JPH0384204A - Confluence valve device for load sensing type hydraulic circuit - Google Patents
Confluence valve device for load sensing type hydraulic circuitInfo
- Publication number
- JPH0384204A JPH0384204A JP1217573A JP21757389A JPH0384204A JP H0384204 A JPH0384204 A JP H0384204A JP 1217573 A JP1217573 A JP 1217573A JP 21757389 A JP21757389 A JP 21757389A JP H0384204 A JPH0384204 A JP H0384204A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- discharge
- variable
- pump
- delivery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003921 oil Substances 0.000 description 27
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 1
Landscapes
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、複数の油圧アクチュエータをそれぞれ操作可
能な一対の可変吐出ボン1を備えたロードセンシング型
油圧回路における前記両可変吐出ポンプの吐出油合流弁
装置(以降、ロードセンシング型油圧回路の合流弁装置
と称する)に係り、さらに詳細には、両可変吐出ポンプ
の前記吐出油合流を効率良く達成し得る合流弁装置に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a load sensing type hydraulic circuit equipped with a pair of variable discharge pumps 1 each capable of operating a plurality of hydraulic actuators. The present invention relates to a merging valve device (hereinafter referred to as a merging valve device for a load-sensing hydraulic circuit), and more specifically, to a merging valve device that can efficiently merge the discharged oils of both variable discharge pumps.
一般に、この種のロードセンシング型油圧回路において
は、一方の可変吐出ポンプに所属するアクチュエータに
対する供給油量が不足する場合に、このアクチュエータ
に他方の可変吐出ポンプの吐出油を補給し得るように、
両可変吐出ポンプのそれぞれの圧油吐出ラインの間が合
流手段を介して接続されている。Generally, in this type of load sensing type hydraulic circuit, when the amount of oil supplied to the actuator belonging to one variable discharge pump is insufficient, this actuator can be supplied with the discharge oil of the other variable discharge pump.
The respective pressure oil discharge lines of both variable discharge pumps are connected via a merging means.
第2図にこのような合流手段を示す、すなわち、第2図
において、ロードセンシング型油圧回路は、第1、第2
の可変吐出ポンプ10、12と、これら各可変吐出ポン
プ10.12のそれぞれに接続されるそれぞれ複数のア
クチュエータAt 、At・・・およびB、 、B、・
・・(図示せず)と、これら各アクチュエータの圧油供
給ライン14.16にそれぞれ設けられる調整可能な絞
り弁(図示せず)ならびにこの絞り弁前後の差圧を制御
する圧力補償弁(図示せず)とを有し、両可変吐出ポン
プ10.12のそれぞれの圧油吐出ライン18.20の
間は合流弁22を介して接続されている。なお、両可変
吐出ポンプ10.12は、それぞれに所属するアクチュ
エータAt 、At・・・およびL 、82・・・の制
御圧力PAI+PA2’・・およびP@l+P@1’・
・のうちそれぞれ最高の制御圧力PA、P、でその吐出
流量を制御される。したがって、両可変吐出ポンプ10
、12の吐出圧力は、前記制御圧力PA’、P。FIG. 2 shows such a merging means. In other words, in FIG.
variable discharge pumps 10, 12, and a plurality of actuators At, At... and B, B,... connected to each of these variable discharge pumps 10, 12, respectively.
... (not shown), adjustable throttle valves (not shown) provided in the pressure oil supply lines 14 and 16 of each of these actuators, and a pressure compensation valve (not shown) that controls the differential pressure across the throttle valves. (not shown), and the pressure oil discharge lines 18.20 of both variable discharge pumps 10.12 are connected via a merging valve 22. In addition, both variable discharge pumps 10.12 control the control pressures PAI+PA2'... and P@l+P@1' of the actuators At, At... and L, 82... belonging to the respective ones.
・The discharge flow rate is controlled by the highest control pressure PA, P, respectively. Therefore, both variable discharge pumps 10
, 12 are the control pressures PA', P.
にそれぞれ制御部24.26を介して付与される差圧ム
Pを加算された圧力PA十ΔP、 Pa 十ムPに設定
されるよう構成されている。換言すれば、各アクチュエ
ータは、前記差圧ムPによって機能するそれぞれの絞り
弁を介して圧油供給量が制御される。The differential pressures P applied via the control units 24 and 26 are set to the added pressures PA+ΔP and Pa+ΔP, respectively. In other words, the amount of pressure oil supplied to each actuator is controlled via each throttle valve that functions based on the differential pressure P.
