[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0381704A - Production of plastic optical transmission body - Google Patents

Production of plastic optical transmission body

Info

Publication number
JPH0381704A
JPH0381704A JP1217241A JP21724189A JPH0381704A JP H0381704 A JPH0381704 A JP H0381704A JP 1217241 A JP1217241 A JP 1217241A JP 21724189 A JP21724189 A JP 21724189A JP H0381704 A JPH0381704 A JP H0381704A
Authority
JP
Japan
Prior art keywords
monomer
refractive index
polymer
optical transmission
transmission body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1217241A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mishina
三品 義彦
Ryuji Murata
龍二 村田
Yoshihiro Uozu
吉弘 魚津
Masaaki Oda
正昭 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1217241A priority Critical patent/JPH0381704A/en
Publication of JPH0381704A publication Critical patent/JPH0381704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a continuous refractive index distribution by molding a mixture composed of a monomer A and a polymer B to a fiber shape, then diffusing a monomer C which forms a polymer of low refractive index into the fiber from the outer peripheral part thereof after the polymerization of a part of the monomer A. CONSTITUTION:The mixture 1 composed of the monomer A and the polymer B is inserted into a cylinder 3 and is extruded from a nozzle 4 by a piston 2 and is thereby molded to a fiber shape; thereafter, the monomer A is partly polymerized in a part 5 for irradiation with active rays. The monomer C which has the refractive index lower than the refractive index of the polymer of the monomer A after polymn. is diffused into the fiber from the outer peripheral part thereof in a diffusing chamber 6 to form the concn. distribution of the monomers A and C from the center toward the outer periphery. The monomers are then polymerized in a part 7 for irradiation with active rays to obtain the optical transmission body 9. The optical transmission body having the continuous refractive index distribution is obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光集束性レンズ、光集束性ファイバ等に利用
される、中心から外周に向かって連続的な屈折率分布を
有するプラスチック光伝送体の製造方法に関するもので
ある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a plastic optical transmission device having a continuous refractive index distribution from the center to the outer periphery, which is used in a light-focusing lens, a light-focusing fiber, etc. The present invention relates to a method of manufacturing a body.

[従来の技術及び解決すべ、き課!!!]中心から外周
に向かって連続的な屈折率分布を有する光伝送体は、す
でに特公昭47−816号においてガラス製のものが提
案されている。
[Conventional technology and issues to be solved! ! ! ] As an optical transmission body having a continuous refractive index distribution from the center to the outer periphery, a glass one has already been proposed in Japanese Patent Publication No. 47-816.

しかしながら、ガラス製の光伝送体は、生産性が低く、
高価なものとなり、かつ屈曲性も乏しいという問題点を
有している。
However, glass optical transmission bodies have low productivity and
It has the problems of being expensive and having poor flexibility.

このようなガラス製光伝送体に対し、プラスチック製の
光伝送体を製造する方法がいくつか提案されている。こ
れらの中心から外周に向かって連続的な屈折率分布を有
するプラスチック光伝送体の製造方法を大別すると、(
])イオン架橋重合体よりなる合成樹脂体の中心軸より
その表面に向かって金属イオンを連続的に濃度変化をも
たせるようにしたもの(特公昭47−26913号)、
(2)屈折率の異なる2種以上の透明な重合体の混合物
より製造された合成樹脂体を特定の溶剤で処理し、前記
合成樹脂体の構tc成分の少なくとも1つを部分的に溶
解除去することによって製造するもの(特公昭47−2
8059号)(3)2種の屈折率の異なるモノマーを、
重合方法を工夫して、表面から内部にわたり連続的に屈
折率分布ができるようにするもの(特公昭54−303
01号) 、(4)架橋重合体の表面より屈折率の低い
モノマーを拡散させて、表面より内部にわたり、このモ
ノマーの含有率が連続的に変化するように配置したのち
に重合して屈折率分布をもたせたもの(特公昭52−5
857号、特公昭56−37521号)、および(5)
反応性を有する重合体の表面より、重合体よりも低い屈
折率を有する低分子化合物を拡散、反応させて、表面よ
り内部にわたり連続的に屈折率分布をもたせるようにす
るもの(特公昭57−29682号)等である。
Several methods have been proposed for manufacturing a plastic optical transmission body in contrast to such a glass optical transmission body. The manufacturing methods of plastic optical transmitters having a continuous refractive index distribution from the center to the outer periphery can be roughly divided into (
]) A synthetic resin body made of an ionically crosslinked polymer in which the concentration of metal ions changes continuously from the central axis toward the surface (Japanese Patent Publication No. 47-26913);
(2) A synthetic resin body manufactured from a mixture of two or more transparent polymers having different refractive indexes is treated with a specific solvent to partially dissolve and remove at least one of the structural components of the synthetic resin body. Products manufactured by
No. 8059) (3) Two types of monomers with different refractive indexes,
The polymerization method is devised to create a continuous refractive index distribution from the surface to the inside (Special Publication Publication No. 54-303).
01), (4) Diffuse a monomer with a lower refractive index than the surface of the crosslinked polymer, arrange it so that the content of this monomer changes continuously from the surface to the inside, and then polymerize to increase the refractive index. Those with distribution (Special Publications 52-5
No. 857, Special Publication No. 56-37521), and (5)
A low-molecular compound having a refractive index lower than that of the polymer is diffused and reacted with the surface of a reactive polymer to create a continuous refractive index distribution from the surface to the inside (Japanese Patent Publication No. 1983- No. 29682), etc.

これら従来法の共通した問題点としては、拡散あるいは
抽出などの工程に長時間を要することや長さが限定され
るなどから、生産工程は断続的であり、換言すればバッ
チ式生産方法であり、生産性が極めて悪いのと同時に製
造条件の選定が極めて難しかったり、再現性が得られな
い等、工業化技術としては、それぞれ問題点を有する製
造方法である。
A common problem with these conventional methods is that processes such as diffusion and extraction take a long time and are limited in length, so the production process is intermittent, in other words, it is a batch production method. These manufacturing methods each have their own problems as an industrial technology, such as extremely low productivity, extremely difficult selection of manufacturing conditions, and inability to achieve reproducibility.

[課題を解決するための手段] 本発明は、上記従来技術が抱えていた断続的な生産工程
による不合理性を解決し、ガラスあるいはプラスチック
光ファイバと同様な連続的な生産を可能とするものであ
り、重合体と単量体との混合物よりのファイバ状賦形物
表面からの急速な単量体の揮散を防止し、かつ、低屈折
率単量体のファイバ状物内への均一拡散を行わせ、常に
均一な屈折率分布を備えた光伝送体を得ることを目的と
して検討した結果本発明を充放した。
[Means for Solving the Problems] The present invention solves the irrationality caused by the intermittent production process of the above-mentioned conventional technology, and enables continuous production similar to glass or plastic optical fibers. This prevents the rapid volatilization of the monomer from the surface of the fibrous excipient from the mixture of polymer and monomer, and uniformly diffuses the low refractive index monomer into the fibrous material. The present invention was developed as a result of studies aimed at obtaining an optical transmission body that always has a uniform refractive index distribution.

すなわち本発明の要旨とするところは、単量体(A)と
重合体(B)の混合物をファイバ状に賦形し、単量体(
A)の一部を重合せしめたのち、単量体(A)の重合体
の屈折率よりも、低屈折率の重合体となる単量体(C)
をファイバ外周部より拡散せしめ、単量体(A)と単量
体(C)の濃度分布を形威し、次いで未重合単量体を重
合することを特徴とする中心から外周にかけて連続的な
屈折率分布を有するプラスチック光伝送体の製造法にあ
る。
That is, the gist of the present invention is to form a mixture of monomer (A) and polymer (B) into a fiber shape, and to form the mixture of monomer (A) and polymer (B) into a fiber.
A monomer (C) that becomes a polymer with a refractive index lower than that of the polymer of monomer (A) after polymerizing a part of A).
is diffused from the outer periphery of the fiber to shape the concentration distribution of monomer (A) and monomer (C), and then the unpolymerized monomer is polymerized, which is continuous from the center to the outer periphery. The present invention relates to a method for manufacturing a plastic optical transmission body having a refractive index distribution.

