5aturation Effe
cts in H3gh−Ga1n La5ers  
  Journal of ApPliedPhysi
ca 、  Vol、 36. No 8. P 24
87〜P2490、 August  1965)  
に記載された方法がある。
RIGROD, ” 5aturation Effe
cts in H3gh-Ga1n La5ers
Journal of ApPliedPhysi
ca, Vol, 36. No. 8. P 24
87-P2490, August 1965)
There is a method described in

次に、上記文献中の式を引用して解析を説明する。上記
文献のレーザ解析式よシ本実施例に適合すると、次式が
得られる。
Next, the analysis will be explained by citing the formula in the above document. If the laser analysis formula in the above-mentioned document is adapted to this embodiment, the following formula is obtained.

ここで、β2.γ1.γ2は文献中に表わされた値で、
本実施例では次の式で与えられる。ただし、エ、を飽和
光強度とする。
Here, β2. γ1. γ2 is the value expressed in the literature,
In this embodiment, it is given by the following equation. However, let d be the saturated light intensity.

β2 γ1 γ2 =(Iap+l5s)/((1−A)I、)=(1−A
)2(112p+112S)/111P=(1−A)2
)1op/(Iap+Ias)・・・・・・(2) ・・・・・・(3) ・・・・・・(4) 次に、S偏光とP偏光の増幅率は等しいので、112p
と112Bの比率はIapとIB8の比率に等しい。
β2 γ1 γ2 = (Iap+l5s)/((1-A)I,)=(1-A
)2(112p+112S)/111P=(1-A)2
)1op/(Iap+Ias)...(2)...(3)...(4) Next, since the amplification factors of S-polarized light and P-polarized light are equal, 112p
The ratio of Iap and IB8 is equal to the ratio of Iap and IB8.

112P/ I 128 = Iap/ I8s・・・
・・・・・・・・・・・・・・・(5)また、比率Rp
pとエタロン損失AEを考慮すると(6+、 (71式
が得られる。
112P/I 128 = Iap/I8s...
・・・・・・・・・・・・・・・(5) Also, the ratio Rp
Considering p and etalon loss AE, the following formula (6+, (71) is obtained.

112P=Rpp111p、  I+z3=(1−Rp
p)I+1p−(6111op=(1−Ar、)2Is
+p=(1−AE)2Iap   −(71出力光■。
112P=Rpp111p, I+z3=(1-Rp
p) I+1p-(6111op=(1-Ar,)2Is
+p=(1-AE)2Iap-(71 output light ■.

utはI7gでありエタロン負荷光1.はI9pである
から(81式が成立する。
ut is I7g and etalon load light 1. Since is I9p (formula 81 holds true).

工。ut ” I7s =: IB3 mIE = l
9p= Iap ・・・(8) 上記の(11〜(8)式よう出力光強度工。utおよび
エタロン負荷光強度IIを求めると(9)、 6o1式
が求まる。
Engineering. ut” I7s =: IB3 mIE = l
9p=Iap (8) As shown in equations (11 to (8) above), the output light intensity is calculated as follows.If ut and etalon load light intensity II are determined, equation (9) is obtained.

・・・・・・・・・・・・(?) 第2図に(9)、 (1o)式の計算結果を具体的に示
す。
・・・・・・・・・・・・(?) Figure 2 specifically shows the calculation results of equations (9) and (1o).

RpI)を横軸に飽和光強度工、で規格化した出力光強
度工。ut/Isとエタロン負荷光強度IE / I、
を計算した結果である。
The output light intensity is normalized by the saturation light intensity (RpI) on the horizontal axis. ut/Is and etalon load light intensity IE/I,
This is the result of calculating.

