JPH0381973A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPH0381973A JPH0381973A JP2035316A JP3531690A JPH0381973A JP H0381973 A JPH0381973 A JP H0381973A JP 2035316 A JP2035316 A JP 2035316A JP 3531690 A JP3531690 A JP 3531690A JP H0381973 A JPH0381973 A JP H0381973A
- Authority
- JP
- Japan
- Prior art keywords
- semi
- conductive plates
- block
- electro
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims description 18
- 238000001816 cooling Methods 0.000 claims abstract description 20
- 239000004020 conductor Substances 0.000 claims abstract description 6
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 238000010248 power generation Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
- H01M8/04074—Heat exchange unit structures specially adapted for fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/249—Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、電解質を保持するマトリックスを含む単電
池の積層体からなり複数の単電池ごとに積層された冷却
板を有する燃料電池、ことに劣化単電池が生じたとき、
そのバイパス電流通路を容易に形成できる燃料電池に関
する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fuel cell comprising a stack of unit cells including a matrix holding an electrolyte, and having cooling plates stacked for each of a plurality of unit cells. When a deteriorated cell battery occurs,
The present invention relates to a fuel cell whose bypass current path can be easily formed.
第4図は従来構造を示すセルスタックの概略側面図であ
り、セルスタックlOは単電池1の積層体からなり、例
えば電解質としてのりん酸を保持したマトリックス2を
挟んでリブ付き電極基材に電極触媒層を担持した酸化剤
電極3および燃料電極4を配した単電池1とガス不透過
性のセパレート板5とを交互に積み重ね、かつ複数単電
池ごとに冷却板6を介装するとともに、積層方向両端部
に集電板7.wA緑根板8および締付板9を配し、上下
一対の締付板9間に締付荷重を加えることにより、一種
化されたセルスタック10が形成される。FIG. 4 is a schematic side view of a cell stack showing a conventional structure. The cell stack 1O is composed of a stack of single cells 1, which are mounted on ribbed electrode base materials with a matrix 2 holding phosphoric acid as an electrolyte sandwiched between them. Cells 1 having oxidizer electrodes 3 and fuel electrodes 4 carrying electrode catalyst layers and gas-impermeable separate plates 5 are stacked alternately, and a cooling plate 6 is interposed between each plurality of cells, Current collector plates 7 are provided at both ends in the stacking direction. A unified cell stack 10 is formed by arranging wA green root plates 8 and clamping plates 9 and applying a clamping load between the pair of upper and lower clamping plates 9.
なお、冷却板間に積層された複数の単電池のPANAロ
ック11をここではセミブロックと呼ぶこととする。Note that the PANA lock 11 of a plurality of single cells stacked between cooling plates will be referred to as a semi-block here.
このように構成されたセルスタック1oの側面には図示
しないマニホールドが取り付けられ、単電池lとセパレ
ート板5との間に画成された酸化剤通路3A、および燃
料電極4側に画成された燃料ガス通路にそれぞれ酸化剤
ガスおよび燃料ガスを供給して発電運転が行われる。A manifold (not shown) is attached to the side surface of the cell stack 1o configured in this way, and an oxidizer passage 3A defined between the unit cell 1 and the separate plate 5, and an oxidizer passage 3A defined on the fuel electrode 4 side. Power generation operation is performed by supplying oxidizing gas and fuel gas to the fuel gas passages, respectively.