このような構成において、合流弁22はその片側に対し
て両可変ポンプ10.12の吐出圧力の和((PA+Δ
P)+(P、+ムP))が、反対側に対して両可変吐出
ポンプ10.12の制御圧力の和(PA 十h )とス
プリング28の抗力りとの合計圧力(PA+ Ps +
PI )とがそれぞれ対向して印加されるよう構成さ
れている。In such a configuration, the merging valve 22 has a sum of the discharge pressures of both variable pumps 10.12 ((PA+Δ
P)+(P,+muP)) is the sum of the control pressures of both variable discharge pumps 10.12 (PA 10h ) and the resistance force of the spring 28 on the opposite side (PA+ Ps +
PI) are configured to be applied in opposition to each other.
したがって、このような構成になるロードセンシング型
油圧回路においては、各アクチュエータAt 、A2・
・・およびat 、B2・・・がそれぞれ所定範囲内の
圧油供給量で駆動されている場合には、前述したように
、両可変吐出ポンプ10.12は、それぞれの制御圧力
P^、PIならびに吐出圧力PA+ΔP、 P、十ΔP
で駆動されているが、何れか一方の可変吐出ポンプの吐
出流量が不足すると、他方の可変吐出ポンプの吐出圧油
が補給される。すなわち、例えば、第2の可変吐出ポン
プ12に所属する。Therefore, in the load sensing type hydraulic circuit having such a configuration, each actuator At, A2,
. . , at, B2, . and discharge pressure PA + ΔP, P, + ΔP
However, if the discharge flow rate of either variable discharge pump becomes insufficient, the discharge pressure oil of the other variable discharge pump is replenished. That is, for example, it belongs to the second variable discharge pump 12.
第2のアクチュエータB+ 、B2・・・のうちのいず
れかに通じる供給ライン16内の可変絞りを所定の差圧
ΔPが確保できる圧油を吐出できない(フル吐出した状
態でも)程充分に開いた状態では、第2の可変吐出ポン
プ12の吐出圧力はP・十ΔP°(ΔP”くΔP)tで
しが上昇することができず、したがって前記アクチュエ
ータBに、対する要求流量に対して供給流量が不足する
状態、すなわち第2の可変吐出ポンプ12の吐出流量が
不足する状態となるが、この状態になると、合流弁装置
22が作動し、第1の可変吐出ポンプ10からの吐出余
剰油が前記合流弁22を経由してアクチュエータBに供
給される。この場合、前記合流弁22の作動に際しては
、両可変吐出ポンプ10.12の制御圧力PA、P、は
、共に、前記圧力P^+Plのうちの何れか高い方の制
御圧力に設定される。The variable throttle in the supply line 16 leading to one of the second actuators B+, B2, etc. is opened sufficiently to the extent that it is not possible to discharge pressure oil that can secure a predetermined differential pressure ΔP (even in a fully discharged state). In this state, the discharge pressure of the second variable discharge pump 12 is P·1ΔP° (ΔP”×ΔP)t, but cannot increase, and therefore the supply flow rate to the actuator B is lower than the required flow rate. In other words, the discharge flow rate of the second variable discharge pump 12 is insufficient, but in this state, the merging valve device 22 is activated and the excess oil discharged from the first variable discharge pump 10 is discharged. It is supplied to the actuator B via the merging valve 22. In this case, when the merging valve 22 is operated, the control pressures PA, P of both variable discharge pumps 10.12 are both equal to the pressure P^+Pl. The control pressure is set to whichever is higher.
しかしながら、従来のこの種のロードセンシング型油圧
回路の合流弁装置は、以下述べるような難点を有してい
た。However, this type of conventional merging valve device for a load sensing type hydraulic circuit has had the following drawbacks.
すなわち、従来の合流弁22の作動は、前述したように
、両可変吐出ポンプ10.12の制御圧力PA、P・を
、共に、前記制御圧力PA。That is, the operation of the conventional merging valve 22 is such that, as described above, the control pressures PA and P of both the variable discharge pumps 10.12 are set to the control pressure PA.