次に、比較のため第7図で示した従来の構成について同
様の式を作って検討する。半透過鏡103の反射率をR
とし、他は第1図の実施例と同一条件とすると、前記し
た方法にょシ、以下の式が求められる。ただし、第7図
で示した従来の構成では偏光はしていないので、各部の
光の強度は光105.106,107,108,109
に対応して1105+1106+  1107+  1
108とし、エタロンの光損失をAEとし、窓の損失を
Aとする事は実施例と同様である0 β2=1106/ ((1−A) IB)γ1 = (
1−A)2I 109 / I 1oaγ2=(1−A
)2)107/11061107 =RI 106 1109 = (1−Ag )2 I 1oaI□ut
=11os=(1−R)1106・・・・・・・・・6
1) ・・・・・・・・・(12) ・・・・・・・・・(13) ・・・・・・・・・(14) ・・・・・・・・・(151 ・・・・・・・・・(161 これらの(1)′及び011〜06)式よう出カニ。u
tを求めると(17)式が得られる。
Next, for comparison, a similar formula will be created and studied for the conventional configuration shown in FIG. The reflectance of the semi-transparent mirror 103 is R
Assuming that other conditions are the same as in the embodiment shown in FIG. 1, the following equation can be obtained using the method described above. However, in the conventional configuration shown in Figure 7, the light is not polarized, so the intensity of the light at each part is 105, 106, 107, 108, 109.
corresponding to 1105+1106+ 1107+ 1
108, the optical loss of the etalon is AE, and the loss of the window is A, which is the same as in the example. 0 β2 = 1106/ ((1-A) IB) γ1 = (
1-A) 2I 109 / I 1oaγ2=(1-A
)2) 107/11061107 = RI 106 1109 = (1-Ag)2 I 1oaI□ut
=11os=(1-R)1106...6
1) ・・・・・・・・・(12) ・・・・・・・・・(13) ・・・・・・・・・(14) ・・・・・・・・・(151 ・・・・・・・・・・(161 These (1)' and 011-06) formulas. u
When t is determined, equation (17) is obtained.

・・・・・・・・・07) 次にエタロンの負荷光強度は、前記文献より次の様に求
めることができる0 β2/β4 い了7可 ・・・・・・・・・(18) 次に、エタロン負荷光強度Igとβ4の関係は69)式
となる。
......07) Next, the load light intensity of the etalon can be obtained from the above literature as follows: 0 β2/β4 ) Next, the relationship between etalon load light intensity Ig and β4 is expressed by equation 69).

IB ” 11os = (1−A)β4 工s   
   ・−”■(19161)〜(例式よシs  Ig
がい)式と求まる。
IB ” 11os = (1-A)β4
・-”■(19161)~(Example Yos Ig
(g) can be found as the formula.

第8図に(171,i1式の計算結果を具体的に示す。FIG. 8 specifically shows the calculation results of the formula (171,i1).

Rを横軸に飽和光強度工、で規格化した出力光強度工。Output light intensity normalized by saturation light intensity with R on the horizontal axis.

ut/ Isとエタロン負荷光強度IE/I8の計算し
た結果である。
These are the calculated results of ut/Is and etalon load light intensity IE/I8.

ここで、第2図の本発明の実施例と第8図の従来例とを
比較すると、明白に同一■。utでのrgが本発明の実
施例の方が小さな値が得られる。すなわち、第2図でI
。ut/I、 = 0.3の時IE/I、 =0.01
2であるのに対して、第8図においてはII/I、 =
 0.41と30倍以上の差があシ、大幅なファプリベ
ローエタロンの入射光強度の低減がなされている。また
注目すべき特徴として、従来例の第8図ではRの値が0
.15で出力の最大値Iout/I、 = 0.31と
なシ、低い出力しか得られないが、本発明の実施例では
Rpp = 0.25で最大値工。ut/I、=0.7
0が得られ、出力に釦いても2倍以上の高出力となシ、
レーザ装置としての効率もすぐれている事を示している
Here, when comparing the embodiment of the present invention shown in FIG. 2 with the conventional example shown in FIG. 8, it is clear that they are the same. A smaller value of rg at ut can be obtained in the embodiment of the present invention. That is, in Figure 2 I
. When ut/I, = 0.3, IE/I, = 0.01
2, whereas in Fig. 8, II/I, =
0.41, which is more than 30 times the difference, and the intensity of the light incident on the Fabry Bellows etalon has been significantly reduced. Also, as a noteworthy feature, in the conventional example shown in FIG. 8, the value of R is 0.
.. 15, the maximum output value Iout/I = 0.31, and only a low output can be obtained, but in the embodiment of the present invention, the maximum value Iout/I = 0.25. ut/I,=0.7
0 is obtained, and even if you press the output button, the output will be more than twice as high.
This shows that the efficiency as a laser device is also excellent.