ところで、発電運転中のセルスタック10を構成する多
数の単電池のうち1個でも寿命や損傷などによる劣化が
発生すると、セルスタック全体としての電気出力が低下
するのみならず、その時の運転条件によって劣化単電池
にいわゆる電位の逆転現象が生じ、電池として動作する
領域を逸脱して電気分解を起こす、この状態になると燃
料電極4側で酸素が、また酸化剤電極側で水素が発生す
るために酸素と水素が直接反応する極めて危険な状態に
なる。このような事態を防ぐ手段として第4図に示すよ
うに、劣化単電池1Aの端面に導電材からなる短絡部材
16を取付ねじ17によって一対の電極3および4の電
極基材にねじ止めして短絡回路15を形成した燃料電池
が知られている (実公昭63−31484号公報参照
)
〔発明が解決しようとする課題〕
従来の短絡部構造はガス透過性を有するカーボン板から
なる電極基材と取付ねじ17との接触面、および取付ね
じ17の締付力によって生ずる電極基材の端面と短絡部
材16の接触面とを導電接触面として短絡回路15を形
成するものであるが、電極基材の厚みが薄くかつその剛
性が低いために、十分な締付力および導電接触面積を得
ることが困難である。したがって、導電接触面の接触抵
抗が高く、この接触面を介してスタック10全体の発電
電流が流れた場合には短絡回路15における電位降下が
大きくなり、この電位降下が劣化単電池IAに逆向きに
加わるので、劣化単電池の電位の逆転現象を十分に回避
できないという問題がある。電位の逆転現象を十分回避
できないままに発電運転を継続すると、りん酸の電気分
解やカーボン材料の腐食により損傷単位電池が著しく損
傷するとともに、酸素と水素の直接反応によって局部過
熱を生ずるので、発電運転を継続できないという欠点が
ある。By the way, if even one of the many single cells that make up the cell stack 10 during power generation operation deteriorates due to lifespan or damage, not only will the electrical output of the cell stack as a whole decrease, but also depending on the operating conditions at that time. A so-called potential reversal phenomenon occurs in the deteriorated single cell, and it deviates from the range where it can operate as a battery, causing electrolysis. In this state, oxygen is generated on the fuel electrode 4 side and hydrogen is generated on the oxidizer electrode side. This creates an extremely dangerous situation where oxygen and hydrogen react directly. As a means to prevent such a situation, as shown in FIG. 4, a shorting member 16 made of a conductive material is screwed to the electrode base material of the pair of electrodes 3 and 4 using mounting screws 17 on the end face of the deteriorated cell 1A. A fuel cell in which a short circuit 15 is formed is known (see Utility Model Publication No. 63-31484) [Problem to be solved by the invention] The conventional short circuit structure has an electrode base material made of a carbon plate having gas permeability. The short circuit 15 is formed by using the contact surface between the electrode base material and the mounting screw 17, and the contact surface between the end face of the electrode base material and the short circuit member 16, which are generated by the tightening force of the mounting screw 17, as conductive contact surfaces. Due to the thinness of the material and its low rigidity, it is difficult to obtain sufficient clamping force and conductive contact area. Therefore, when the contact resistance of the conductive contact surface is high and the generated current of the entire stack 10 flows through this contact surface, the potential drop in the short circuit 15 becomes large, and this potential drop is directed against the deteriorated cell IA. Therefore, there is a problem in that it is not possible to sufficiently avoid the phenomenon of reversal of the potential of a deteriorated cell. If power generation operation is continued without sufficiently avoiding the potential reversal phenomenon, the unit cells will be severely damaged due to electrolysis of phosphoric acid and corrosion of the carbon material, and local overheating will occur due to the direct reaction between oxygen and hydrogen, so power generation will be interrupted. The disadvantage is that you cannot continue driving.
この発明の目的は、劣化単電池が発生した際、セルスタ
ックを分解せずに劣化単電池をう回するバイパス電流通
路を容易に形成して劣化単電池の分解反応を防止できる
燃料電池を得ることにある。An object of the present invention is to provide a fuel cell that can easily form a bypass current path that bypasses the degraded cell without disassembling the cell stack when a degraded cell occurs, thereby preventing the decomposition reaction of the degraded cell. There is a particular thing.
上述の目的はこの発明によれば、セミブロックと、冷却
板と、一対の導電板と、電気絶縁シートとを有し、
セミブロックは単電池を複数個積層したものであり、
冷却板は電気絶縁シートを介して一対の導電板にサンド
ウィンチされるものであり、
一対の導電板はセミブロックと交互に積層され、セミブ
ロックの電流を他のセミブロックに伝えるものであり各
導電板の端部に設けられた導電接続部を介して相互に直
接的に接続され、あるいはその一方の導電板が接続導体
を用いて地対の導電板の片割れの関係にある導電板と間
接的に接続されるものであるとすることにより達成され
る。According to the present invention, the above-mentioned object has a semi-block, a cooling plate, a pair of conductive plates, and an electrically insulating sheet, the semi-block is a stack of a plurality of single cells, and the cooling plate is an electrically insulating sheet. It is sandwiched between a pair of conductive plates through an insulating sheet, and the pair of conductive plates are laminated alternately with semi-blocks, and the current in the semi-block is transmitted to the other semi-blocks. They are directly connected to each other through conductive connection parts provided in the parts, or one of the conductive plates is indirectly connected to the other conductive plate of the ground pair using a connecting conductor. This is achieved by assuming that
上記手段において、冷却板を挟む金属板からなる一対の
導電板を冷却板の一方の面との間に絶縁シートを介在さ
せてあらかじめセルスタックに積層しておき、常時1よ
一対の導電板を冷却板の側方で相互に導電接続して電流
通路を形成して、劣化単電池を含まない状態ではセルス
タックの発電性能に何等の影響を及ぼすことなく冷却板
をう回する電気抵抗の低い電流通路を発電電流が流れる
燃料電池が得られる。また、劣化単電池が生じた場合に
は、これを含む全5ブロツクを挟む各一対の導電板の導
電接続を解除し、セミブロックを電気絶縁シートを介し
て挟む2枚の導電板を導電接続し、セミブロックとは電
気的に絶縁された電気抵抗の低いバイパス電流通路を形
成したことにより、セルスタックの発電電流は電気絶縁
シートによって劣化単電池を含むセミブロックへの流入
が阻止されてバイパス電路を大きな電位降下を生ずるこ
となく流れるので、劣化単電池の電位の逆転現象を完全
に阻止することができる。さらに、バイパス電流通路を
電流通路の接続替えだけで容易に形成できるので、補修
作業を省力化、省時間化する機能が得られる。In the above means, a pair of conductive plates made of metal plates sandwiching a cooling plate are stacked in advance on the cell stack with an insulating sheet interposed between them and one surface of the cooling plate, and the pair of conductive plates from 1 to 1 are always stacked. Low electrical resistance that connects conductively to each other on the sides of the cooling plate to form a current path, allowing it to bypass the cooling plate without any effect on the power generation performance of the cell stack when no degraded cells are included. A fuel cell is obtained in which the generated current flows through the current path. In addition, if a deteriorated single cell occurs, the conductive connection between each pair of conductive plates sandwiching all five blocks including the cell is canceled, and the two conductive plates sandwiching the semi-block with an electrically insulating sheet are connected conductively. However, by forming a bypass current path with low electrical resistance that is electrically insulated from the semi-block, the electric current generated by the cell stack is blocked by the electrical insulating sheet from flowing into the semi-block containing the deteriorated cells, and is bypassed. Since it flows through the electrical path without causing a large potential drop, it is possible to completely prevent the potential reversal phenomenon of the deteriorated cell. Furthermore, since the bypass current path can be easily formed simply by changing the connection of the current path, a function that saves labor and time in repair work can be obtained.
以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.
第1図はこの発明の実施例を示す劣化単電池を含まない
燃料電池の概略側面図、第2図は第1図における要部を
分解して示す拡大図、第3図は劣化単電池を含む燃料電
池への通用例を示す実施例装置の概略側面図であり、従
来装置と同じ部分には同一参照符号を用いることにより
詳細な説明を省略する。第1図および第2図において、
健全な単電池のみからなるセミブロック11を挟む冷却
板6^、6B等の一方の面にはポリイ果ドフィルム等の
耐熱性を有する電気絶縁シート22を介して一方の導電
板23Aが、また冷却板の他方の面に接して導電板23
Bがセルスタック20の組立時にあらかじめ積層される
。導電板23A 、 23Bは例えば防食処理された銅
板等の金属板からなり、その両端部は冷却板の側方に引
き出され、ボルト、ナツト等の締付部材24によって締
め付けられ、一対の導電板23A。FIG. 1 is a schematic side view of a fuel cell that does not include a deteriorated cell according to an embodiment of the present invention, FIG. 2 is an exploded enlarged view of the main parts of FIG. 1, and FIG. FIG. 2 is a schematic side view of an example device showing an example of application to a fuel cell including a conventional device, and detailed explanation will be omitted by using the same reference numerals for the same parts as in the conventional device. In Figures 1 and 2,
On one side of the cooling plates 6^, 6B, etc. that sandwich the semi-block 11 consisting of only healthy single cells, one conductive plate 23A is attached via a heat-resistant electrical insulating sheet 22 such as a polyamide film. A conductive plate 23 is in contact with the other surface of the cooling plate.
B is laminated in advance when the cell stack 20 is assembled. The conductive plates 23A and 23B are made of metal plates such as anti-corrosion treated copper plates, and both ends thereof are pulled out to the sides of the cooling plate and tightened with tightening members 24 such as bolts and nuts, and the pair of conductive plates 23A .
23Bの端部が互いに導電結合した接触抵抗の低い導電
接続部25を形成する。The ends of 23B are conductively coupled to each other to form a conductive connection portion 25 with low contact resistance.
このように構成された電流通路21を各冷却板ごとに備
えたセルスタック20の一対の集電板7.7が外部負荷
回路に接続され、セルスタック20が負荷電流を供給す
る発電運転時には、セルスタックの発電電流(負荷電流
)はセパレート板5を介して単電池1に全面接触した導
を板例えば23Bに集電され、導電接触面積の広い導電
接続部25を介して導電板23Aから再び単電池に分布
して流れるので、電気抵抗の低い電流通路21を容易に
得ることができる。A pair of current collector plates 7.7 of the cell stack 20, each of which has a current path 21 configured in this manner for each cooling plate, is connected to an external load circuit, and during power generation operation in which the cell stack 20 supplies a load current, The generated current (load current) of the cell stack is collected through the separate plate 5 to a plate 23B, for example, which is in full contact with the unit cell 1, and is then collected again from the conductive plate 23A via the conductive connection part 25 with a large conductive contact area. Since the current flows distributed over the single cells, a current path 21 with low electrical resistance can be easily obtained.
一方セルスタック20に劣化単電池1Aが発生した場合
には第3図に示すように、劣化単電池1Aを含むセミブ
ロックIIAの両側に配された電流通路21^、21B
の締付ボルト24を取り外し、電流通路21A側の導電
板23Aと、電流通路21B側の導電板23Bとを接続
導体32を介して締付部材24を用いて導電接続する。On the other hand, when a degraded cell 1A occurs in the cell stack 20, as shown in FIG.
The tightening bolt 24 is removed, and the conductive plate 23A on the current path 21A side and the conductive plate 23B on the current path 21B side are electrically connected via the connecting conductor 32 using the tightening member 24.
この状態では冷却板6Aおよび2枚の導電板を含むセミ
ブロックIIAはその両側が2枚の電気絶縁シー)22
A、22Bによって隣接セミブロックと電気的に絶縁さ
れてセミブロックIIAが電気的に開放状態(負荷状態
)になり、このセミブロックとは電気絶縁シート22A
、 22Bによって電気的に絶縁されたバイパス電流
通路31か2枚の導を板23A、 23Bおよび接続導
体32によって形成され、電流通路21と同様に低い電
気抵抗が得られる。In this state, the semi-block IIA including the cooling plate 6A and two conductive plates has two electrically insulating sheets (22) on both sides.
The semi-block IIA is electrically insulated from the adjacent semi-blocks by A and 22B, and the semi-block IIA is in an electrically open state (loaded state).