P、のうち何れか高い方の制御圧力に設定した後に行わ
れる。このため、例えば、制御圧力pA< p、におい
て第1の可変吐出ポンプ10側から第2の可変吐出ポン
プ1211!!lへ圧油が補給される場合には問題は発
生しないが、これとは逆に、制御圧力がPA>PIlに
おいて第1の可変吐出ポンプ10側から第2の可変吐出
ポンプ12測へ圧油が補給される場合には、第2の可変
吐出ポンプ12側へはその制御圧力P1がPAに昇圧さ
れた後に、すなわち吐出圧力がP3+ΔPからPA十Δ
Pに不必要に昇圧された後に第1の可変吐出ポンプ10
測からの補給が行なわれる。したがって、第2の可変吐
出ポンプ12関においては、前記圧力pH−+PAの昇
圧に伴って不必要に駆動動力が損失される。This is performed after setting the control pressure to the higher one of P. For this reason, for example, when the control pressure pA<p, the second variable discharge pump 1211 from the first variable discharge pump 10 side! ! No problem occurs if pressure oil is supplied to the pump 1, but on the contrary, when the control pressure is PA>PIl, pressure oil is supplied from the first variable discharge pump 10 side to the second variable discharge pump 12 side. is supplied to the second variable discharge pump 12 side after its control pressure P1 has been increased to PA, that is, the discharge pressure has increased from P3 + ΔP to PA + Δ
After the pressure is unnecessarily increased to P, the first variable discharge pump 10
Replenishment from measurements is carried out. Therefore, in the second variable discharge pump 12, driving power is unnecessarily lost as the pressure pH-+PA increases.
このように、従来のこの種の合流弁装置は、両可変吐出
ポンプ間の吐出油補給に際して、不必要なエネルギ損失
が発生されていた。As described above, in this type of conventional merging valve device, unnecessary energy loss occurs when replenishing discharge oil between both variable discharge pumps.
そこで、本発明の目的は、ロードセンシング型油圧回路
において、両可変吐出ポンプ間の吐出油合流を、不必要
なエネルギ損失を発生することなく、効率良く達成し得
る合流弁装置を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a merging valve device that can efficiently merge discharge oil between both variable discharge pumps in a load sensing type hydraulic circuit without causing unnecessary energy loss. be.
先の目的を達成するために、本発明に係るロードセンシ
ング型油圧回路の合流弁装置は、一対の可変吐出ポンプ
と、これら各可変吐出ポンプのそれぞれに接続される複
数のアクチュエータと、これら各アクチュエータの圧油
供給ラインにそれぞれ設けられる調整可能な絞り弁およ
びこの絞り弁前後の差圧を制御する圧力補償弁とを有し
、前記各可変吐出ポンプはそれぞれに接続される前記ア
クチュエータの制御圧力のうちの最高の制御圧力でその
吐出流量を制御されると共に、前記各可変吐出ポンプの
それぞれの圧油吐出ラインの間が合流手段を介して接続
されている一対の可変吐出ポンプを備えたロードセンシ
ング型油圧回路において、前記合流手段は、片開に対し
ては一方の可変吐出ポンプの吐出圧力と前記制御圧力と
の間の有効差圧が、反対側に対しては他方の可変吐出ポ
ンプの吐出圧力と前記制御圧力との間の有効差圧がそれ
ぞれ対向して印加され、これら両有効差圧が略等しい時
には同圧油吐出ラインの間がブロックされると共に興な
る時には同圧油吐出ラインの間が何れか一方向に連通さ
れる制御油圧回路を有することを特徴とする。In order to achieve the above object, a merging valve device for a load sensing type hydraulic circuit according to the present invention includes a pair of variable discharge pumps, a plurality of actuators connected to each of these variable discharge pumps, and each of these actuators. Each of the variable discharge pumps has an adjustable throttle valve provided in each of the pressure oil supply lines and a pressure compensation valve that controls the differential pressure before and after the throttle valve, and each of the variable discharge pumps has a control pressure of the actuator connected to it. A load sensing device comprising a pair of variable discharge pumps whose discharge flow rate is controlled by the highest control pressure of the variable discharge pumps, and whose respective pressure oil discharge lines of the variable discharge pumps are connected via a merging means. In the type hydraulic circuit, the merging means has an effective pressure difference between the discharge pressure of one variable discharge pump and the control pressure for one side opening, and a discharge pressure of the other variable discharge pump for the opposite side. The effective differential pressures between the pressure and the control pressure are applied oppositely, and when these two effective differential pressures are substantially equal, the space between the same pressure oil discharge lines is blocked, and when it occurs, the space between the same pressure oil discharge lines is blocked. It is characterized by having a control hydraulic circuit that communicates between the two in one direction.
本発明に係る合流弁には、その両側に両可変吐出ポンプ
のそれぞれの吐出圧力と制御圧力との間の有効差圧が対
向して印加される。Effective differential pressures between the respective discharge pressures and control pressures of both variable discharge pumps are applied to both sides of the merging valve according to the present invention.
すなわち、合流弁は、両可変吐出ポンプの有効差圧が常
に略等しくなるように、両可変吐出ポンプの吐出圧油を
合流させる。That is, the merging valve merges the discharge pressure oils of both variable discharge pumps so that the effective differential pressures of both variable discharge pumps are always substantially equal.