第3図は本発明の構成にかける実際の実験結果で、Kr
Fエキシマレーザの実測値である。使用ガスとしてF2
 ′f、0.22%、Krを4.4%、残すがHeガス
、全圧1800mbで印加電圧28KVの条件で放電さ
せて、パルスレーザ発振させた時の1パルス当シの出力
強度工。utとエタロン負荷IHのグラフである。
Figure 3 shows the actual experimental results of the configuration of the present invention.
This is an actual measurement value of F excimer laser. F2 as gas used
'f, 0.22%, Kr 4.4%, remaining He gas, total pressure 1800 mb, applied voltage 28 KV, discharge, pulsed laser oscillation, output intensity per pulse. It is a graph of ut and etalon load IH.

また第9図は同じ条件での従来構成(第7図)にかける
出力強度Ioutとエタロン負荷IEの実測値である。
Further, FIG. 9 shows actual measured values of the output intensity Iout and the etalon load IE applied to the conventional configuration (FIG. 7) under the same conditions.

いずれの結果も、はぼ理論値と傾向が一致し、本発明の
構成が出力が2倍以上であシ、エタロン負荷も大幅に少
く圧倒的に性能が良い事が示されている。
All of the results show that the tendency is almost the same as the theoretical value, and that the configuration of the present invention has more than twice the output, has significantly less etalon load, and has overwhelmingly good performance.

以上述べた様に本発明にかいては、波長選択素子を通過
する光エネルギーを大幅に低減すると共に効率でも優れ
た特性を示す狭帯域化レーザ装置が得られる。
As described above, according to the present invention, it is possible to obtain a narrowband laser device that significantly reduces the optical energy passing through the wavelength selection element and exhibits excellent characteristics in terms of efficiency.

以上、実施例では波長選択素子としてファプリベローエ
タロンを用いて説明を行なったが、他の波長選択素子を
用いても本発明を適用できる。これらの構成につき説明
する。
Although the embodiments have been described above using a Fabric bellow etalon as a wavelength selection element, the present invention can also be applied to other wavelength selection elements. These configurations will be explained.

まず、第4図を参照しながら本発明の第2実施例につい
て説明する。第4図にかいて、20はグレーティングで
あり1他の部分は第1実施例と同様である。波長選択素
子として光反射によって波長選択されるグレーティング
20を全反射鏡2゜3の作る共振器光路中に設置し、グ
〉トイング20の回折光によって共振器光路を形成する
。他の部分の機能は第1実施例と同様なため省略する。
First, a second embodiment of the present invention will be described with reference to FIG. In FIG. 4, 20 is a grating, and the other parts are the same as in the first embodiment. A grating 20, which selects a wavelength by light reflection, as a wavelength selection element is installed in the resonator optical path formed by the total reflection mirror 2.3, and the resonator optical path is formed by the diffracted light of the grating 20. The functions of other parts are the same as those of the first embodiment, and therefore will be omitted.

次に、第5図を参照しながら本発明の第3実施例につい
て説明する。第5図において、30はプリズムであシ他
の部分は第1実施例と同様である。
Next, a third embodiment of the present invention will be described with reference to FIG. In FIG. 5, 30 is a prism, and other parts are the same as in the first embodiment.

波長選択素子として光屈折によって波長選択されるプリ
ズム30を全反射鏡2,3の作る共振器光路中に設置し
、プリズム30の屈折光によって゛共振器光路を形成す
る。他の部分の機能は第1実施例と同様なため省略する
A prism 30 that selects a wavelength by optical refraction as a wavelength selection element is installed in the resonator optical path formed by the total reflection mirrors 2 and 3, and the refracted light of the prism 30 forms a resonator optical path. The functions of other parts are the same as those of the first embodiment, and therefore will be omitted.