本発明の製造法の一例を示すと第1図のようになる。An example of the manufacturing method of the present invention is shown in FIG. 1.

単量体(A)と重合体(B)の混合物(1)をシリンダ
(3)の中に挿入し、ピストン(2)によりノズル(4
)から押出し、ファイバ状に賦形したのち、活性光線照
射部(5)にて、単量体(A)の一部を重合せしめる0
次いで単量体(A)の重合体よりも、重合したのち低屈
折率となる単量体(C)を拡散槽(6)にて、ファイバ
外周部より拡散させ、中心から外周にかけて単量体(A
)と単量体(C)の濃度分布を形威し、活性光線照射部
(7)にて、重合し、ニップローラ(8)で連続的に目
的の光伝送体(9)を得る。
A mixture (1) of monomer (A) and polymer (B) is inserted into a cylinder (3), and a piston (2) is used to introduce the mixture (1) into a nozzle (4).
) and shaped into a fiber, a part of the monomer (A) is polymerized in the actinic ray irradiation section (5).
Next, monomer (C), which has a lower refractive index after polymerization than the polymer of monomer (A), is diffused from the outer periphery of the fiber in a diffusion tank (6), and the monomer is dispersed from the center to the outer periphery. (A
) and the monomer (C), polymerize in the actinic ray irradiation section (7), and continuously obtain the desired light transmitting body (9) with the nip rollers (8).

このとき、活性光線による重合を容易にする目的で、照
射部内に窒素、アルゴンガス等の気体を導入することが
望ましい、また、単量体(A)の重合率の制御は活性光
線照射部(5)での照射時間で行うことができる。
At this time, it is desirable to introduce a gas such as nitrogen or argon gas into the irradiation section in order to facilitate polymerization by actinic rays.Also, the polymerization rate of monomer (A) can be controlled by the actinic ray irradiation section ( It can be performed using the irradiation time shown in 5).

次に実施例により本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to Examples.

本発明を実施するに際して用いる単量体(A)及び単量
体(C)としては種々の屈折率の重合体を与え得る単量
体を用いることができ、メチル(メタ)アクリレート、
エチル(メタ)アクリレート、ブチル(メタ)アクリレ
ート、ベンジル(メタ)アクリレート、フェニル(メタ
)アクリレート、シクロヘキシル(メタ)アクリレート
、アダマンチル(メタ)アクリレート、パーフルオロア
ルキル(メタ)アクリレート、バーフルオロジメチルジ
オキゾール、パーフルオロアルキルビニルエーテル、ス
チレン、α−メチルスチレンなどを挙げることができ、
これら単量体の組合せは単量体(A)より得られる重合
体の屈折率が単量体(C)より得られる重合体の屈折率
よりも大きくなるような組合せとすることが、良好な屈
折率分布を備えた光伝送体を得るのに必要な条件となる
As the monomer (A) and monomer (C) used in carrying out the present invention, monomers that can provide polymers with various refractive indexes can be used, including methyl (meth)acrylate,
Ethyl (meth)acrylate, butyl (meth)acrylate, benzyl (meth)acrylate, phenyl (meth)acrylate, cyclohexyl (meth)acrylate, adamantyl (meth)acrylate, perfluoroalkyl (meth)acrylate, perfluorodimethyldioxole , perfluoroalkyl vinyl ether, styrene, α-methylstyrene, etc.
A good combination of these monomers is such that the refractive index of the polymer obtained from monomer (A) is greater than the refractive index of the polymer obtained from monomer (C). This is a necessary condition to obtain an optical transmission body with a refractive index distribution.

本発明を実施するに際して用いる重合体(B)としては
単量体(A)及び単量体(C)との相溶性が良好なもの
であれば、いかなるものをも用いることができ、例えば
メチルメタクリレート系重合体、スチレン系重合体、ポ
リカーボネート、ポリ4−メチルペンテン−1や単量体
(A)と単量体(C)の単独重合体又は共重合体を用い
ることができ、これらの重合体は本発明のフィラメント
状光伝送体の賦形性を良好にすること、及び屈折率分布
・急良好にするために必須のものである。
As the polymer (B) used in carrying out the present invention, any polymer can be used as long as it has good compatibility with the monomer (A) and the monomer (C). For example, methyl Methacrylate polymers, styrene polymers, polycarbonates, poly4-methylpentene-1, and homopolymers or copolymers of monomers (A) and monomers (C) can be used. Coalescence is essential for improving the shapeability of the filamentary optical transmission body of the present invention and for improving the refractive index distribution and sharpness.

本発明においては単量体(C)の重合後の屈折率は単量
体(A)よりの重合体の屈折率よりも小さいものである
ことが必要であり、この条件を満足しない場合には屈折
率分布が所望の特性を備えた光伝送体を得ることができ
ない。
In the present invention, it is necessary that the refractive index of the monomer (C) after polymerization is smaller than the refractive index of the polymer made from the monomer (A), and if this condition is not satisfied, It is not possible to obtain an optical transmission body having a refractive index distribution with desired characteristics.

本発明によると極めて均一性に優れ、所望の屈折率分布
を備えた光伝送体を常に作ることができるという大きな
利点を有している。
The present invention has the great advantage that it is possible to always produce an optical transmission body with extremely excellent uniformity and a desired refractive index distribution.

[実施例] 実施例1 メチルメタクリレート(ポリマーn・−1,489)5
0重量部、ポリメチルメタクリレート(〔η〕−0,3
6(MEK、  25℃))50重量部、1−ヒドロキ
シシクロへキシルフェニルケトン1重量部の混合物を第
1図に示すlシリンダ(3)内に均一に混合して挿入し
、ピストン(2)にてノズル(4)より押出す、このと
きのシリンダ温度は70℃であった。
[Example] Example 1 Methyl methacrylate (polymer n-1,489) 5
0 parts by weight, polymethyl methacrylate ([η]-0,3
6 (MEK, 25°C)) A mixture of 50 parts by weight of 1-hydroxycyclohexylphenyl ketone and 1 part by weight of 1-hydroxycyclohexylphenyl ketone was uniformly mixed and inserted into the l cylinder (3) shown in Fig. 1, and then inserted into the piston (2). The cylinder temperature at this time was 70°C.

次に、50℃のN!ガスが54!/sinで流れている
活性光線照射部(5)に導き、20−でケミカルラフ1
8本で紫外線を30秒間照射し、光重合して単量体(メ
チルメタクリレート)の重合率50%のファイバを得た
。得られたファイバを拡散槽(6)に導びき、2.2.
3.3−テトラフルオロプロピルメタクリレートをファ
イバ外周部より拡散せしめる。そのときの液温は40℃
でファイバと2.2.3.3−テトラフルオロプロピル
メタクリレートとの接触拡散時間は30秒とした。
Next, N at 50℃! Gas is 54! /sin to the active light irradiation part (5), and chemical rough 1 at 20-
Eight fibers were irradiated with ultraviolet light for 30 seconds and photopolymerized to obtain a fiber with a monomer (methyl methacrylate) polymerization rate of 50%. The obtained fiber is guided to a diffusion tank (6), and 2.2.
3. Diffuse 3-tetrafluoropropyl methacrylate from the outer periphery of the fiber. The liquid temperature at that time was 40℃
The contact diffusion time between the fiber and 2.2.3.3-tetrafluoropropyl methacrylate was 30 seconds.

次いで、50℃のN8ガスが54!/winで流れてい
る活性光線照射部(7)にて低圧水銀灯3本で紫外線を
1分間照射し光重合して、直径1■のプラスチック光伝
送体を得た。
Next, N8 gas at 50°C was 54! In the actinic ray irradiation section (7) running at /win, ultraviolet rays were irradiated for 1 minute using three low-pressure mercury lamps for photopolymerization to obtain a plastic optical transmission body with a diameter of 1 square inch.

この光伝送体の屈折率分布をインターフアコ干渉顕微鏡
で測定したところ中心屈折率が1.487、外周部の屈
折率が1.470であり、中心から外周部にかけて連続
的に変化していた。
When the refractive index distribution of this light transmission body was measured using an interfaco interference microscope, the refractive index at the center was 1.487 and the refractive index at the outer periphery was 1.470, and it was found that the refractive index varied continuously from the center to the outer periphery.

また、この光伝送体を5amの長さに切断し、その両端
を研磨し画像を観察したところ、倒立実像が観察された
Further, when this optical transmission body was cut into a length of 5 am and both ends thereof were polished and an image was observed, an inverted real image was observed.

実施例2 ベンジルメタクリレート(ポリマーnゎ−1,56)3
0重量部、メチルメタクリレート20重量部、ポリメチ
ルメタクリレート50重量部、l−ヒドロキシシクロへ
キシルフェニルケトン1重量部の混合物を第1図に示す
lシリンダ(3)内に均一に混合して挿入し、ピストン
(2)にてノズル(4)より押出す、このときのシリン
ダ温度は70℃であった。
Example 2 Benzyl methacrylate (polymer nゎ-1,56) 3
A mixture of 0 parts by weight, 20 parts by weight of methyl methacrylate, 50 parts by weight of polymethyl methacrylate, and 1 part by weight of l-hydroxycyclohexylphenyl ketone was uniformly mixed and inserted into the l cylinder (3) shown in Figure 1. The cylinder temperature at this time was 70° C. and extruded from the nozzle (4) with the piston (2).

次に、50℃のN8ガスが5 m! /winで流れて
いる活性光線照射部(5)に導き、20Wのケごカルラ
ンプ8本で紫外線を30秒間照射し、光重合して単量体
の重合率40%のファイバを得た。得られたファイバを
拡散槽(6)に導びき、2.2.3.3−テトラフルオ
ロプロピルメタクリレートを液温30℃で両者の接触時
間を30秒としファイバ外周部より拡散せしめる。
Next, 5 m of N8 gas at 50°C! /win was introduced into the actinic ray irradiation section (5), and irradiated with ultraviolet rays for 30 seconds using eight 20W Kegokar lamps, resulting in photopolymerization to obtain a fiber with a monomer polymerization rate of 40%. The obtained fiber is introduced into a diffusion tank (6), and 2.2.3.3-tetrafluoropropyl methacrylate is diffused from the outer periphery of the fiber at a liquid temperature of 30° C. and for a contact time of 30 seconds.

次いで、50℃のN8ガスが5j!/sinで流れてい
る活性光線照射部(7)にて低圧水銀灯3本で紫外線を
1分間照射し光重合して、直径1鵬のプラスチック光伝
送体を得た。
Next, 5j! of N8 gas at 50°C! Ultraviolet rays were irradiated for 1 minute using three low-pressure mercury lamps in the actinic ray irradiation section (7) flowing at /sin for photopolymerization to obtain a plastic optical transmission body with a diameter of 1 inch.

この光伝送体の屈折率分布をインターフアコ干渉顕微鏡
で測定したところ中心屈折率が1.505、外周部の屈
折率が1.465であり、中心から外周部にかけて連続
的に変化していた。
When the refractive index distribution of this light transmission body was measured using an interfaco interference microscope, the refractive index at the center was 1.505 and the refractive index at the outer periphery was 1.465, and it was found to change continuously from the center to the outer periphery.

また、この光伝送体を2.7閣の長さに切断し、その両
端を研磨し画像を観察したところ、倒立実像が観察され
た。
Furthermore, when this optical transmission body was cut into a length of 2.7 mm, both ends of which were polished and the image observed, an inverted real image was observed.

実施例3 ベンジルメタクリレート(ポリマーn、−1,56)3
0重量部、メチルメタクリレート20重量部、ポリメチ
ルメタクリレート50重量部、1−ヒドロキシシクロへ
キシルフェニルケトン1重量部の混合物を第1図に示す
、シリンダ(3)内に均一に混合して挿入し、ピストン
(2)にて、ノズル(4)より押出す、このときのシリ
ンダ温度は70″Cであった。
Example 3 Benzyl methacrylate (polymer n, -1,56) 3
A mixture of 0 parts by weight, 20 parts by weight of methyl methacrylate, 50 parts by weight of polymethyl methacrylate, and 1 part by weight of 1-hydroxycyclohexylphenyl ketone was uniformly mixed and inserted into the cylinder (3) shown in FIG. , the cylinder temperature at this time was 70''C.

次に、50°CのN8ガスが54!/sinで流れてい
る活性光線照射部(5)に導き、20−のケ果カルラン
プ8本で紫外線を30秒間照射し、光重合して単量体の
重合率40%のファイバを得た。得られたファイバを拡
散槽(6)に導びき、2.2.3.3.4,4,5.5
−オクタフルオロペンチルメタクリレートを液温30℃
で両者の接触時間を30秒としたファイバ外周部より拡
散せしめる。
Next, N8 gas at 50°C is 54! The fiber was guided to the actinic ray irradiation section (5) flowing at /sin, and irradiated with ultraviolet rays for 30 seconds using eight 20-inch lamps, resulting in photopolymerization to obtain a fiber with a monomer polymerization rate of 40%. The obtained fiber is guided to the diffusion tank (6) and 2.2.3.3.4, 4, 5.5
- Octafluoropentyl methacrylate at a liquid temperature of 30℃
The contact time between the two was 30 seconds, and the fiber was diffused from the outer periphery.

次いで、50℃のN8ガスが51/■inで流れている
活性光線照射部(7)にて低圧水銀灯3本で紫外線を1
分間照射し光重合して、直径1mのプラスチック光伝送
体を得た。
Next, in the actinic ray irradiation section (7) where N8 gas at 50°C is flowing at 51/inch, ultraviolet rays are irradiated with three low-pressure mercury lamps.
It was irradiated for a minute and photopolymerized to obtain a plastic optical transmission body with a diameter of 1 m.

この光伝送体の屈折率分布をインターフアコ干渉顕微鏡
で測定したところ中心屈折率が1.500、外周部の屈
折率が1.461であり、中心から外周部にかけて連続
的に変化していた。
When the refractive index distribution of this light transmission body was measured using an interfaco interference microscope, the refractive index at the center was 1.500 and the refractive index at the outer periphery was 1.461, and it was found to change continuously from the center to the outer periphery.

また、この光伝送体を2.8園の長さに切断し、その両
端を研磨し画像を観察したところ、倒立実像が観察され
た。
Furthermore, when this optical transmission body was cut into a length of 2.8 cm and both ends were polished and the image was observed, an inverted real image was observed.

[発明の効果] 本発明の製造法により、従来技術がかかえていた均一な
屈折率分布を有する光伝送体の製造が難しいことその生
産工程が断続的とならざるを得ないことによる不合理性
を解決し、連続的な光伝送体の生産が可能となった。
[Effects of the Invention] The manufacturing method of the present invention overcomes the difficulty of manufacturing an optical transmission body with a uniform refractive index distribution, which was the problem with the prior art, and the unreasonableness of the production process being intermittent. This solution made it possible to produce continuous optical transmission bodies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプラスチック光伝送体の製造法を実施
するための装置の一例を示す模式図である。 2・・・・ピストン 3・・・・シリンダ 4・・・・ノズル 6・・・・拡散槽 5.7・・・・活性光線照射部 8・◆・・ニップローラ 9・・・・光伝送体
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of manufacturing a plastic optical transmission body of the present invention. 2... Piston 3... Cylinder 4... Nozzle 6... Diffusion tank 5.7... Actinic ray irradiation section 8... Nip roller 9... Light transmission body