したがって、低圧負荷側のアクチュエータに高圧負荷側
の可変吐出ポンプの吐出圧油が合流される場合には、前
記合流は、低圧負荷側の可変吐出ポンプの吐出圧力は昇
圧されることなく行われる。Therefore, when the discharge pressure oil of the variable discharge pump on the high pressure load side is merged with the actuator on the low pressure load side, the merging is performed without increasing the discharge pressure of the variable discharge pump on the low pressure load side.
次に、本発明に係る、ロードセンシング型油圧回路の合
流弁装置の一実施例を添付図面を参照して以下詳細に説
明する。なお、説明の便宜上、第2図に示す従来の構成
と同一構成部分には同−参照符号付し説明を省略する。Next, an embodiment of a merging valve device for a load sensing type hydraulic circuit according to the present invention will be described in detail below with reference to the accompanying drawings. For convenience of explanation, the same reference numerals are given to the same components as those in the conventional structure shown in FIG. 2, and the explanation thereof will be omitted.
まず初めに、本発明に係るロードセンシング型油圧回路
の構成は、第2図に示す従来の油圧回路の構成と同一で
ある。すなわち、第1図において、本発明の油圧回路は
、第1、第2の可変吐出ポンプ10.12と、これら各
可変吐出ポンプ10.12のそれぞれに接続される複数
(本実施例においてはそれぞれ2個)のアクチュエータ
A+ 、Axおよび8. 、B、と、これら各アクチュ
エータAI+^2 +Bl +Lの圧油供給ライン14
.16にそれぞれ設けられる調整可能な可変絞り弁30
およびこの絞り弁30の前後差圧を制御する圧力補償弁
(本実施例においては方向切換弁と兼用されている)3
2とを有し、両可変吐出ポンプ10.12のそれぞれの
圧油吐出ライン18.20の間は合流弁34を介して接
続されている。なお、絞り弁30と圧力補償弁32の配
置は、本実施例におけるとは逆に、圧力補償弁32を絞
り弁30の下流側に設けることもできる。ただしこの場
合には、圧力補償弁32には、その片側に可変吐出ポン
プの吐出圧力を反対側にはばね抗力およびポンプ吐出流
量を制御する最高負荷圧力を接続する。そして、このよ
うな油圧回路において、両可変吐出ポンプ10.12は
、それぞれに所属するアクチュエータAI+^2および
81.82の制御圧力P A I + P A 2およ
びPBl+P12のうちの高い方の制御圧力PA 、p
、でその吐出流量を制御される。したがって、両可変吐
出ポンプ10.12の吐出圧力は、前記制御圧力PA、
Psにそれぞれ制御部24.26を介して付与される差
圧ΔPを加算された圧力PA十ΔP 、pl 十ΔPに
設定されるよう構成されている。換言すれば、各アクチ
ュエータAI 、A2.8! 、Bxは、前記差圧ΔP
によって機能するそれぞれの絞り弁30を介して圧油供
給量を制御される。First of all, the configuration of the load sensing type hydraulic circuit according to the present invention is the same as the configuration of the conventional hydraulic circuit shown in FIG. That is, in FIG. 1, the hydraulic circuit of the present invention includes first and second variable discharge pumps 10.12, and a plurality of (in this embodiment, each 2) actuators A+, Ax and 8. , B, and the pressure oil supply line 14 of each of these actuators AI+^2 +Bl +L
.. Adjustable variable throttle valve 30 provided in each of 16
and a pressure compensation valve (also used as a directional switching valve in this embodiment) 3 that controls the differential pressure across the throttle valve 30.
2, and the pressure oil discharge lines 18.20 of both variable discharge pumps 10.12 are connected via a merging valve 34. Note that the arrangement of the throttle valve 30 and the pressure compensation valve 32 may be reversed to that in this embodiment, and the pressure compensation valve 32 may be provided on the downstream side of the throttle valve 30. However, in this case, the pressure compensating valve 32 is connected to the discharge pressure of the variable discharge pump on one side and the maximum load pressure for controlling the spring resistance and the pump discharge flow rate on the opposite side. In such a hydraulic circuit, both variable discharge pumps 10.12 operate at the higher control pressure of the control pressures P A I + P A 2 and PBl+P12 of the actuators AI+^2 and 81.82 belonging to them, respectively. PA, p
, the discharge flow rate is controlled by . Therefore, the discharge pressures of both variable discharge pumps 10.12 are the control pressure PA,
The pressures PA+ΔP and pl are set to Ps plus the differential pressure ΔP applied via the control units 24 and 26, respectively. In other words, each actuator AI, A2.8! , Bx is the differential pressure ΔP
The amount of pressure oil supplied is controlled through each throttle valve 30 which functions as follows.