以上、波長選択素子として、ファプリベローエタロン、
グレーティング、及びプリズムを用いた構成につき説明
したが、ファプリベローエタロンを用いる時は、この光
学素子は2枚の反射面を対向させ、その間の干渉効果に
よって波長を選択しているため対向した反射面の間には
多重反射によって高いエネルギーが閉じ込められた反射
面が損傷しやすいと推定できる。それに比べて、第2゜
第3実施例で説明したグレーティング、もしくはプリズ
ムを用いる方法によれば、光反射、もしくは光屈折によ
−て波長選択がなされるため、波長選択素子の損傷は、
前記したファプリペローエタロンを用いた時に比べて、
そのしきい値は数倍、高くなp20W以上のレーザ出力
を得ることが可能になる。
As mentioned above, as a wavelength selection element, a Fabry bellow etalon,
We have explained the configuration using gratings and prisms, but when using the Fabry Bellows etalon, this optical element has two reflecting surfaces facing each other, and the wavelength is selected by the interference effect between them, so the opposing reflections It can be assumed that the reflective surfaces, where high energy is trapped between the surfaces due to multiple reflections, are likely to be damaged. In comparison, according to the method using a grating or a prism explained in the second and third embodiments, wavelength selection is performed by light reflection or light refraction, so damage to the wavelength selection element is less likely to occur.
Compared to using the Fapriperot etalon mentioned above,
The threshold value is several times higher, making it possible to obtain a laser output of p20W or more.

装置の構成図である。第66 $−いて、希ガスとハロ
ゲン混合気体をレーザ媒質とする放電管1と、全反射鏡
2.3からなる光共振器によシ紫外域でレーザ発振する
。光共振器の作る共振器光路中にはフェーズリターダ−
ミラー40と偏光分離器5が置かれ、放電管1のレーザ
媒質で増幅された出力光7は偏向分離器7を通シ出力光
7となって出力される。上記の出力光7が通る出力光路
以外の共振器光路中に波長選択素子であるファブリペロ
ニ ーysタロン6が置かれ、特定の狭い帯域の波長だ−は
力5選択的に光共振器を形成することによって特定の狭
い波長の光だけがレーザ発振する。第4実施例において
は第1実施例で用いた1/4波長位相器のかわbにフェ
ーズリターダ−ミラーを用いたものでアシ、この部分に
つき詳細に説明し、他の部分は第1実施例と同様である
ため省略する。
It is a block diagram of a device. The laser oscillates in the ultraviolet region using an optical resonator consisting of a discharge tube 1 using a rare gas and halogen mixture as a laser medium, and a total reflection mirror 2.3. There is a phase retarder in the resonator optical path created by the optical resonator.
A mirror 40 and a polarization separator 5 are placed, and the output light 7 amplified by the laser medium of the discharge tube 1 passes through the polarization separator 7 and is output as output light 7. A Fabry-Péronie YS Talon 6, which is a wavelength selection element, is placed in the resonator optical path other than the output optical path through which the above output light 7 passes, and the wavelength in a specific narrow band is selectively formed into an optical resonator. By doing this, only light with a specific narrow wavelength is lased. In the fourth embodiment, a phase retarder mirror is used in place of the 1/4 wavelength phase shifter used in the first embodiment.This part will be explained in detail, and the other parts will be explained in detail in the first embodiment. It is omitted because it is the same as .

フェーズリターダ−□ジー40は反射鏡の表面に誘電体
薄膜層を設けたもので斜入射光線の反射光のS偏波とP
偏波の位相に90’の差をもたせたもので1/4波長位
相器として動作し、全反射鏡2゜3の作る共振器光路中
に設置され、偏波面の変換を行なう。偏波面分離器5の
分離する偏波面の方前述の比率RPpが異シ、出力光の
結合率が変えられる。フェーズリターダ−ミラーは大口
径が容易に作れ、レーザパワーにも強く、不用な多重反
射光が少いなど、露光用光源に使用する狭帯域化レーザ
用に通した1/4波長位相器である。尚、波長第 選択素子は前記した412.及び第3実施例で説明した
グレーティング、もしくはプリズムを用いても良い。
The phase retarder □G40 has a dielectric thin film layer on the surface of a reflecting mirror, and is used to separate the S polarization and P polarization of the reflected light of obliquely incident light.
It has a 90' difference in polarization phase and operates as a 1/4 wavelength phase shifter, and is installed in the resonator optical path formed by the total reflection mirror 2.3 to convert the plane of polarization. The polarization planes separated by the polarization plane separator 5 have different ratios RPp, and the coupling rate of the output light can be changed. The phase retarder mirror is a 1/4 wavelength phase shifter that can be easily made with a large diameter, is strong against laser power, and has fewer unnecessary multiple reflections, and is used for narrowband lasers used as light sources for exposure. . Incidentally, the wavelength first selection element is the above-mentioned 412. Alternatively, the grating or prism described in the third embodiment may be used.