, 22B, a bypass current path 31 is formed by the plates 23A, 23B and the connecting conductor 32, and similarly to the current path 21, a low electrical resistance is obtained.
このように111威された実施例燃料電池の発電運転に
おいては、発電電流は電気抵抗の低いバイパス電流通路
31を通って流れ、かつセミブロックLIAが2枚の絶
縁シートによってセルスタック20から電気的に絶縁さ
れているので、セミブロックIIAに発電電流が流入し
たり、バイパス電流通路31の電位降下がセミブロック
IIAに印加されることを完全に回避することが可能に
なり、したがって劣化単電池の電位の逆転現象をほぼ完
全に防止し、逆転現象に基づく特性劣化や反応ガスの直
接反応などの悪影響を回避することができる。また、セ
ルスタック20が発電運転中にはセミブロック11^に
も反応ガスが供給されて起電反応を起こすので、セミブ
ロックIIAに含まれる単電池は電圧を発生するが、電
気絶縁シー) 22A、22Bによって開放状態となっ
ているので短絡電流は発生しない、なお、各単電池の反
応ガス通路をシーリング材によってガス遮断し、単電池
の起電反応を抑制すれば、発生電圧を低減することがで
きる。In the power generation operation of the fuel cell according to the embodiment, the generated current flows through the bypass current path 31 with low electrical resistance, and the semi-block LIA is electrically disconnected from the cell stack 20 by two insulating sheets. Since it is insulated from the semi-block IIA, it is possible to completely prevent the generation current from flowing into the semi-block IIA and the potential drop of the bypass current path 31 from being applied to the semi-block IIA. It is possible to almost completely prevent the potential reversal phenomenon, and avoid adverse effects such as characteristic deterioration due to the reversal phenomenon and direct reaction of the reactant gas. Further, when the cell stack 20 is in power generation operation, the reaction gas is also supplied to the semi-block 11^ to cause an electromotive reaction, so the single cells included in the semi-block IIA generate voltage, but the electric insulation sheet (22A) , 22B are in an open state, so no short-circuit current is generated. Note that the generated voltage can be reduced by blocking the reaction gas passage of each cell with a sealant and suppressing the electromotive reaction of the cell. I can do it.
このように実施例燃料電池では、あらかじめ積層された
金属製の導電板の端部をセルスタックの側方で接続替え
するだけの簡単な作業で、劣化単電池を含むセミブロッ
クをう回するバイパス電流通路を容易かつ強固に形成で
きるので、劣化単電池の発生に際してセルスタックを分
解して劣化単電池を新しい単電池に交換するなどの大が
かりな補修を必要とせず、したがって燃料電池の休止期
間を大幅に短縮できるとともに、劣化単電池の電位の逆
転現象が阻止されることにより補修後の継続運転を安全
かつ長時間安定して行うことができる。In this way, in the example fuel cell, a bypass that bypasses the semi-block containing the deteriorated single cells can be created by simply reconnecting the ends of the metal conductive plates stacked in advance on the side of the cell stack. Since the current path can be formed easily and firmly, there is no need for large-scale repairs such as disassembling the cell stack and replacing the deteriorated cells with new cells when a deteriorated cell occurs, thus reducing the idle period of the fuel cell. In addition to being able to significantly shorten the time, it is possible to continue operation safely and stably for a long period of time after repair by preventing the potential reversal phenomenon of the deteriorated cell.
この発明は前述のように、冷却板を一方の面倒に電気絶
縁シートを介在させて挟む金属製の一対の導電板をセル
スタックにあらかじめ積層しておき、単電池がすべて正
常時には一対の導電板をその端部で着脱可能に導電接続
して電流通路を形成し、劣化単電池が発生した場合には
これを含むセミブロックの両側に配された2対の電流通
路を切り離し、上記セミブロックとは電気的に絶縁され
たバイパス電流通路を形成するよう構成した。その結果
、劣化単電池を含むセミブロックがセルスタックおよび
バイパス電流通路と電気的に絶縁されてセルスタックの
発電電流が電気抵抗の低いバイパス電流通路を流れるの
で、従来技術で問題となった短絡回路の接触抵抗が高い
ために劣化単電池に発電電流の一部が流れ、かつ短絡回
路の降下電圧が加わることによって劣化単電池の電位が
逆転するという現象をほぼ完全に回避することが可能と
なるので、逆転現象に起因する電池構成材料の電気分解
や燃料ガスと酸化剤の直接反応危険性が排除され、かつ
これらに基づく単電池の特性劣化も阻止され、したがっ
て劣化単電池を取り除くことなく安定な発電運転を長時
間安定して継続できる燃料電池を提供することができる
。また、あらかしめ積層された導電板の接続替えだけで
導電性および機械的に優れたバイパス電流通路を形成で
きるので、補修を省力化し、休止期間を短縮できる利点
が得られる。As mentioned above, in this invention, a pair of metal conductive plates sandwiching a cooling plate on one side with an electrically insulating sheet interposed between them are laminated in advance in a cell stack, and when all cells are in normal condition, the pair of conductive plates are removably conductively connected at their ends to form a current path, and when a deteriorated cell occurs, the two pairs of current paths arranged on both sides of the semi-block containing it are separated, and the semi-block and the above-mentioned semi-block are connected. was configured to form an electrically isolated bypass current path. As a result, the semi-block containing the deteriorated cell is electrically insulated from the cell stack and the bypass current path, and the current generated by the cell stack flows through the bypass current path with low electrical resistance, which eliminates short circuits that were a problem with conventional technology. This makes it possible to almost completely avoid the phenomenon in which a part of the generated current flows to the deteriorated cell due to the high contact resistance of the cell, and the potential of the deteriorated cell is reversed due to the voltage drop of the short circuit being applied. Therefore, the risk of electrolysis of battery constituent materials and direct reaction between fuel gas and oxidizer due to reversal phenomenon is eliminated, and the deterioration of cell characteristics due to these is also prevented. Therefore, it is possible to stabilize cells without removing deteriorated cells. It is possible to provide a fuel cell that can stably continue power generation operation for a long period of time. In addition, a bypass current path with excellent conductivity and mechanical properties can be formed simply by changing the connection of the conductive plates that have been laminated in a predetermined manner, which provides the advantage of saving labor in repairs and shortening downtime.
第1図はこの発明の実施例を劣化単電池を含まない燃料
電池に適用した状態を示す概略側面図、第2図は第1図
の要部を分解して示す拡大図、第3図はこの発明の実施
例を劣化単電池を含む燃料電池に適用した状態を示す概
略側面図、第4図は従来構造を示す概略側面図である。
1:単電池、IA:劣化単電池、2:マトリックス、3
.4:電極、5:セパレート板、6,6A、6B :
冷却板、10,20:セルスタック、11. IIA
:セミプロック、15:短絡回路、21:電流通路、
22.22A。
22B:電気絶縁シート、23A、23B :導電板
、25:導電接続部、31:バイパス電流通路、32:
接続4第1団
第2図
第3図FIG. 1 is a schematic side view showing an embodiment of the present invention applied to a fuel cell that does not include a deteriorated cell, FIG. 2 is an enlarged view showing the main parts of FIG. 1, and FIG. FIG. 4 is a schematic side view showing a state in which an embodiment of the present invention is applied to a fuel cell including a deteriorated cell, and FIG. 4 is a schematic side view showing a conventional structure. 1: Cell, IA: Deteriorated cell, 2: Matrix, 3
.. 4: Electrode, 5: Separate plate, 6, 6A, 6B:
Cooling plate, 10, 20: Cell stack, 11. IIA
: Semi block, 15: Short circuit, 21: Current path,
22.22A. 22B: Electrical insulation sheet, 23A, 23B: Conductive plate, 25: Conductive connection part, 31: Bypass current path, 32:
Connection 4 Group 1 Figure 2 Figure 3
Claims (1)
絶縁シートとを有し、 セミブロックは単電池を複数個積層したものであり、 冷却板は電気絶縁シートを介して一対の導電板にサンド
ウイッチされるものであり、 一対の導電板はセミブロックと交互に積層され、セミブ
ロックの電流を他のセミブロツクに伝えるものであり各
導電板の端部に設けられた導電接続部を介して相互に直
接的に接続され、あるいはその一方の導電板が接続導体
を用いて他対の導電板の片割れの関係にある導電板と間
接的に接続されるものであることを特徴とする燃料電池
。[Claims] 1) It has a semi-block, a cooling plate, a pair of conductive plates, and an electrically insulating sheet, where the semi-block is made by stacking a plurality of cells, and the cooling plate is an electrically insulating sheet. The pair of conductive plates are sandwiched between a pair of conductive plates via a semi-block, and the pair of conductive plates are laminated alternately with semi-blocks to transmit the current of the semi-block to the other semi-blocks. The conductive plates are directly connected to each other through conductive connecting parts, or one of the conductive plates is indirectly connected to the other conductive plate, which is one half of the other pair, using a connecting conductor. A fuel cell characterized by:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-118301 | 1989-05-11 | ||
JP11830189 | 1989-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0381973A true JPH0381973A (en) | 1991-04-08 |
Family
ID=14733291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2035316A Pending JPH0381973A (en) | 1989-05-11 | 1990-02-16 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0381973A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1160904A2 (en) * | 2000-05-24 | 2001-12-05 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack with cooling cells |
JP2012204473A (en) * | 2011-03-24 | 2012-10-22 | Otowa Denki Kogyo Kk | Varistor device and manufacturing method thereof |
-
1990
- 1990-02-16 JP JP2035316A patent/JPH0381973A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1160904A2 (en) * | 2000-05-24 | 2001-12-05 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack with cooling cells |
US6656621B2 (en) | 2000-05-24 | 2003-12-02 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack |
EP1160904A3 (en) * | 2000-05-24 | 2005-08-03 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack with cooling cells |
JP2012204473A (en) * | 2011-03-24 | 2012-10-22 | Otowa Denki Kogyo Kk | Varistor device and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4630529B2 (en) | Fuel cell system | |
US8574778B2 (en) | Fuel cell stack | |
KR20160137573A (en) | Fuel Cell Stack Arrangement | |
JPH08130028A (en) | Solid polymer electrolyte fuel cell | |
JP2000357531A (en) | Solid polymer electrolyte fuel cell | |
KR20150048407A (en) | Fuel cell stack having dummy cell | |
JP4592940B2 (en) | Polymer electrolyte fuel cell stack | |
CN101556995B (en) | Common-current collector plate group with positive plates opposite to negative plates and common-current collector module battery | |
US7422814B2 (en) | Fuel cell system | |
JP2554126B2 (en) | Fuel cell stack | |
JP2003086232A (en) | Fuel cell stack | |
JP2001332288A (en) | Fuel cell stack | |
JPH10261426A (en) | Block structure of fuel cell stack | |
JPH0381973A (en) | Fuel cell | |
US20060204815A1 (en) | Cell stack having sub-stacks with opposite orientations | |
JP5125376B2 (en) | Fuel cell | |
JP2004164969A (en) | Fuel cell stack | |
JPH08138699A (en) | Solid polyelectrolyte fuel cell | |
JP2003297395A (en) | Fuel cell | |
JP3636126B2 (en) | Fuel cell seal structure | |
JPH0822837A (en) | Solid polymer electrolyte fuel cell | |
JP5302758B2 (en) | Fuel cell stack | |
JP4507650B2 (en) | Fuel cell | |
JP2004303651A (en) | Planar laminated layer type fuel battery | |
KR20090085291A (en) | Apparatus for fuel cell stack assembly |