しかるに、本発明に係る合流弁34は、その片側に対し
て第1の可変吐出ポンプ10の吐出圧力PA十ΔPと制
御圧力PAとの間の有効差圧(差圧) ΔPをそれぞれ
吐出ライン18、吐出流量制御ライン36を介して印加
され、反対側に対して第2の可変吐出ポンプ12の吐出
圧力pH+ΔPと制御圧力P・との間の有効差圧(差圧
)ΔPをそれぞれ吐出ライン20、吐出流量制御ライン
38を介して印加される。However, the merging valve 34 according to the present invention has an effective pressure difference (differential pressure) ΔP between the discharge pressure PA and the control pressure PA of the first variable discharge pump 10 on one side of the discharge line 18. , are applied via the discharge flow rate control line 36, and the effective pressure difference (differential pressure) ΔP between the discharge pressure pH+ΔP of the second variable discharge pump 12 and the control pressure P· to the opposite side is applied to the discharge line 20, respectively. , is applied via the discharge flow rate control line 38.
そして、両可変吐出ポンプ10.12の吐出流量制御ラ
イン36.38の間は、シャトル弁40.42ならびに
合流弁34を介して接続される。Discharge flow rate control lines 36.38 of both variable discharge pumps 10.12 are connected via shuttle valves 40.42 and merging valves 34.
次に、このような構成になる本発明に係る合流弁34の
作動につき説明する。まず、アクチュエータAI 、A
2の合計要求流量ならびにアクチュエータB、、B2の
合計要求流量がそれぞれ第1、第2の可変吐出ポンプ1
0.12の最大吐出流量以下である場合には、前述した
ように、両可変吐出ポンプ10.12は、それぞれの制
御圧力PA、plならびに吐出圧力PA+ΔP 、h+
ΔPで駆動されている。すなわち、この場合には、合流
弁34の両側に同じ有効差圧ΔPが印加され、したがっ
て合流弁34は両可変吐出ポンプ10.12の吐出ライ
ン18゜20の間をブロックする。Next, the operation of the merging valve 34 according to the present invention having such a configuration will be explained. First, actuators AI, A
2 and the total required flow rate of actuators B, , B2 are the same as those of the first and second variable discharge pumps 1, respectively.
If the maximum discharge flow rate is 0.12 or less, as described above, both variable discharge pumps 10.12 have their respective control pressures PA, pl and discharge pressures PA+ΔP, h+
It is driven by ΔP. That is, in this case the same effective differential pressure ΔP is applied on both sides of the merging valve 34, so that the merging valve 34 blocks between the delivery lines 18.20 of the two variable delivery pumps 10.12.
しかるに、前記平衡状態から、アクチュエータ^1.A
2に要求される流量の和が第1の可変吐出ポンプ10の
最大吐出流量以上になるまで、アクチュエータ^1また
はA2の何れかに通じる絞り弁30を開口すると、第1
の可変吐出ポンプ10は、その制御圧力PAに対して最
大吐出をしても、吐出圧力はPA十ムP。However, from the equilibrium state, the actuator ^1. A
When the throttle valve 30 leading to either the actuator ^1 or A2 is opened until the sum of the flow rates required for the first variable discharge pump 10 becomes greater than or equal to the maximum discharge flow rate of the first variable discharge pump 10, the first
Even if the variable discharge pump 10 performs maximum discharge with respect to its control pressure PA, the discharge pressure is PA0mP.
(ΔP°<ΔP)までしか上昇し得ない、すなわち、第
1の可変吐出ポンプ10の吐出流量は、これに所属する
アクチュエータ^1.^2の合計要求流量に対して不足
した状態となる。しかるにこの場合、合流弁34には、
その片側には第1の可変吐出ポンプ10の有効差圧ΔP
°が反対側には第2の可変吐出ポンプ12の有効差圧Δ
Pが作用されるので、合流弁34は弁位置34A、すな
わち第2の可変吐出ポンプ12の吐出ライン20から第
1の可変吐出ポンプ10の吐出ライン18へ圧油が補給
可能なポジションに切換えられる。なお、この状態では
、両吐出流量制御ライン36..3gの間はシャトル弁
40゜42を介して連通されている。(ΔP°<ΔP), that is, the discharge flow rate of the first variable discharge pump 10 can only increase up to ΔP°<ΔP. This results in a state where the total required flow rate of ^2 is insufficient. However, in this case, the merging valve 34 has
On one side thereof, there is an effective differential pressure ΔP of the first variable discharge pump 10.
On the side opposite to ° is the effective differential pressure Δ of the second variable discharge pump 12.