以上、本発明につき実施例を用いて説明したが上記実施
例の1/4波長位相器は他にフレネルの菱形プリズム、
3回全反射超色消174波長板等色々あるが、露光用の
大口径ビームを得るには水晶板を使用したファーストオ
ーダー又はマルチプルオーダーの1/4波長板が良く、
1/4波長位相器は正確に1/4波長の位相器でなくと
も偏光の成分比率を変えることが可能であるものであれ
ば良い。
The present invention has been described above using embodiments, but the 1/4 wavelength phase shifter of the above embodiments may also include a Fresnel rhombic prism,
There are various types of 3-time total reflection super achromatic 174-wave plates, but to obtain a large diameter beam for exposure, a first-order or multiple-order quarter-wave plate using a quartz plate is best.
The 1/4 wavelength phase shifter does not have to be an exact 1/4 wavelength phase shifter as long as it can change the component ratio of polarized light.

また、上記実施例の偏光分離器は、多層膜キューブ偏光
器や、ブリュースター角度の透明板、ウォラストンプリ
ズム等色々あるが、露光用の大口径ビームを得るには誘
電体多層膜蒸着の偏光分離鏡が良好である。
There are various types of polarization separators used in the above embodiments, such as a multilayer cube polarizer, a Brewster angle transparent plate, and a Wollaston prism. Separation mirror is good.

また、上記実施例では波長選択素子を偏光分離器と全反
射鏡の間に設けたが、この場所以外でも最も強い光であ
る出力光が通るレーザ媒体から偏光分離器に到る出力光
路以外の共振器光路中であれば光強度は弱く波長選択素
子を設けられる0また、上記実施例では1/4波長位相
器と偏光分離器はレーザ媒質の反対側の共振器光路中に
設けたが、同一側でも共振器光路中であれば設置可能で
ある。
In addition, in the above embodiment, the wavelength selection element was provided between the polarization separator and the total reflection mirror, but it is also possible to use a wavelength selection element other than the output optical path from the laser medium to the polarization separator through which the output light, which is the strongest light, passes. If it is in the resonator optical path, the light intensity is weak and a wavelength selection element can be provided.Also, in the above embodiment, the 1/4 wavelength phase shifter and the polarization separator were provided in the resonator optical path on the opposite side of the laser medium. They can be installed on the same side as long as they are in the resonator optical path.

筐た、上記実施例で用いた波長選択素子はファプリベロ
ーエタロン、グレーティング、プリズム等を複数個使用
してもよいし、また組合せても良い。咬た、波長選択素
子と全反射鏡を一体化した素子、例えばグレーティング
でニジ申し格子や工もロン格子によシ直接グレーティン
グの反射光の波長選択性を使用したシ、プリズムの片面
を全反射鏡化して用いても良いし、1/4波長位相器と
全反射鏡を一体化し、水晶位相板の片面を全反射鏡化、
すなわち、前記波長選択素子、全反射鏡。
However, the wavelength selection elements used in the above embodiments may include a plurality of optical fibers such as bellows etalons, gratings, prisms, etc., or may be combined. In addition, an element that integrates a wavelength selection element and a total reflection mirror, for example, a grating with a rainbow grating or a long grating, and a grating that uses the wavelength selectivity of the reflected light of a direct grating, totally reflects one side of the prism. It can be used as a mirror, or it can be used by integrating a 1/4 wavelength phase shifter and a total reflection mirror, making one side of the crystal phase plate a total reflection mirror,
That is, the wavelength selection element and the total reflection mirror.

1/4波長位相器、偏光分離器等はこれらの機能を複合
化した素子を使用して素子数を減しても良い。
For the 1/4 wavelength phase shifter, polarization separator, etc., the number of elements may be reduced by using elements that combine these functions.

また、上記実施例で用いたフェーズリターダ−ミラーは
類似の反射面がフェーズリタード機能を有するフェーズ
リターダ−プリズムであっても良い0 また、上記実施例で用いた全反射鏡は100%の反射率
である必要はなく、共振器を構成する反射率であれば良
い。
Further, the phase retarder mirror used in the above example may be a phase retarder prism whose similar reflecting surface has a phase retard function.Also, the total reflection mirror used in the above example has a reflectance of 100%. It is not necessary that the reflectance is the same as that of the resonator.

発明の詳細 な説明したように、本発明は共振器内に波長選択素子、
1/4波長位相器、偏光分離器を設け、狭帯域に発振し
た弱い発振光を1/4波長位相器で偏光を変換し、レー
ザ媒質で増幅して偏光分離器よシ出力することによシ、
波長選択素子を通過する光エネルギーを小さくすること
によって1選択波長の変動や、出力の低下がiく、露光
用光源に最適な狭帯域化レーザ装置を提供できるもので
ある0
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the present invention includes a wavelength selective element within a resonator,
A 1/4 wavelength phase shifter and a polarization separator are installed, and the weak oscillation light oscillated in a narrow band is converted into polarized light by the 1/4 wavelength phase shifter, amplified by a laser medium, and outputted from the polarization splitter. C,
By reducing the light energy that passes through the wavelength selection element, fluctuations in one selected wavelength and reduction in output can be minimized, making it possible to provide a narrowband laser device that is optimal for an exposure light source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例にかける狭帯域レーザ装置
の構成図、第2図は同第1実施例の偏光比率Rppに対
する出力光強度Iout及びファプリベローエタロン入
射光強度IEの計算結果を示す特性図、第3図は同第1
実施例における実際に測定したRpPに対するIout
s及びIHの関係を示す特性図、第4図は本発明の第2
実施例における狭帯域レーザ装置の構成図、第5図は本
発明の第3実施例にかける狭帯域レーザ装置の構成図、
第6図は本発明の第4実施例における狭帯域レーザ装置
の構成図、第7図は従来の狭帯域レーザ装置の構成図、
第8図は従来の狭帯域レーザ装置における半透過鏡反射
率Rに対するIoutとIEの計算結果を示す特性図、
第9図は従来の狭帯域レーザ装置における実際に測定し
たRに対するIoutm及びIEの関係を示す特性図で
ある。 1.101・・・放電管、2,3,102・・・全反射
鏡、4・・・1/4波長位相器、5・・・偏光分離器、
 6.20゜30・・・波長選択素子、 7゜ 105・・・出力光。
FIG. 1 is a configuration diagram of a narrowband laser device according to a first embodiment of the present invention, and FIG. 2 is a calculation of output light intensity Iout and optical intensity IE incident on the Fabry Bellows etalon with respect to the polarization ratio Rpp in the first embodiment. Characteristic diagram showing the results, Figure 3 is the same as Figure 1.
Iout for RpP actually measured in Examples
A characteristic diagram showing the relationship between s and IH, FIG. 4 is the second characteristic diagram of the present invention.
A configuration diagram of a narrowband laser device in an embodiment, FIG. 5 is a configuration diagram of a narrowband laser device according to a third embodiment of the present invention,
FIG. 6 is a configuration diagram of a narrowband laser device according to a fourth embodiment of the present invention, FIG. 7 is a configuration diagram of a conventional narrowband laser device,
FIG. 8 is a characteristic diagram showing the calculation results of Iout and IE with respect to the semi-transmissive mirror reflectance R in a conventional narrow band laser device,
FIG. 9 is a characteristic diagram showing the relationship between Ioutm and IE with respect to R actually measured in a conventional narrow band laser device. 1.101...Discharge tube, 2,3,102...Total reflection mirror, 4...1/4 wavelength phase shifter, 5...Polarization separator,
6.20゜30...Wavelength selection element, 7゜105...Output light.

Claims (7)

【特許請求の範囲】[Claims] (1)少なくとも、レーザ媒質と前記レーザ媒質を貫く
共振器光路に第1及び第2の反射鏡とからなる光共振器
と、前記共振器光路中に波長位相器と偏光分離器とを具
備し、前記レーザ媒質から前記偏向分離器を通り出力光
が出力される出力光路以外の前記共振器光路中に波長選
択素子を設けてなることを特徴とする狭帯域化レーザ装
置。
(1) At least an optical resonator including a laser medium and a first and second reflecting mirror in a resonator optical path passing through the laser medium, and a wavelength phase shifter and a polarization separator in the resonator optical path. . A narrowband laser device, characterized in that a wavelength selection element is provided in the resonator optical path other than the output optical path in which output light is output from the laser medium through the deflection separator.
(2)反射鏡、波長位相器、偏光分離器、及び波長選択
素子は、これらの素子の機能を少なくとも一部複合化し
た素子である請求項1記載の狭帯域化レーザ装置。
(2) The band narrowing laser device according to claim 1, wherein the reflecting mirror, the wavelength phase shifter, the polarization separator, and the wavelength selection element are elements that combine at least some of the functions of these elements.
(3)波長選択素子は単数、もしくは複数のファプリベ
ローエタロン、グレーティング、もしくはプリズムから
なる請求項1、または2に記載の狭帯域化レーザ装置。
(3) The band-narrowing laser device according to claim 1 or 2, wherein the wavelength selection element comprises one or more optical bellows etalons, gratings, or prisms.
(4)波長位相器は水晶単結晶板を用いたファーストオ
ーダ、またはマルチプルオーダの波長板、もしくはフェ
ーズリターダミラー、もしくはフェーズリターダープリ
ズムからなる請求項1、または2に記載の狭帯域化レー
ザ装置。
(4) The band-narrowing laser device according to claim 1 or 2, wherein the wavelength phaser comprises a first-order or multiple-order wavelength plate using a quartz single crystal plate, a phase retarder mirror, or a phase retarder prism.
(5)偏光分離器が誘電体多層膜の偏向分離鏡からなる
請求項1、または2に記載の狭帯域化レーザ装置。
(5) The band-narrowing laser device according to claim 1 or 2, wherein the polarization separator comprises a polarization separation mirror made of a dielectric multilayer film.
(6)レーザ媒質が希ガスとハロゲンガスを組合わせた
エキシマを用いてなる請求項1記載の狭帯域化レーザ装
置。
(6) The band narrowing laser device according to claim 1, wherein the laser medium uses an excimer that is a combination of a rare gas and a halogen gas.
(7)請求項1記載の狭帯域レーザ装置を露光用光源に
用いることを特徴とする露光用光源装置。
(7) A light source device for exposure, characterized in that the narrow band laser device according to claim 1 is used as a light source for exposure.
JP1286840A 1989-06-14 1989-11-01 Narrow band laser device Expired - Lifetime JPH0797680B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1286840A JPH0797680B2 (en) 1989-06-14 1989-11-01 Narrow band laser device
DE69031884T DE69031884T2 (en) 1989-06-14 1990-03-01 Narrow band laser device
EP90103985A EP0402570B1 (en) 1989-06-14 1990-03-01 Narrow-band laser apparatus
US07/487,080 US4985898A (en) 1989-06-14 1990-03-01 Narrow-band laser apparatus
CA002011361A CA2011361C (en) 1989-06-14 1990-03-02 Narrow-band laser apparatus
KR1019900003141A KR930002821B1 (en) 1989-06-14 1990-03-09 Narrow band laser apparatus
US07/626,145 US5150370A (en) 1989-06-14 1990-12-12 Narrow-band laser apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15178989 1989-06-14
JP1-151789 1989-06-14
JP1286840A JPH0797680B2 (en) 1989-06-14 1989-11-01 Narrow band laser device

Publications (2)

Publication Number Publication Date
JPH0387084A true JPH0387084A (en) 1991-04-11
JPH0797680B2 JPH0797680B2 (en) 1995-10-18

Family

ID=26480917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286840A Expired - Lifetime JPH0797680B2 (en) 1989-06-14 1989-11-01 Narrow band laser device

Country Status (1)

