[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0386791A - Manufacture of low boiling-point hydrocarbon oil - Google Patents

Manufacture of low boiling-point hydrocarbon oil

Info

Publication number
JPH0386791A
JPH0386791A JP22335589A JP22335589A JPH0386791A JP H0386791 A JPH0386791 A JP H0386791A JP 22335589 A JP22335589 A JP 22335589A JP 22335589 A JP22335589 A JP 22335589A JP H0386791 A JPH0386791 A JP H0386791A
Authority
JP
Japan
Prior art keywords
melt
tank
thermal decomposition
product
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22335589A
Other languages
Japanese (ja)
Inventor
Takanori Ono
小野 孝範
Toshio Hirota
弘田 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitec Co Ltd
ExxonMobil Oil Corp
Original Assignee
Fujitec Co Ltd
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitec Co Ltd, Mobil Oil Corp filed Critical Fujitec Co Ltd
Priority to JP22335589A priority Critical patent/JPH0386791A/en
Publication of JPH0386791A publication Critical patent/JPH0386791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE: To effectively obtain a hydrocarbon oil with a high yield a high quality, low boiling point, and low pour point by recycling the mist in the thermally decomposed vapor product of a polyolefin melt in a thermal decomposition vessel and catalytically converting the other vapor product.
CONSTITUTION: A polyolefin plastic is melt and blended in a melting and blending vessel, and the melt is transferred to a thermal decomposition vessel to decompose. Then, the generating vapor product is transferred outside the vessel and at least a part of the mist coexisting in the vapor product is separated as liquid and recycled to the thermal decomposition vessel. The other vapor product is introduced to a zeolite catalyst layer and catalytically converted. The plastics used are usually polymers of 2-4C olefin, preferably polyethylene. These are usually supplied in a form of waste. The heating temp. for decomposition is usually about 350-450°C, and pressure usually around atmospheric pressure is preferable.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明はポリオレフィン系プラスチックからガソリンそ
の他の素原料として有用な低沸点炭化水素油を製造する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a low-boiling hydrocarbon oil useful as a raw material for gasoline and other raw materials from polyolefin plastics.

(従来の技術) 近年プラスチックの生産量の増加に伴いその廃物の処理
が社会問題化していることは周知の通りである。プラス
チックの種類によってはその再利用の技術開発の実用段
階に達し七いるものも少なくない。
(Prior Art) It is well known that in recent years, as the production of plastics has increased, the disposal of plastic waste has become a social problem. Depending on the type of plastic, there are many that have reached the practical stage of reusing technology.

しかし我国での熱可塑性プラスチックの生産量の約半分
はどを占めているといわれるポリオレフィン系プラスチ
ックの再利用の技術は成型材料としての再利用等小規模
なものを除き十分な実用効果を得るには至っていない。
However, the technology for recycling polyolefin plastics, which is said to account for about half of the total production of thermoplastic plastics in Japan, has not achieved sufficient practical effects except for small-scale reuse such as reuse as molding materials. has not yet been reached.

ポリオレフィン系プラスチックを低分子量炭化水素に変
換して燃料油等として再利用する検討もいくつかなされ
てているが、生成物の性状、連続操作性等実用上いくつ
かの解決すべき課題を有している。
Some studies have been made to convert polyolefin plastics into low molecular weight hydrocarbons and reuse them as fuel oil, etc., but there are some practical issues that need to be resolved, such as the properties of the product and continuous operability. ing.

(発明が解決すべき課題) 本発明の目的はポリオレフィン系プラスチックから低沸
点低流動点を有する高品質の炭化水素油を効率的に高収
率にて且つ長期間安定に取得する方法を提供することに
ある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for efficiently obtaining high-quality hydrocarbon oil having a low boiling point and low pour point from polyolefin plastics in a high yield and stably for a long period of time. There is a particular thing.

(課題を解決するための手段〉 本発明はポリオレフィン系プラスチックを溶融混合槽で
溶融混合し、溶融物を熱分解槽に移して熱分解させ、発
生した蒸気状生成物を熱分解槽外に導びき蒸気状生成物
中に共存するミスト分の少なくとも1部を液状にして分
離し熱分解槽に循環させると共にそれ以外の蒸気状生成
物をゼオラ、イト触媒層に導びいて接触転化することを
特徴とする低沸点炭化水素油の製造方法にある。
(Means for Solving the Problems) The present invention melts and mixes polyolefin plastics in a melt mixing tank, transfers the molten material to a pyrolysis tank and decomposes it, and guides the generated vaporized product to the outside of the pyrolysis tank. At least a part of the mist coexisting in the vaporized product is liquefied, separated, and circulated to a thermal decomposition tank, and the remaining vaporized product is led to a zeolite catalyst bed for catalytic conversion. It is characterized by a method for producing low boiling point hydrocarbon oil.

本発明方法に供するプラスチックはポリオレフィン系プ
ラスチックであれば本質的にはいずれでもよく、ポリエ
チレン、ポリプロピレン、ポリブチレン、さらにはポリ
スチレン等(それらを必須成分とする共重合体や混合物
も含む)のオレフィン性二重結合をもつ炭化水素の重合
体が例示されるが、通常C2〜C4のオレフィンの重合
体、特にポリエチレンが好ましく用いられる。これらは
通常廃棄物(産業廃棄物、家庭廃棄物、工場での不合格
品等〉の形で本発明に供される。その形状は、フィルム
、シート、成型品等いずれでもよいが、農園芸用途等に
用いられたフィルム、シート類は特に好ましい。
The plastic used in the method of the present invention may essentially be any polyolefin plastic, including olefinic polymers such as polyethylene, polypropylene, polybutylene, and even polystyrene (including copolymers and mixtures containing these as essential components). Hydrocarbon polymers having multiple bonds are exemplified, and C2 to C4 olefin polymers, particularly polyethylene, are preferably used. These are normally provided to the present invention in the form of waste (industrial waste, household waste, rejected products from factories, etc.).The shape may be any film, sheet, molded product, etc. Films and sheets used for other purposes are particularly preferred.

以下図面に基づいて本発明を説明する。The present invention will be explained below based on the drawings.

第1図は本発明方を実施するに適する概略工程図である
FIG. 1 is a schematic process diagram suitable for carrying out the method of the present invention.

ポリオレフィン系プラスチックは通常適宜の手段で粉砕
された後押出機1等を用いて加熱さ江軟fヒもしくは溶
融状態で溶融混合槽2に導入される一溶11に混合槽は
原料を混合し均一な溶融物にする機能をもっていればそ
の形式はいづれでもよい、そのような機能をもった押出
機を用いることができる場合にはこれも本発明にいう溶
融混合槽に包含される。溶融物は次いで熱分解槽3に導
入される。熱分解槽では溶融物を熱によって分解(クラ
ッキング)する、熱分解槽では溶融液相レベルがほぼ一
定に保たれるように溶融物を供給することが好ましい、
この(第1次)熱分解は攪拌下に行なってもよいしまた
無機多孔質粒状物等の充填材の存在下に行うこともでき
る。しかし充填材非存在下の実施がむしろ好ましい、加
熱温度は被処理物の熱分解槽温度によって異なるが、通
常350〜450℃程度である。圧力条件は特に限定さ
れないが、通常常圧近傍が好ましい。加熱は熱分解槽白
木を加熱することもできるが系外加熱方式が好ましい。
Polyolefin plastics are usually pulverized by an appropriate means and then heated using an extruder 1 or the like, or introduced in a molten state into a melt mixing tank 2. The mixing tank mixes the raw materials uniformly into a melt 11. Any type of extruder may be used as long as it has the function of producing a melted product. If an extruder with such a function can be used, it is also included in the melt mixing tank referred to in the present invention. The melt is then introduced into the pyrolysis tank 3. In the pyrolysis tank, the melt is decomposed (cracking) by heat; in the pyrolysis tank, it is preferable to feed the melt so that the level of the molten liquid phase is kept approximately constant;
This (first) thermal decomposition may be carried out with stirring or in the presence of a filler such as inorganic porous particles. However, it is preferable to carry out the process in the absence of a filler. The heating temperature varies depending on the temperature of the thermal decomposition tank of the material to be treated, but is usually about 350 to 450°C. Although pressure conditions are not particularly limited, it is usually preferred to be near normal pressure. Heating can be done by heating the plain wood in the pyrolysis tank, but an outside heating method is preferred.

即ち熱分解槽中の溶融物を加熱炉5に導き所望の温度に
加熱して熱分解槽3に循環する。熱分解槽中での熱分解
によって発生した蒸気状生成物は熱分解槽上部から出て
分離器6で蒸気状生成物中に存在する液粒径の比較的大
きなミスト部分が液状にされて分離された上、板部が順
次ゼオライト触媒層4に導入され接触転化される。分離
された液体弁は熱分解槽に循環される。
That is, the molten material in the pyrolysis tank is introduced into the heating furnace 5, heated to a desired temperature, and then circulated to the pyrolysis tank 3. The vaporous products generated by thermal decomposition in the thermal decomposition tank come out from the upper part of the thermal decomposition tank, and are separated in a separator 6 where the mist portion with relatively large liquid particle size present in the vaporous products is liquefied. After that, the plate portions are sequentially introduced into the zeolite catalyst layer 4 and catalytically converted. The separated liquid valve is circulated to the pyrolysis tank.

ゼオライト触媒としては1〜12の範囲の拘束係数をも
つゼオライトが好ましく用いられる。拘束係数(con
straint 1ndex)はたとえば米国特許第4
016218に定義されている。
As the zeolite catalyst, a zeolite having a constraint coefficient in the range of 1 to 12 is preferably used. Constraint coefficient (con
strain 1ndex), for example, as described in U.S. Patent No. 4
016218.

かかる型のゼオライトの具体例としてはZSM−5、Z
SM−11,ZSM−12、ZS14−23、ZSM−
35、ZSM−38、ZSM−48等があり、特にZS
M−5が好ましく用いられる。
Specific examples of such types of zeolites include ZSM-5, Z
SM-11, ZSM-12, ZS14-23, ZSM-
35, ZSM-38, ZSM-48, etc., especially ZS
M-5 is preferably used.

ZSM−5はそのX線回折パターン中に、合成した状態
において、次に示す線を有する結晶性ゼオライトである
ZSM-5 is a crystalline zeolite that has the following lines in its X-ray diffraction pattern in the synthesized state.

格子面間隔 11.2±0.2 10.1±0.2 3.86±0108 3.72±0.08 相対強度 S 3.66±0.05                
 Mかかるゼオライトは通常酸型(当初のアルカリ金属
をHで置きかえた型)で用いられるが、必要に応じ白金
その他の金属を有するものも用いられる。かかるゼオラ
イトは通常それ自体で又はアルミナ等の担体と共に粒径
0゜1〜10am程度の任意の形に成型して用いられる
Lattice spacing 11.2±0.2 10.1±0.2 3.86±0108 3.72±0.08 Relative strength S 3.66±0.05
M Such zeolites are usually used in the acid form (in which the original alkali metal is replaced with H), but zeolites containing platinum or other metals may also be used if necessary. Such zeolite is usually used by itself or together with a carrier such as alumina and molded into any shape having a particle size of about 0.1 to 10 am.

このゼオライト触媒層での接触転化反応は通常の操作で
は300〜420℃、好ましくは350〜480℃の温
度で行われる。熱分解生成物をかかるゼオライト触媒層
に通すことにより、分解反応だけでなく、異性化反応、
芳香族化反応等が生起し、生成物の品質向上と収率向上
に顕著な効果をもたらす、また操作上も温度条件の低下
や安定した連続操作を可能にする等の効果を示す。また
この触媒は再生使用してもその効果が維持される。
This catalytic conversion reaction in the zeolite catalyst bed is normally carried out at a temperature of 300 to 420°C, preferably 350 to 480°C. By passing the thermal decomposition products through such a zeolite catalyst layer, not only the decomposition reaction but also the isomerization reaction,
The aromatization reaction occurs, which has a remarkable effect on improving the quality and yield of the product, and also has effects such as lowering temperature conditions and making stable continuous operation possible. Moreover, this catalyst maintains its effectiveness even if it is reused.

本発明の特徴の一つは熱分解槽3とゼオライト触媒層4
との間に分離器6を介在させることにある。この分離器
は蒸気状生成物中のミスト分を相互に又は壁面等の被接
触面と接触させミスト分の少なくとも1部、特に液粒径
の比較的大きなミスト分を液状にして分離しうる機能を
有するものであれば邪魔板やサイクロン等適宜の形式の
ものを用いうるが特に第2図のAに示すような円筒状分
離器が好ましい。
One of the features of the present invention is the thermal decomposition tank 3 and the zeolite catalyst layer 4.
A separator 6 is interposed between the two. This separator has the function of bringing the mist components in the vaporized product into contact with each other or contact surfaces such as walls, and separating at least a portion of the mist components, especially the mist components with relatively large liquid particle sizes, into a liquid form. Although any appropriate type of separator such as a baffle plate or cyclone may be used as long as it has a cylindrical separator, a cylindrical separator as shown in A in FIG. 2 is particularly preferred.

この装置は円筒体内部が部分的に2重管状になっている
。この内部管9は上方、下方共開放状になっている。蒸
気状生成物は円筒体の内壁側を向いた斜方向入口10か
ら内壁面に沿うように導入され斜方向出口11から出て
ゼオライト触媒層に導びかれる。その間に蒸気状生成物
中のミスト分は内壁面や斜方向人口10の上部の支持板
12等と接触したりそれら相互に接触することによりそ
の一部が液状粒子として成長し下部の液出口1313′
から熱分解槽に循環される。14は圧力計用ノズル15
は温度計用ノズルを示す。
This device has a cylindrical body partially shaped like a double tube. This internal tube 9 is open both upwardly and downwardly. The vaporous product is introduced along the inner wall surface from an oblique inlet 10 facing the inner wall of the cylinder, exits from an oblique outlet 11, and is guided to the zeolite catalyst bed. During this time, the mist component in the vaporized product comes into contact with the inner wall surface, the support plate 12 at the upper part of the diagonal population 10, etc., and by contacting each other, a part of it grows as liquid particles and reaches the liquid outlet 1313 at the bottom. ′
from there to the pyrolysis tank. 14 is a pressure gauge nozzle 15
indicates a thermometer nozzle.

第2図のBはAのa−a線の横断面図であり、2重管の
上部支持板12が部分的に上部と連通している状態を示
している。このような装置を介することによってゼオラ
イト触媒に対して悪影響を与える成分が選択的に分離さ
れる結果、触媒層での反応がよりM御しやすく均一化さ
れ製品の品位を高めると共に触媒寿命が大巾に長くなる
。触媒層で触媒転配された生成物は冷却されガス状生成
物と液状生成物に分けられる。液状生成物が目的とする
生成物である。ガス状生成物はそれ自身気体燃料等とし
ての用途を有するが、たとえば加熱炉5の加熱用に用い
ることにより、本発明方法のなかで有効利用することも
できる。
B of FIG. 2 is a cross-sectional view taken along line a-a of A, and shows a state in which the upper support plate 12 of the double tube is partially in communication with the upper part. As a result of selectively separating components that have an adverse effect on the zeolite catalyst through such a device, the reaction in the catalyst bed becomes more controllable and uniform, improving the quality of the product and extending the life of the catalyst. It becomes long in width. The products transferred to the catalyst in the catalyst bed are cooled and separated into gaseous products and liquid products. The liquid product is the desired product. Although the gaseous product itself has uses as a gaseous fuel, it can also be effectively utilized in the method of the present invention by, for example, being used to heat the heating furnace 5.

また本発明では熱分解槽中の溶融物の一部を溶融混合槽
2に循環することが好ましい6循環量は原料の粘度等の
性状等によって異なるが、通常供給するポリオレフィン
系プラスチック1重量部に対し0.1〜1.5重量部、
特に0.5〜1.2重量部程度が好ましい。
In addition, in the present invention, it is preferable to circulate a part of the melt in the pyrolysis tank to the melt mixing tank 26.The amount of circulation varies depending on the properties such as the viscosity of the raw material, but it is per 1 part by weight of the polyolefin plastic normally supplied. 0.1 to 1.5 parts by weight,
Particularly preferred is about 0.5 to 1.2 parts by weight.

本発明ではこのように溶融物の一部を溶融混合槽に循環
することにより、原料の均一混合をより効果的に達する
と共に生成物の品質も顕著に向上するという効果を示す
In the present invention, by circulating a portion of the melt to the melt mixing tank in this manner, the raw materials are more effectively mixed uniformly, and the quality of the product is also significantly improved.

尚操作開始初期の循環すべき溶融物が実質上存在しない
時点では溶融混合槽にワックス8を供給することが好ま
しい、この場合のワックスの量は通常供給するポリオレ
フィン系プラスチック1重量部に対し0.5〜5重量部
程度が好ましい。
It is preferable to supply the wax 8 to the melt mixing tank at the initial stage of operation when there is substantially no melt to be circulated. In this case, the amount of wax is usually 0.00% per part by weight of the supplied polyolefin plastic. About 5 to 5 parts by weight is preferable.

かくして得られる液状生成物は低温での流動性の高い高
品質の炭化水素油であり、ガソリン等の高付加価値製品
として利用することができる0次に実施例に基づいて本
発明を説明する 実施例1 回収したポリエチレン製ボトルを粉砕機で粉砕しスクリ
ューフィーダlに入れ230〜300℃に加熱して、溶
融混合槽2中に押し出した。溶融混合槽内には予めポリ
エチレン1重量部に対し約5重量部のワックスを入れ加
熱しておいた。加熱は檜外部を熱媒油で加熱することに
より行ない熱加熱温度は約280〜300℃とした。溶
融混合槽から溶融物を第1図に従ってポンプを介して熱
分解槽3に導びくと共にその温度を380〜40O℃に
上げ熱分解反応を行なった。この加熱は加熱炉5で39
0〜420℃に溶融物を加熱することによって行ない、
熱分解槽には充填材を配さなかった0発生した蒸気状生
成物を第2図に示す円筒体(ノックアウトポット)に導
びき液粒径の大きいミスト分を液化して熱分解槽に循環
しながらZS14−5触媒を充填した触媒層4に導びい
た。 ZS14−5は水素型(H−ZSM−5>を用い
、温度条件としては300〜380℃を用いた。触媒層
下方からの生成物をコンデンサーで冷却しガス分をガス
ホルダーでまた液体弁を貯油槽(図示せず)で取得した
。尚操作が定常化した段階から原料ポリエチレンの供給
量にほぼ相当する割合の分解溶融物を熱分解槽3から溶
融混合槽に循環させた。尚溶融混合槽での混合は攪拌機
によらずギヤポンプによりシェアをかけながら(分解)
溶融物を供給することにより行った。尚循環量は系内の
流動状態を確認しつつ調整した。液体収率64%、ガス
収率23%、残渣13%だった。
The liquid product thus obtained is a high-quality hydrocarbon oil with high fluidity at low temperatures and can be used as a high value-added product such as gasoline. Example 1 A recovered polyethylene bottle was crushed using a crusher, placed in a screw feeder 1, heated to 230 to 300°C, and extruded into a melt mixing tank 2. Approximately 5 parts by weight of wax per 1 part by weight of polyethylene was placed in the melting mixing tank in advance and heated. Heating was performed by heating the outside of the cypress with heat transfer oil, and the heating temperature was approximately 280 to 300°C. The molten material from the melt mixing tank was led to the thermal decomposition tank 3 via a pump according to FIG. 1, and the temperature was raised to 380-400°C to carry out a thermal decomposition reaction. This heating is done in heating furnace 5.
carried out by heating the melt to 0-420°C,
There was no filler in the pyrolysis tank.The generated vaporous product was guided into the cylindrical body (knockout pot) shown in Figure 2, and the mist with large droplet size was liquefied and circulated to the pyrolysis tank. At the same time, it was guided to the catalyst layer 4 filled with ZS14-5 catalyst. For ZS14-5, a hydrogen type (H-ZSM-5) was used, and the temperature condition was 300 to 380°C. The product from below the catalyst layer was cooled with a condenser, and the gas was collected with a gas holder and a liquid valve. It was obtained in an oil storage tank (not shown). From the stage when the operation became steady, the decomposed melt was circulated from the pyrolysis tank 3 to the melt mixing tank in a proportion roughly equivalent to the amount of raw polyethylene supplied. Mixing in the tank is done by using a gear pump instead of using an agitator (disassembly)
This was done by feeding the melt. The amount of circulation was adjusted while checking the flow state within the system. The liquid yield was 64%, the gas yield was 23%, and the residue was 13%.

熱分解槽を出た段階の熱分解油と最終生成物の性状試験
結果を表1に示す。
Table 1 shows the property test results of the pyrolysis oil and the final product after leaving the pyrolysis tank.

密度@15℃  0.7814 RON 炙遣1 飽和砂 volX    62.9 オレフインII    31.4 芳香族  ツノ    5.7 ASTM Dist IBP ”C325%℃85 10%℃117 20X”Cl67 30%℃215 40%℃ 249 50%”C273,5 60% ℃290 70%”C303 1i1ntY’Q11”; 0、 8093 98、8 39 、4 1 、2 59 、4 7 6 6 02 22 33 44 58 79 つ1A 90X  ℃334236(85蔦) 95蔦 ℃  355 EP  ℃クラッキング 267 TDvolX         90.0Res vo
lX   −1,0 Loss volX   −9,0 70@CD1st volX  98.5   11.
0注)RON  リサーチオクタン価 上記操作を1ケ月連続したが生成物の品質、触媒性能に
変fヒはなかった。
Density@15℃ 0.7814 RON Roasted 1 Saturated sand volX 62.9 Olefin II 31.4 Aromatic Horn 5.7 ASTM Dist IBP ``C325%℃85 10%℃117 20X''Cl67 30%℃215 40%℃ 249 50%"C273,5 60% ℃290 70%"C303 1i1ntY'Q11''; 0, 8093 98, 8 39, 4 1, 2 59, 4 7 6 6 02 22 33 44 58 79 1A 90X ℃334236 ( 85 Tsuta) 95 Tsuta ℃ 355 EP ℃ Cracking 267 TDvolX 90.0Res vo
lX -1,0 Loss volX -9,0 70@CD1st volX 98.5 11.
Note) RON Research Octane Number The above operation was continued for one month, but there was no change in the quality of the product or the catalyst performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するに適する概略工程図であ
り、第2図は分離器の一例を示す断面図である。
FIG. 1 is a schematic process diagram suitable for implementing the method of the present invention, and FIG. 2 is a sectional view showing an example of a separator.

Claims (10)

【特許請求の範囲】[Claims] (1)ポリオフィン系プラスチックを溶融混合槽で溶融
混合し、溶融物を熱分解槽に移して熱分解させ、発生し
た蒸気状生成物を熱分解槽外に導びき蒸気状生成物中に
共存するミスト分の少なくとも1部を液状にして分離し
熱分解槽に循環させると共にそれ以外の蒸気状生成物を
ゼオライト触媒層に導びいて接触転化することを特徴と
する低沸点炭化水素油の製造方法。
(1) Polyopine plastics are melted and mixed in a melt mixing tank, the molten material is transferred to a pyrolysis tank, where it is thermally decomposed, and the generated vaporous product is guided outside the pyrolysis tank and coexists in the vaporous product. Production of a low-boiling hydrocarbon oil, characterized in that at least a part of the mist is liquefied, separated, and circulated to a thermal decomposition tank, and the remaining vaporized product is led to a zeolite catalyst bed for catalytic conversion. Method.
(2)熱分解槽とゼオライト触媒層の間に円筒状分離器
を設け蒸気状生成物をそのなかに導入することにより共
存するミスト分の少なくとも1部を液状にして比重差を
利用して分離し熱分解槽に循環させてなる請求項1記載
の方法。
(2) A cylindrical separator is installed between the thermal decomposition tank and the zeolite catalyst bed, and by introducing a vaporous product into the separator, at least a portion of the coexisting mist is liquefied and separated using the difference in specific gravity. 2. The method according to claim 1, wherein the pyrolyzate is circulated through a pyrolysis tank.
(3)熱分解槽中の溶融物の一部を溶融混合槽に循環す
る請求項1又は2記載の方法。
(3) The method according to claim 1 or 2, wherein a part of the melt in the pyrolysis tank is circulated to the melt mixing tank.
(4)操作開始時点においてワックスの共存下にポリオ
レフィン系プラスチックを溶融混合槽中で溶融混合する
請求項1又は3のいづれか1項記載の方法。
(4) The method according to claim 1 or 3, wherein the polyolefin plastic is melt-mixed in a melt-mixing tank in the presence of wax at the start of the operation.
(5)ゼオライトが1〜12の範囲の拘束系数をもつゼ
オライトからなる請求項1〜4のいずれか1項記載の方
法。
(5) The method according to any one of claims 1 to 4, wherein the zeolite is a zeolite having a constraint number in the range of 1 to 12.
(6)ゼオライトがZSM−5である請求項1〜4のい
ずれか1環記載の方法。
(6) The method according to any one of claims 1 to 4, wherein the zeolite is ZSM-5.
(7)熱分解槽中の溶融物の温度が350〜450℃で
あり、触媒層の温度が300〜420℃である請求項1
〜6のいずれか1項記載の方法。
(7) Claim 1, wherein the temperature of the melt in the pyrolysis tank is 350 to 450°C, and the temperature of the catalyst layer is 300 to 420°C.
6. The method according to any one of 6 to 6.
(8)ポリオレフィン系プラスチックがポリオレフィン
系プラスチック廃棄物からなる請求項1〜7のいずれか
1項記載の方法。
(8) The method according to any one of claims 1 to 7, wherein the polyolefin plastic comprises polyolefin plastic waste.
(9)ポリオレフィン系プラスチックがC_2〜C_4
のオレフィンの単独重合体又は共重合体である請求項1
〜8のいずれか1項記載の方法。
(9) Polyolefin plastics are C_2 to C_4
Claim 1 is a homopolymer or copolymer of an olefin.
9. The method according to any one of 8 to 8.
(10)ポリオレフィン系プラスチックがエチレンであ
る請求項1〜9のいずれか1項記載の方法。
(10) The method according to any one of claims 1 to 9, wherein the polyolefin plastic is ethylene.
JP22335589A 1989-08-31 1989-08-31 Manufacture of low boiling-point hydrocarbon oil Pending JPH0386791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22335589A JPH0386791A (en) 1989-08-31 1989-08-31 Manufacture of low boiling-point hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22335589A JPH0386791A (en) 1989-08-31 1989-08-31 Manufacture of low boiling-point hydrocarbon oil

Publications (1)

Publication Number Publication Date
JPH0386791A true JPH0386791A (en) 1991-04-11

Family

ID=16796859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22335589A Pending JPH0386791A (en) 1989-08-31 1989-08-31 Manufacture of low boiling-point hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPH0386791A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209175A (en) * 1991-12-03 1993-08-20 Fuji Risaikuru Kk Method for reutilizing wastes of plastic
JPH07268353A (en) * 1994-03-30 1995-10-17 Nippon Steel Corp Raw material-mixing tank of waste plastic-treating installation
KR100687242B1 (en) * 2006-04-10 2007-02-26 경상대학교산학협력단 Method for producing fuel oil from waste vinyl by using the liquid-phase catalysts
JP2007089335A (en) * 2005-09-22 2007-04-05 Toshiba Mitsubishi-Electric Industrial System Corp Voltage detection method of power switching element and power conversion device using this
JP2010121140A (en) * 2002-04-18 2010-06-03 Chevron Usa Inc Method for converting waste plastic into lubricating oil
JP2016522809A (en) * 2013-04-18 2016-08-04 ハネウェル・インターナショナル・インコーポレーテッド Reaction system and method for producing fluorinated organic compounds
EP4108649A4 (en) * 2020-02-21 2024-03-13 Sumitomo Chemical Company, Limited Method for producing olefins

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962575A (en) * 1972-10-19 1974-06-18
JPS4966776A (en) * 1972-10-30 1974-06-28
JPS54117595A (en) * 1978-03-03 1979-09-12 Nippon Zeon Co Ltd Method and apparatus for thermal decombposition of hot-melt polymeric material
JPS5645984A (en) * 1979-09-22 1981-04-25 Agency Of Ind Science & Technol Thermal cracking of polyolefinic plastic
JPS63178195A (en) * 1987-01-20 1988-07-22 工業技術院長 Production of low boiling point hydrocarbon oil from polyolefinic plastic
JPH01210493A (en) * 1987-12-23 1989-08-24 Asea Brown Boveri Ag Retreatment of waste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962575A (en) * 1972-10-19 1974-06-18
JPS4966776A (en) * 1972-10-30 1974-06-28
JPS54117595A (en) * 1978-03-03 1979-09-12 Nippon Zeon Co Ltd Method and apparatus for thermal decombposition of hot-melt polymeric material
JPS5645984A (en) * 1979-09-22 1981-04-25 Agency Of Ind Science & Technol Thermal cracking of polyolefinic plastic
JPS63178195A (en) * 1987-01-20 1988-07-22 工業技術院長 Production of low boiling point hydrocarbon oil from polyolefinic plastic
JPH01210493A (en) * 1987-12-23 1989-08-24 Asea Brown Boveri Ag Retreatment of waste

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209175A (en) * 1991-12-03 1993-08-20 Fuji Risaikuru Kk Method for reutilizing wastes of plastic
JPH07268353A (en) * 1994-03-30 1995-10-17 Nippon Steel Corp Raw material-mixing tank of waste plastic-treating installation
JP2010121140A (en) * 2002-04-18 2010-06-03 Chevron Usa Inc Method for converting waste plastic into lubricating oil
JP2007089335A (en) * 2005-09-22 2007-04-05 Toshiba Mitsubishi-Electric Industrial System Corp Voltage detection method of power switching element and power conversion device using this
KR100687242B1 (en) * 2006-04-10 2007-02-26 경상대학교산학협력단 Method for producing fuel oil from waste vinyl by using the liquid-phase catalysts
JP2016522809A (en) * 2013-04-18 2016-08-04 ハネウェル・インターナショナル・インコーポレーテッド Reaction system and method for producing fluorinated organic compounds
EP4108649A4 (en) * 2020-02-21 2024-03-13 Sumitomo Chemical Company, Limited Method for producing olefins

Similar Documents

Publication Publication Date Title
US4851601A (en) Processing for producing hydrocarbon oils from plastic waste
KR930007888B1 (en) Production of low boiling point hydrocarbon oil from plastic materials
US4584421A (en) Method for thermal decomposition of plastic scraps and apparatus for disposal of plastic scraps
KR100202467B1 (en) Polymer cracking
US5738025A (en) Method and apparatus for thermal cracking of waste plastics
CA2559951C (en) Process and plant for conversion of waste material to liquid fuel
KR100294809B1 (en) Recycling method of plastic in steam cracker
US4144189A (en) Process for regenerating spent cracking catalyst
JP7079297B2 (en) Processes and equipment for simultaneous conversion of waste plastics in delayed coker units
KR100474396B1 (en) A method for transformation of polyolefine wastes into hydrocarbons and a plant for carrying thereof
EP2161299A1 (en) Thermocatalytic depolymerisation of waste plastic, device and reactor for same
JPH05345894A (en) Method for chemically reusing plastics
JPH0386791A (en) Manufacture of low boiling-point hydrocarbon oil
JP2000503336A (en) Method and apparatus for waste oil treatment
US20170121608A1 (en) Method for thermal decomposition of plastic waste and/or biomass and apparatus for process management
EP1707614A1 (en) Thermal or catalytic cracking process for hydrocarbon feedstocks and corresponding system
JPH0559372A (en) Production of fuel oil from polyolefinic resin
JPH0386790A (en) Manufacture of low boiling-point hydrocarbon oil
KR20210083492A (en) Apparatus for Pyrolyzing Waste Plastics
KR100241543B1 (en) Method of decomposing waste plastic and apparatus thereof
KR100759583B1 (en) Pyrolysis waste recycling method and system
JPH0834978A (en) Production of low-boiling hydrocarbon oil and production machine
KR960013605B1 (en) Hydrocarbon oil production method from waste plastics by pyrolysis
JPH0229492A (en) Treatment of polystyrene waste
JPS59174690A (en) Thermal decomposition of plastic waste and its device