P is applied, so the merging valve 34 is switched to the valve position 34A, that is, a position where pressure oil can be supplied from the discharge line 20 of the second variable discharge pump 12 to the discharge line 18 of the first variable discharge pump 10. . Note that in this state, both discharge flow rate control lines 36. .. 3g are communicated via shuttle valves 40 and 42.
したがって、前記状態における第2の可変吐出ポンプ1
2開から第1の可変吐出ガング10側への吐出油補給は
、制御圧力がPA< Psである場合にはこの制御圧力
PA、P・を変更することなく行われ、制御圧力がPA
> Psである場合には制御圧力P、が制御圧力PAま
で昇圧された後行われる。Therefore, the second variable discharge pump 1 in the above state
Discharge oil replenishment from the second opening to the first variable discharge gang 10 side is performed without changing the control pressures PA and P when the control pressure is PA < Ps, and the control pressure is PA
> Ps, the control pressure is increased to the control pressure PA.
このように、本発明に係る合流弁装置によれば、低圧負
荷側のアクチュエータに高圧負荷側の可変吐出ポンプの
、吐出圧油を補給する場合に、前記補給を、低圧負荷側
の可変吐出ポンプの吐出圧力を昇圧することなく行うこ
とができる。したがって前記補給において、低圧負荷側
の可変吐出ポンプの吐出圧力を高圧負荷側の可変吐出ポ
ンプの吐出圧力まで昇圧する従来の合流弁装置に比較し
て、ポンプ6
駆動動力の省エネ化を達成)セとができる。As described above, according to the merging valve device according to the present invention, when replenishing the discharge pressure oil of the variable discharge pump on the high pressure load side to the actuator on the low pressure load side, the replenishment is performed by the variable discharge pump on the low pressure load side. This can be done without increasing the discharge pressure. Therefore, in the above-mentioned replenishment, compared to the conventional merging valve device that increases the discharge pressure of the variable discharge pump on the low-pressure load side to the discharge pressure of the variable discharge pump on the high-pressure load side, it is possible to achieve energy savings in the driving power of the pump 6. I can do that.
以上、本発明を好適な実肢例について説明したが、本発
明はその精神の範囲内において多くの設計変更が可能で
ある。Although the present invention has been described above with reference to preferred embodiments, the present invention can be modified in many ways within the scope of its spirit.
以上説明したように、本発明に係るロードセンシング型
油圧回路の合流弁装置は、合流弁の両側に、両可変吐出
ポンプのそれぞれの吐出圧力と制御圧力との間の有効差
圧を対向して印加するよう構成したので、この結果、低
圧負荷側のアクチュエータに高圧負荷側の可変吐出ポン
プの吐出圧油を補給する場合に低圧負荷側の可変吐出ポ
ンプの吐出圧力を昇圧することなく前記補給を行うこと
ができるしたがって、前記補給において、低圧負荷側の
可変吐出ポンプの吐出圧力を高圧負荷側の可変吐出ポン
プの吐出圧力まで昇圧していた従来の合流弁装置に比較
して、ポンプ駆動力の省エネ化を達成することができる
。As explained above, the merging valve device for the load sensing type hydraulic circuit according to the present invention has the effective differential pressure between the discharge pressure and the control pressure of both variable discharge pumps facing each other on both sides of the merging valve. As a result, when replenishing the discharge pressure oil of the variable discharge pump on the high pressure load side to the actuator on the low pressure load side, the replenishment can be performed without increasing the discharge pressure of the variable discharge pump on the low pressure load side. Therefore, in the above-mentioned replenishment, the pump driving force is reduced compared to a conventional merging valve device in which the discharge pressure of the variable discharge pump on the low pressure load side is increased to the discharge pressure of the variable discharge pump on the high pressure load side. Energy saving can be achieved.
4、4,
第1図は本発明に係るロードセンシング型油圧回路の合
流弁装置を説明する油圧回路図、第2図は従来のロード
センシング型油圧回路の合流弁装置を説明する油圧回路
図である。
10・・・第1の可変吐出ポンプ
12・・・第2の可変吐出ポンプ
14.16・・・供給ライン
18.20・・・吐出ライン
24.26・・・制御部
30・・・可変絞り弁
32・・・圧力補償弁
34・・・合流弁
36.38・・・吐出流量#J御クライン0、42・・
・シャトル弁
At 、A2 +Bl 、B2・・・アクチュエータP
A、P11・・・制御圧力
ΔP・・・有効差圧
FIG。FIG. 1 is a hydraulic circuit diagram illustrating a merging valve device for a load sensing type hydraulic circuit according to the present invention, and FIG. 2 is a hydraulic circuit diagram illustrating a merging valve device for a conventional load sensing type hydraulic circuit. 10...First variable discharge pump 12...Second variable discharge pump 14.16...Supply line 18.20...Discharge line 24.26...Control unit 30...Variable throttle Valve 32...Pressure compensation valve 34...Merge valve 36.38...Discharge flow rate #J control line 0, 42...