Country Link
JP (1) JPH0797680B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150884A (en) * 1989-11-08 1991-06-27 Toshiba Corp Narrow band laser device
KR100425593B1 (en) * 2001-12-22 2004-04-01 재단법인 포항산업과학연구원 High power OPO laser
JP2015510693A (en) * 2012-02-03 2015-04-09 アイエーアイ インダストリアル システムズ ビー.ブイ. CO2 laser with rapid power control
JP2018502435A (en) * 2014-09-19 2018-01-25 ディレクトフォトニクス インダストリーズ ゲーエムベーハーDirectphotonics Industries Gmbh Diode laser
JP2021056464A (en) * 2019-10-01 2021-04-08 スペクトラ・クエスト・ラボ株式会社 Fabry-perot-etalon, wavelength variation detector using the same, and wavemeter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740671A (en) * 1980-08-22 1982-03-06 Seiko Instr & Electronics Ltd Electronic watch
JPS62293791A (en) * 1986-06-10 1987-12-21 セントル・ナシヨナル・ドウ・ラ・ルシエルシユ・サイエンテイフイツク(セ・エン・エ−ル・エス) Lanthanide-magnesium mixed galliumate and laser made of single crystal of the galliumate
JPS6457773A (en) * 1987-08-28 1989-03-06 Komatsu Mfg Co Ltd Wavelength controller for laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740671A (en) * 1980-08-22 1982-03-06 Seiko Instr & Electronics Ltd Electronic watch
JPS62293791A (en) * 1986-06-10 1987-12-21 セントル・ナシヨナル・ドウ・ラ・ルシエルシユ・サイエンテイフイツク(セ・エン・エ−ル・エス) Lanthanide-magnesium mixed galliumate and laser made of single crystal of the galliumate
JPS6457773A (en) * 1987-08-28 1989-03-06 Komatsu Mfg Co Ltd Wavelength controller for laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150884A (en) * 1989-11-08 1991-06-27 Toshiba Corp Narrow band laser device
KR100425593B1 (en) * 2001-12-22 2004-04-01 재단법인 포항산업과학연구원 High power OPO laser
JP2015510693A (en) * 2012-02-03 2015-04-09 アイエーアイ インダストリアル システムズ ビー.ブイ. CO2 laser with rapid power control
JP2018502435A (en) * 2014-09-19 2018-01-25 ディレクトフォトニクス インダストリーズ ゲーエムベーハーDirectphotonics Industries Gmbh Diode laser
JP2021056464A (en) * 2019-10-01 2021-04-08 スペクトラ・クエスト・ラボ株式会社 Fabry-perot-etalon, wavelength variation detector using the same, and wavemeter

Also Published As

Publication number Publication date
JPH0797680B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US5150370A (en) Narrow-band laser apparatus
US4985898A (en) Narrow-band laser apparatus
US5917849A (en) Line narrowing device with double duty grating
US6590921B2 (en) Narrow beam ArF excimer laser device
US20020101890A1 (en) Molecular fluorine laser with spectral linewidth of less than 1 pm
US7072375B2 (en) Line-narrowed gas laser system
US5062694A (en) Birefringent filter design
JPH0387084A (en) Narrow bandwidth laser equipment
JP4907865B2 (en) Multistage amplification laser system
JP5393725B2 (en) Multistage amplification laser system
JPH08228038A (en) Narrow-band laser generator
JP2715608B2 (en) Narrow band laser device
EP0383586B1 (en) Laser device
CA2032054C (en) Narrow-band laser apparatus
JPH05152666A (en) Narrowed-band laser
KR940011104B1 (en) Narrow band laser apparatus
JP2715609B2 (en) Narrow band laser device
JPH0472782A (en) Narrow band laser oscillation method
US5012473A (en) Fixed wavelength laser using multiorder halfwave plate
JP2964255B2 (en) Narrow-band oscillation excimer laser
JPH0480981A (en) Narrow bandwidth oscillation laser device
JP2715610B2 (en) Narrow band laser device
JP2951050B2 (en) Two-wavelength oscillation Q switch CO2 laser device
JP2001291921A (en) Ultranarrow band width laser device
JP2688991B2 (en) Narrow-band oscillation excimer laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 15