Claims (1)

【特許請求の範囲】[Claims] 単量体(A)と重合体(B)の混合物をファイバ状に賦
形し、単量体(A)の一部を重合せしめたのち、単量体
(A)の重合体よりも、低屈折率の重合体となる単量体
(C)をファイバ外周部より拡散せしめ、単量体(A)
と単量体(C)の濃度分布を形成し、次いで未重合単量
体を重合することを特徴とする中心から外周にかけて連
続的な屈折率分布を有するプラスチック光伝送体の製造
法。
A mixture of monomer (A) and polymer (B) is shaped into a fiber, and a portion of monomer (A) is polymerized. A monomer (C) that becomes a polymer with a refractive index is diffused from the outer periphery of the fiber, and a monomer (A)
A method for producing a plastic optical transmitter having a continuous refractive index distribution from the center to the outer periphery, the method comprising forming a concentration distribution of a monomer (C) and then polymerizing unpolymerized monomers.
JP1217241A 1989-08-25 1989-08-25 Production of plastic optical transmission body Pending JPH0381704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1217241A JPH0381704A (en) 1989-08-25 1989-08-25 Production of plastic optical transmission body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217241A JPH0381704A (en) 1989-08-25 1989-08-25 Production of plastic optical transmission body

Publications (1)

Publication Number Publication Date
JPH0381704A true JPH0381704A (en) 1991-04-08

Family

ID=16701065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217241A Pending JPH0381704A (en) 1989-08-25 1989-08-25 Production of plastic optical transmission body

Country Status (1)

Country Link
JP (1) JPH0381704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035517A (en) * 1998-07-17 2000-02-02 Mitsubishi Rayon Co Ltd Light transmission body, light transmission body array, image sensor lens plate and image forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035517A (en) * 1998-07-17 2000-02-02 Mitsubishi Rayon Co Ltd Light transmission body, light transmission body array, image sensor lens plate and image forming device

Similar Documents

Publication Publication Date Title
US3955015A (en) Method of manufacturing a transparent light conducting element of synthetic resin having refractive index gradient
JPH08244130A (en) Manufacture of transparent article with refractive index gradient
EP0451266A1 (en) Method of manufacturing a plastic graded-index optical transmission element
JPH0381704A (en) Production of plastic optical transmission body
US5175786A (en) Distributed refractive index type optical transmission plastic article and method of manufacturing the same
JPH0365904A (en) Production of light transmission body made of plastic
JPS61130904A (en) Method for producing opticalt ransmission body consisting of synthetic resin
JPS62215204A (en) Production of plastic optical transmission body
JPH0381703A (en) Production of plastic optical transmission body
JPH11505628A (en) Method of manufacturing graded index polymer optical fiber
JPH03192310A (en) Manufacture of plastic optical transmission body
JPH0233104A (en) Manufacture of plastic optical transmission body
JPH0364706A (en) Plastic optical transmission body
JPS5986003A (en) Manufacture of synthetic resin body for transmitting image
JPH0364704A (en) Production of plastic optical transmission body
JPS63304204A (en) Plastic light transmission body and its production
JPH0342604A (en) Production of light transmission body made of plastic
JP2651582B2 (en) Plastic optical transmission body and method of manufacturing the same
EP0864109B1 (en) Method of making graded index polymeric optical fibres
JP3263195B2 (en) Manufacturing method of refractive index distribution type plastic molding
JPH01265207A (en) Production of light transmission body
JPH0381701A (en) Production of plastic optical transmission body
JPS62108208A (en) Plastic optical transmission body and its production
JPH0364705A (en) Production of plastic optical transmission body
JP2889136B2 (en) Method for producing composite monofilament for light / image transmission and composite monofilament produced by the method