・Shuttle valve At, A2 +Bl, B2...actuator P
A, P11... Control pressure ΔP... Effective differential pressure FIG.
Claims (1)
プのそれぞれに接続される複数のアクチュエータと、こ
れら各アクチュエータの圧油供給ラインにそれぞれ設け
られる調整可能な絞り弁およびこの絞り弁前後の差圧を
制御する圧力補償弁とを有し、前記各可変吐出ポンプは
それぞれに接続される前記アクチュエータの制御圧力の
うちの最高の制御圧力でその吐出流量を制御されると共
に、前記各可変吐出ポンプのそれぞれの圧油吐出ライン
の間が合流手段を介して接続されている一対の可変吐出
ポンプを備えたロードセンシング型油圧回路において、 前記合流手段は、片側に対しては一方の可変吐出ポンプ
の吐出圧力と前記制御圧力との間の有効差圧が、反対側
に対しては他方の可変吐出ポンプの吐出圧力と前記制御
圧力との間の有効差圧がそれぞれ対向して印加され、こ
れら両有効差圧が略等しい、時には両圧油吐出ラインの
間がブロックされると共に異なる時には両圧油吐出ライ
ンの間が何れか一方向に連通される制御油圧回路を有す
ることを特徴とするロードセンシング型油圧回路の合流
弁装置。(1) A pair of variable discharge pumps, a plurality of actuators connected to each of these variable discharge pumps, adjustable throttle valves provided in the pressure oil supply lines of each of these actuators, and a difference before and after the throttle valves. and a pressure compensation valve for controlling the pressure, and each of the variable discharge pumps has its discharge flow rate controlled by the highest control pressure of the control pressures of the actuators connected to each variable discharge pump. In a load-sensing hydraulic circuit equipped with a pair of variable discharge pumps in which the pressure oil discharge lines of the respective pressure oil discharge lines are connected via a merging means, the merging means connects one variable discharge pump to the other. An effective pressure difference between the discharge pressure and the control pressure is applied to the opposite side, and an effective pressure difference between the discharge pressure of the other variable discharge pump and the control pressure is applied to the opposite side, respectively, and both of them are applied. A load sensing device characterized by having a control hydraulic circuit in which the effective differential pressures are approximately equal, and when the two pressure oil discharge lines are blocked, and when they are different, the two pressure oil discharge lines are communicated in one direction. type hydraulic circuit merging valve device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1217573A JP2810711B2 (en) | 1989-08-25 | 1989-08-25 | Merging valve device for load sensing type hydraulic circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1217573A JP2810711B2 (en) | 1989-08-25 | 1989-08-25 | Merging valve device for load sensing type hydraulic circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0384204A true JPH0384204A (en) | 1991-04-09 |
JP2810711B2 JP2810711B2 (en) | 1998-10-15 |
Family
ID=16706392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1217573A Expired - Fee Related JP2810711B2 (en) | 1989-08-25 | 1989-08-25 | Merging valve device for load sensing type hydraulic circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2810711B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03212524A (en) * | 1990-01-18 | 1991-09-18 | Komatsu Ltd | Flow rate switching device of attachment |
WO1998041765A1 (en) * | 1997-03-14 | 1998-09-24 | Komatsu Ltd. | Pressure oil supplying apparatus |
WO2005047709A1 (en) * | 2003-11-14 | 2005-05-26 | Komatsu Ltd. | Hydraulic pressure control device of construction machinery |
JP2008508483A (en) * | 2004-07-28 | 2008-03-21 | ボルボ コンストラクション イクイップメント アーベー | Hydraulic system and work machine equipped with such a system |
US7559197B2 (en) | 2005-08-31 | 2009-07-14 | Caterpillar Inc. | Combiner valve control system and method |
JP2010509552A (en) * | 2006-11-15 | 2010-03-25 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Hydraulic two-circuit system and combined / divergent switching valve device for the two-circuit system |
JP2010196780A (en) * | 2009-02-25 | 2010-09-09 | Toshiba Mach Co Ltd | Hydraulic control device of construction machine |
US8783025B2 (en) | 2011-02-28 | 2014-07-22 | Deere & Company | Split valve pump controlled hydraulic system |
JP2017226492A (en) * | 2016-06-20 | 2017-12-28 | 川崎重工業株式会社 | Hydraulic drive system |
-
1989
- 1989-08-25 JP JP1217573A patent/JP2810711B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03212524A (en) * | 1990-01-18 | 1991-09-18 | Komatsu Ltd | Flow rate switching device of attachment |
WO1998041765A1 (en) * | 1997-03-14 | 1998-09-24 | Komatsu Ltd. | Pressure oil supplying apparatus |
WO2005047709A1 (en) * | 2003-11-14 | 2005-05-26 | Komatsu Ltd. | Hydraulic pressure control device of construction machinery |
GB2422876A (en) * | 2003-11-14 | 2006-08-09 | Komatsu Mfg Co Ltd | Hydraulic pressure control device of construction machinery |
GB2422876B (en) * | 2003-11-14 | 2007-12-12 | Komatsu Mfg Co Ltd | Hydraulic pressure control device of construction machine |
CN100451353C (en) * | 2003-11-14 | 2009-01-14 | 株式会社小松制作所 | Hydraulic pressure control device of construction machinery |
US7520130B2 (en) | 2003-11-14 | 2009-04-21 | Komatsu Ltd. | Hydraulic pressure control device of construction machine |
JP4909268B2 (en) * | 2004-07-28 | 2012-04-04 | ボルボ コンストラクション イクイップメント アーベー | Hydraulic system and work machine equipped with such a system |
JP2008508483A (en) * | 2004-07-28 | 2008-03-21 | ボルボ コンストラクション イクイップメント アーベー | Hydraulic system and work machine equipped with such a system |
US7559197B2 (en) | 2005-08-31 | 2009-07-14 | Caterpillar Inc. | Combiner valve control system and method |
JP2010509552A (en) * | 2006-11-15 | 2010-03-25 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Hydraulic two-circuit system and combined / divergent switching valve device for the two-circuit system |
KR101432564B1 (en) * | 2006-11-15 | 2014-08-22 | 로베르트 보쉬 게엠베하 | Hydraulic two-circuit system and interconnecting valve arrangement |
JP2010196780A (en) * | 2009-02-25 | 2010-09-09 | Toshiba Mach Co Ltd | Hydraulic control device of construction machine |
US8783025B2 (en) | 2011-02-28 | 2014-07-22 | Deere & Company | Split valve pump controlled hydraulic system |
DE102012202952B4 (en) | 2011-02-28 | 2023-06-15 | Deere & Company | Split valve pump controlled hydraulic system and control method for such a system |
JP2017226492A (en) * | 2016-06-20 | 2017-12-28 | 川崎重工業株式会社 | Hydraulic drive system |
WO2017221758A1 (en) * | 2016-06-20 | 2017-12-28 | 川崎重工業株式会社 | Hydraulic drive system |
GB2566232A (en) * | 2016-06-20 | 2019-03-06 | Kawasaki Heavy Ind Ltd | Hydraulic drive system |
GB2566232B (en) * | 2016-06-20 | 2021-12-29 | Kawasaki Heavy Ind Ltd | Hydraulic driving system |
Also Published As
Publication number | Publication date |
---|---|
JP2810711B2 (en) | 1998-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6901754B2 (en) | Power conserving hydraulic pump bypass compensator circuit | |
JPH0384204A (en) | Confluence valve device for load sensing type hydraulic circuit | |
CN113212093A (en) | Hydraulic system capable of realizing constant pressure control and load sensitive control and control method | |
CN113007157A (en) | Load-sensitive multi-way valve, boom hydraulic control system and concrete pump truck | |
JPH03213703A (en) | Discharge flow control circuit for load pressure compensating pump | |
JP3447094B2 (en) | Load sensing circuit | |
JP2003004001A (en) | Hydraulic control apparatus | |
JP2548204Y2 (en) | Hydraulic drive | |
JPH01275902A (en) | Discharge rate control circuit for load pressure compensating pump | |
JPH02212606A (en) | Hydraulic flow control device for construction machine | |
JP3195095B2 (en) | 2-pump type load-sensitive circuit | |
JP2991529B2 (en) | Hydraulic working circuit | |
JPH10252705A (en) | Pressure oil feeding device | |
JPS61206804A (en) | Parallel multibranch hydraulic circuit | |
JP2652791B2 (en) | Flow control device | |
JP3072804B2 (en) | Vehicle straight-running control circuit | |
JP2981311B2 (en) | Hydraulic drive | |
JPH0419409A (en) | Hydraulic circuit | |
JP2003329005A (en) | Hydraulic pressure drive system | |
JPH07119705A (en) | Flow control circuit for construction vehicle | |
JP3074937B2 (en) | Vehicle straight-running control circuit | |
JPH03229001A (en) | Driving circuit for fluid pressure actuator | |
JPH0310802B2 (en) | ||
JPH041363Y2 (en) | ||
JPH0542243Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090731 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |