[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0380197A - Production of single crystal of semiconductor sic - Google Patents

Production of single crystal of semiconductor sic

Info

Publication number
JPH0380197A
JPH0380197A JP21458889A JP21458889A JPH0380197A JP H0380197 A JPH0380197 A JP H0380197A JP 21458889 A JP21458889 A JP 21458889A JP 21458889 A JP21458889 A JP 21458889A JP H0380197 A JPH0380197 A JP H0380197A
Authority
JP
Japan
Prior art keywords
sic
temp
single crystal
base material
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21458889A
Other languages
Japanese (ja)
Other versions
JP2749898B2 (en
Inventor
Shingo Morimoto
信吾 森本
Masashi Shigeto
繁戸 雅司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP21458889A priority Critical patent/JP2749898B2/en
Publication of JPH0380197A publication Critical patent/JPH0380197A/en
Application granted granted Critical
Publication of JP2749898B2 publication Critical patent/JP2749898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To easily obtain the doped single crystal of semiconductor SiC by introducing a doping element into the system and doping the this element into an SiC crystal at the time of using SiO2 and C as raw materials and producing the single crystal of the SiC by a CVD method. CONSTITUTION:A high-temp. part 2 and a low-temp. part 3 are provided in a reaction vessel 1. A vessel 5 contg. a mixture 4 formed by mixing the raw materials SiO2 and C at about equal molar ratio is disposed in the high-temp. part 2 and a base material 6 is disposed in the low temp. part 3. The compd. (e.g. B4C, Si3N4) contg. the element (e.g. B, N) to be doped is added into the raw material SiO2. After a high vacuum is maintained in the reaction vessel 1, the high-temp. part 1 is heated to about 1700 to 2000 deg.C and the low-temp. part 3 to about 1600 to 1800 deg.C. The gas 7 generated from the high-temp. part 1 is allowed to arrive at the base material 6 to deposit the doped single crystal of the semiconductor SiC on the surface of the base material 6. The doping of various kinds of dopants is possible in this way.

Description

【発明の詳細な説明】 〔産業上の利用分!I![ 本発明は、CVD法を用いドーピングを(’1′なうエ
ピタキシャル成長によって、LED(可視発光タイオー
1”)、IC等に用いられる半導体SiC単結晶を製造
する方法に関する。
[Detailed description of the invention] [Industrial use! I! [The present invention relates to a method of manufacturing a semiconductor SiC single crystal used for LEDs (visible light emitting diode 1"), ICs, etc. by doping ('1') epitaxial growth using the CVD method.

〔従来の技術〕[Conventional technology]

従来、ドーピングしたSiC単結晶を得る方法としては
、アチソン法で合成された六方晶SiCの爪状結晶を基
材として、その表面にSiCの昇華、或いは黒鉛容器内
の溶融Sl中にe?Mして、SiCをエピタキシャル成
長させる方法(特開平1108200シフ公相、]−1
133998号公報、または、Si単結晶表面にSiC
を超格子構造的に成長させる方法(+988、秋季応物
学会、予稿集、61)−Z−11)か知られている。
Conventionally, methods for obtaining doped SiC single crystals include sublimation of SiC on the surface of a claw-shaped crystal of hexagonal SiC synthesized by the Acheson method, or e.g. Method for epitaxially growing SiC using M (JP-A-1108200 Schiff et al.)-1
133998, or SiC on the Si single crystal surface.
A method of growing in a superlattice structure (+988, Autumn Society of Applied Physics, Proceedings, 61)-Z-11) is known.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしながら、前者においては、ヘースとなる基材とし
てSiCの爪状結晶を使用せざるを得ない。ところで、
この爪状結晶は、再現性よく作製することか困ガ]て、
大きさか1cm程度で、大きなものが出来ないばかりで
なく、臂開性て扱いにくい等の問題かあり、後者は、プ
ロセスか複雑で作製に手間がかかる等の問題かある。
However, in the former case, SiC nail-shaped crystals must be used as the base material for the hair. by the way,
It is difficult to produce these nail-shaped crystals with good reproducibility.
The size is about 1 cm, which not only makes it impossible to make large pieces, but also makes it difficult to handle due to the ability to open the arms, and the latter has problems such as the process being complicated and requiring time and effort.

本発明者等は、」二記の問題を解決し、半導体SIC単
結晶を再現性よく容易につくることが出来る方法を得へ
く鋭意研究した結果、SiCの結晶系には、六方量系の
611./II+、2+1八りや、SL方晶系の3C型
かあり、それぞれ2〜3eVの禁制帯幅(Band G
ap)を持っているので、!・−ピッグを伴なうエピタ
牛ンヤル成長を口出に行なうことか出来ると考えた。
The inventors of the present invention have conducted extensive research to solve the problems mentioned in 2.1 and to find a method that can easily produce semiconductor SIC single crystals with good reproducibility. 611. /II+, 2+1 Yariya, and SL cubic 3C type, each with a forbidden band width of 2 to 3 eV (Band G
ap), so! -I thought it would be possible to use epitaph growth with pigs as an excuse.

不発明は上記の考えにノ、(ついてなされたちので、再
現性よく六方晶系、或いは立方晶系SiCを作意に造り
分け、かつ製造中にドーピングを行なう半導体SiC単
結晶の製造法を提供することを目的とする。
The invention is based on the above idea, and therefore provides a method for producing a semiconductor SiC single crystal in which hexagonal or cubic SiC is intentionally produced with good reproducibility, and doping is performed during production. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明の方法においては、 5in2とCとを原料にして、CV D 法によりSC
単結晶を製造するに際し、系内に1・−ピック元素を導
入して、SiC結晶中にドープする。
In order to achieve the above object, in the method of the present invention, using 5in2 and C as raw materials, SC
When producing a single crystal, a 1-Pick element is introduced into the system and doped into the SiC crystal.

本発明に用いるCVD法は、原料であるSin。The CVD method used in the present invention uses Sin as a raw material.

とCとの混合物をカス化させ、基材」二にSiCとして
析出さる、下記反応式による方法である。
This is a method according to the following reaction formula, in which a mixture of SiC and C is formed into a scum and precipitated as SiC on a substrate.

高温部におけるカス化反応 S io、−1−c−>s i○lCO低温部における
析出反応は基材か炭素の場合5iO−1−2C−>5i
C−1−C0の反応か主として起るか、基材か炭素でな
い場合もSiCか生成することから、高温部て生成した
COガスかfI(高部で 2C(1>CI Co。
Casing reaction in the high temperature section S io, -1-c->s i○lCO Precipitation reaction in the low temperature section is 5iO-1-2C->5i when the base material is carbon
Whether the C-1-C0 reaction mainly occurs or because SiC is produced even if the base material is not carbon, the CO gas produced at the high temperature part is fI (2C (1>CI Co at the high part).

により、Cが析出し、これにより 2Si○+2C→2SiC+02 の反応も起っていると推定される。As a result, C precipitates out, which results in 2Si○+2C→2SiC+02 It is assumed that this reaction is also occurring.

原料Sin、としては、光フアイバー用のSin。The raw material Sin is Sin for optical fiber.

を用い、C源としては、高純度黒鉛を用いることによっ
て、置局に高純度SiCを析出させることか出来る。
By using high-purity graphite as a C source, high-purity SiC can be precipitated at the station.

第1図は、不発11JJの方法に使用する反応装置の一
例を示すもので、図中符号1は反応容器である。
FIG. 1 shows an example of a reaction apparatus used in the method of misfire 11JJ, and the reference numeral 1 in the figure is a reaction vessel.

反応容器1は、それぞれ外部より加熱される高温部(カ
ス化部)2および低温部(析出部)3よりなる。
The reaction vessel 1 consists of a high temperature section (cassation section) 2 and a low temperature section (precipitation section) 3, which are heated from the outside.

Jl記高渦部2には、原料Si○2およびCをモル比て
11±05の割合でd合した混合物4を収納した黒鉛容
器5を配置し、低温部3には、Sl○カスの流れ、高度
、カス濃度等によって決められた位置に、基材6を支持
台或いは支持棒6aにより支持し配置する。
A graphite container 5 containing a mixture 4 obtained by combining raw materials Si○2 and C at a molar ratio of 11±05 is arranged in the Jl high vortex part 2, and a graphite container 5 containing a mixture 4 in which raw materials Si○2 and C are combined at a molar ratio of 11±05 is placed, and in the low temperature part 3, Sl○ scum is placed. The base material 6 is supported and placed by a support stand or a support rod 6a at a position determined depending on the flow, altitude, waste concentration, etc.

しかる後、反応容a’rs I内を0. ] 〜l O
Torrに減圧するとともに、畠1iA部2を、170
0〜2000°C1低渦部3を、1600〜1800°
Cに加熱すると、高温部2より発生したJjスフは、L
(材6に達し面にSiCが析出する。
After that, the inside of the reaction volume a'rs I was set to 0. ] ~l O
While reducing the pressure to Torr, the Hatake 1iA section 2 was heated to 170 Torr.
0~2000°C1 low vortex part 3, 1600~1800°
When heated to C, Jj sufu generated from high temperature section 2 becomes L
(The material 6 is reached and SiC is deposited on the surface.

生成する結晶系は、析出部3の温度によって穴なり、]
 600〜1800°Cの場合には立方晶系3Cとなり
、1800〜2000“Cては六方晶系となり、6 H
14H12+−1,21尺などか多く生成する。
The crystal system that is generated becomes a hole depending on the temperature of the precipitation part 3,]
In the case of 600 to 1800°C, it becomes cubic system 3C, and in the case of 1800 to 2000°C, it becomes hexagonal system, 6H
14H12+-1, 21 shaku, etc. are generated in large numbers.

これら結晶は、それぞれBandGapか異なり例えば
3Cては2 、2 eV、61−1ては2.86eV、
2I]ては3 、3 eVとなる。青色L E Dては
、B andGap2.8eV近傍か必要となるのて、
これを有する結晶が優先している市は重要で、温度調整
によって必要とするBandGapか優先するようにす
る。
These crystals each have a different BandGap, for example, 3C has a band gap of 2.2 eV, 61-1 has a band gap of 2.86 eV,
2I] is 3.3 eV. For blue LED, the B and Gap needs to be around 2.8eV, so
The city where the crystal having this has priority is important, and the required BandGap can be prioritized by temperature adjustment.

」1記基材6としては、黒鉛或いは既に作製されたSi
C単結晶か用いられる。
” 1. As the base material 6, graphite or already produced Si
C single crystal is used.

黒鉛を基材6とした場合には、径にして05〜1mmの
5iC11i占品か桂状に成長してゆくので、エピタキ
シャル層は基材面に平行な形て成長する。
When graphite is used as the base material 6, the epitaxial layer grows parallel to the surface of the base material because it grows in a 5iC11i shape with a diameter of 05 to 1 mm.

したかって黒鉛基材を除去した後、析出部を切断すれば
よい。
Therefore, after removing the graphite base material, the precipitated portion may be cut.

また既存のSiC単結晶を基材6として使用した場合は
、結晶の直径を大きくする方向に向かって各面か成長す
る。したかって基材6となるSiCの表面か多くとれる
ように切出して用いるのが有利である。
Further, when an existing SiC single crystal is used as the base material 6, the crystal grows on each side in the direction of increasing the diameter of the crystal. Therefore, it is advantageous to cut out and use the SiC that will become the base material 6 so that a large amount of the surface can be removed.

またドーピングを行なうには、原料S]02中に、高特
11点化合物て、かつドーピング時に外乱となる元素を
含有しない化合物を添加する。
Further, in order to perform doping, a compound which is a high-performance 11-point compound and does not contain any elements that cause disturbance during doping is added to the raw material S]02.

例えばP型においては、B、A&、Ca等が1・−プさ
れるが、この場合にはB 、CXA LC、CaClB
、H6が原料5iO−に添加され、n型においては、N
、P等かSi、H4、PH,、N H3として添加され
る。この際、P I−1、等は、外部より反応容器1内
にガス状で供給してもよい。
For example, in the P type, B, A&, Ca, etc. are 1-pulled, but in this case, B, CXA LC, CaClB
, H6 is added to the raw material 5iO-, and in the n-type, N
, P, etc. or Si, H4, PH,, NH3. At this time, P I-1, etc. may be supplied in gaseous form into the reaction vessel 1 from the outside.

またp −n接合の場合には、1・−バントを切換える
ことか必要となるか、カス化速度を予めlj7に+i?
jしておき、前の1・−パンl−/l)?i’i失した
後、次の1・−パントが添加されているS i Opを
高/!51部にlt給したり、或いは、予め別に用意さ
れた次の1・−パンI・か添加されているSin、とC
との7iiA合物を収納している黒鉛容器と交換するこ
とによって行なってもよい。
Also, in the case of a p-n junction, is it necessary to switch between 1 and - bands, or is it necessary to change the scum formation rate to lj7+i?
j and the previous 1・-bread l-/l)? After i'i is lost, the next 1-Punt is added S i Op to high/! 51 parts, or add the following 1.-Bread I. or Sin, and C prepared separately in advance.
This may be done by replacing the graphite container containing the 7iiA compound.

」1記ドーパントのドープ鼠は通常1017〜10″原
子/ c cとされるか、原料中に添加するl;  /
 s+1ン1−化合物の量を調整することによって、ド
ーピングレヘルは自由に調整される。
``The dopant of the above dopant is usually 1017~10'' atoms/cc or added to the raw material;/
By adjusting the amount of s+1-1-compound, the doping level can be freely adjusted.

〔実施例〕〔Example〕

次に実施例を示して本発明を説明する。 Next, the present invention will be explained with reference to Examples.

実施例1 第1図の装置を用い、アチソン法で製造した大きさ約Q
 、 5 mmの単結晶SiC粒を黒鉛基材上に、粒間
に2〜3mm程度の間隙を設けて配置し、純度99、9
999%以」−の5102500g、C500gおよび
ドーパントとしてSi○、に対してQ、1wt%の51
3N4を添加した原料を黒鉛容器に収納して用いた。
Example 1 Using the apparatus shown in Fig. 1, the size of approximately Q
, 5 mm single crystal SiC grains were arranged on a graphite base material with a gap of about 2 to 3 mm between grains, and the purity was 99.9 mm.
5102500g of 999% or more, 500g of C and Si○ as a dopant, Q, 1wt% of 51
The raw material to which 3N4 was added was stored in a graphite container and used.

反応容器内を0.2Torrに保持し、カス化部の温度
を2000°C1析出部の温度を1900 ’Cとし、
エピタキシャル成長層間511rとして約50μmの六
方晶系のエピタキシャル成長層を得、この析出物の導電
性等を測定した。
The inside of the reaction vessel was maintained at 0.2 Torr, the temperature of the casing part was 2000°C, the temperature of the precipitation part was 1900'C,
An approximately 50 μm hexagonal epitaxial growth layer was obtained as the epitaxial growth interlayer 511r, and the conductivity and the like of this precipitate were measured.

実施例2 原料に添加するドーパントとじて、Si3N、の代りに
0.05wt%のB4Cを用いた以外は実施例1と同し
にして50μmの六方晶系の成長層を得、導電性等を測
定した。
Example 2 A hexagonal growth layer of 50 μm was obtained in the same manner as in Example 1, except that 0.05 wt% B4C was used instead of Si3N as the dopant added to the raw material, and the conductivity etc. It was measured.

実施例3 原料に添加するドーパントとじて513N−の代りに5
IO2に対してO,1wt%のAQ4C3を用いた以外
は実施例1と同じにして50μmの六方晶系SiCのエ
ピタキシャル戊長層を得、導電性等を測定した。
Example 3 The dopant added to the raw material was 513N- instead of 513N-.
A 50 μm hexagonal SiC epitaxial long layer was obtained in the same manner as in Example 1 except that AQ4C3 containing 1 wt% of O and IO2 was used, and its conductivity and the like were measured.

実施例4 SiO2、CおよびSi○、に対してQ、1wt%の5
13N+を添加した原料を黒鉛容器に収納したものと、
5107、CおよびSin、に対してQ、1wt%のB
、Cを添加した黒鉛容器に収納したものとを予め用意し
、先ずSi3N4をl−一7 XH71〜として2、5
 hrエピタキンヤル成長を行ない、次1.)テ■3゜
Cヲl”−パン1へとして2 、5 hrエピタキシャ
ル成長を行なった以外は実施例1と同しにして50μm
の六方晶系成長層を得た。
Example 4 Q, 1 wt% 5 for SiO2, C and Si○
13N+ added raw material stored in a graphite container,
5107, Q for C and Sin, 1 wt% B
, stored in a graphite container doped with C, were prepared in advance, and first, Si3N4 was prepared as 1-17XH71~2,5
Perform hr epitaaxial growth, and then perform the following 1. ) The same method as in Example 1 except that epitaxial growth was performed for 2.5 hours on 3°C 1''-pan 1.
A hexagonal growth layer was obtained.

この成長層をオーン、−電子分光広(AES)によって
測定し、析出前半てN、後半てBか含ま4″しているこ
をと確認した。
This grown layer was measured by electron spectroscopy (AES), and it was confirmed that the first half of the deposition contained N and the second half contained 4'' of B.

実施例5 第1図の装置を用い、5cm角、厚さ5mmの高純度黒
鉛(灰分]Oppm以下)を系材とし、析出部温度17
00°Cとした以外は実施例2と同じζこして、立方晶
系の成長層を得、導電性等をH1l+定しtコ。
Example 5 Using the apparatus shown in Fig. 1, a 5 cm square, 5 mm thick high-purity graphite (ash content: Oppm or less) was used as the system material, and the temperature of the precipitation part was 17.
The same process as in Example 2 was carried out except that the temperature was 00°C, a cubic crystal growth layer was obtained, and the conductivity etc. were determined as H1l+.

実施例1〜5の結果を一話して第1表に示−す。A summary of the results of Examples 1 to 5 is shown in Table 1.

第 表 〔発明の効果〕 以上述へたように、本発明の方法は、SiO2・Cを原
料としたCVDKにより、容易に各種ドーパントをドー
プすることか出来、半導体SiC単結晶を容易に製造す
ることか出来る。
Table [Effects of the Invention] As described above, the method of the present invention allows easy doping of various dopants using CVDK using SiO2.C as a raw material, and facilitates the production of semiconductor SiC single crystals. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の一例を示す図で
ある。 1・ ・反応容器、2・・ 高畠部(カス化部)、3低
n1部 (析出部) 11s合物 (S ○2−1 C) 5・ 黒鉛容器、 L(材、 a 支 持合または支持棒、 高温部より発生した)J
FIG. 1 is a diagram showing an example of an apparatus for carrying out the method of the present invention. 1. Reaction container, 2. Takabatake part (casing part), 3 low n1 part (precipitated part) 11s compound (S ○2-1 C) 5. Graphite container, L (material, a support joint or support rod, generated from a high temperature part)J

Claims (2)

【特許請求の範囲】[Claims] (1)SiO_2とCとを原料にして、CVD法により
SiC単結晶を製造するに際し、系内にドーピング元素
を導入して、SiC結晶中にドープすることを特徴とす
る半導体SiC単結晶の製造法。
(1) Production of a semiconductor SiC single crystal characterized by introducing a doping element into the system and doping it into the SiC crystal when producing the SiC single crystal by the CVD method using SiO_2 and C as raw materials. Law.
(2)ドーピング元素がIII族、V族の元素である請求
項(1)記載の半導体SiC単結晶の製造法。
(2) The method for producing a semiconductor SiC single crystal according to claim (1), wherein the doping element is a group III or group V element.
JP21458889A 1989-08-21 1989-08-21 Manufacturing method of semiconductor SiC single crystal Expired - Fee Related JP2749898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21458889A JP2749898B2 (en) 1989-08-21 1989-08-21 Manufacturing method of semiconductor SiC single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21458889A JP2749898B2 (en) 1989-08-21 1989-08-21 Manufacturing method of semiconductor SiC single crystal

Publications (2)

Publication Number Publication Date
JPH0380197A true JPH0380197A (en) 1991-04-04
JP2749898B2 JP2749898B2 (en) 1998-05-13

Family

ID=16658204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21458889A Expired - Fee Related JP2749898B2 (en) 1989-08-21 1989-08-21 Manufacturing method of semiconductor SiC single crystal

Country Status (1)

Country Link
JP (1) JP2749898B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261612A (en) * 2005-03-18 2006-09-28 Shikusuon:Kk Silicon carbide semiconductor, its manufacturing method and manufacturing apparatus
WO2008023635A1 (en) * 2006-08-22 2008-02-28 Shin-Etsu Chemical Co., Ltd. SINGLE-CRYSTAL SiC AND PROCESS FOR PRODUCING THE SAME
JP2014166957A (en) * 2014-04-24 2014-09-11 Sumitomo Electric Ind Ltd Silicon carbide semiconductor, and method and device for manufacturing the same
JP2015122540A (en) * 2015-03-16 2015-07-02 住友電気工業株式会社 Silicon carbide semiconductor, and method and apparatus for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261612A (en) * 2005-03-18 2006-09-28 Shikusuon:Kk Silicon carbide semiconductor, its manufacturing method and manufacturing apparatus
WO2008023635A1 (en) * 2006-08-22 2008-02-28 Shin-Etsu Chemical Co., Ltd. SINGLE-CRYSTAL SiC AND PROCESS FOR PRODUCING THE SAME
JP2008050174A (en) * 2006-08-22 2008-03-06 Shin Etsu Chem Co Ltd SINGLE CRYSTAL SiC AND METHOD FOR PRODUCING THE SAME
JP2014166957A (en) * 2014-04-24 2014-09-11 Sumitomo Electric Ind Ltd Silicon carbide semiconductor, and method and device for manufacturing the same
JP2015122540A (en) * 2015-03-16 2015-07-02 住友電気工業株式会社 Silicon carbide semiconductor, and method and apparatus for manufacturing the same

Also Published As

Publication number Publication date
JP2749898B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
US3956032A (en) Process for fabricating SiC semiconductor devices
US4897149A (en) Method of fabricating single-crystal substrates of silicon carbide
US5964943A (en) Method of producing boron-doped monocrystalline silicon carbide
JP3442401B2 (en) Growth of colorless silicon carbide crystals
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
Wickenden et al. Growth of epitaxial layers of gallium nitride on silicon carbide and corundum substrates
US7404858B2 (en) Method for epitaxial growth of silicon carbide
US5037502A (en) Process for producing a single-crystal substrate of silicon carbide
JP2010132556A (en) n-TYPE GALLIUM NITRIDE SINGLE CRYSTAL SUBSTRATE
US4865659A (en) Heteroepitaxial growth of SiC on Si
JPS63188938A (en) Method for vapor growth of gallium nitride compound semiconductor
US6911084B2 (en) Low temperature epitaxial growth of quaternary wide bandgap semiconductors
Kouvetakis et al. Novel chemical routes to silicon‐germanium‐carbon materials
CN108987257A (en) Ga is grown on a si substrate using halide vapor phase epitaxy2O3The method of film
JPH0380197A (en) Production of single crystal of semiconductor sic
JPH07131067A (en) Method for manufacturing silicon carbide wafer and method for manufacturing silicon carbide light emitting diode element
US5897705A (en) Process for the production of an epitaxially coated semiconductor wafer
JPS61243000A (en) Production of substrate of silicon carbide single crystal
JPS6120514B2 (en)
Yamashita et al. Homoepitaxial chemical vapor deposition of 6H-SiC at low temperatures on {0114} substrates
JPS61291495A (en) Production of silicon carbide single crystal base
KR100446937B1 (en) Deposition method and device of Sic thin films
JPS58115818A (en) Growing method of silicon carbide epitaxial film
JPS6115150B2 (en)
JPS6152119B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees