[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH037852B2 - - Google Patents

Info

Publication number
JPH037852B2
JPH037852B2 JP16691482A JP16691482A JPH037852B2 JP H037852 B2 JPH037852 B2 JP H037852B2 JP 16691482 A JP16691482 A JP 16691482A JP 16691482 A JP16691482 A JP 16691482A JP H037852 B2 JPH037852 B2 JP H037852B2
Authority
JP
Japan
Prior art keywords
temperature
heating element
container
boiling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16691482A
Other languages
Japanese (ja)
Other versions
JPS5956630A (en
Inventor
Junichi Nakakuki
Yasumichi Kobayashi
Haruo Terai
Shigeharu Nakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16691482A priority Critical patent/JPS5956630A/en
Publication of JPS5956630A publication Critical patent/JPS5956630A/en
Publication of JPH037852B2 publication Critical patent/JPH037852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/10Tops, e.g. hot plates; Rings
    • F24C15/102Tops, e.g. hot plates; Rings electrically heated
    • F24C15/106Tops, e.g. hot plates; Rings electrically heated electric circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Resistance Heating (AREA)
  • Electric Stoves And Ranges (AREA)
  • Cookers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気コンロ等の熱機器に載置された
容器内の水の沸騰を検出する装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a device for detecting boiling of water in a container placed on a heat appliance such as an electric stove.

従来の技術 従来、電気コンロ等に用いられる沸騰検出装置
は、例えば、うず巻状に形成したシーズヒータの
中心部に温度検出器を出没自在に設け、温度検出
器により水を収容した容器の温度を検出し、水の
温度と温度検出器の温度との相関を基に、水が沸
騰した時の温度検出器の温度を検出してヒータへ
の通電を停止するというものであつた。このもの
は、果物、汚れ等が介在し、容器と温度検出器の
接触が悪くなると、温度検出器は容器からの熱伝
達による温度よりもヒータの放射熱による温度の
影響を受けて沸騰以前に動作し、加熱を停止する
ことがあつた。また、気圧による沸騰点の低下や
温度検出器の動作温度のバラツキ等を考慮して、
沸騰検出点は90℃〜95℃程度に設定せざるを得な
かつた。つまり、100℃(常気圧にて)という沸
騰完了を検出することはできなかつた。
BACKGROUND TECHNOLOGY Conventionally, a boiling detection device used in an electric stove, etc. has a temperature sensor that can be moved in and out of the center of a sheathed heater formed in a spiral shape, and the temperature sensor measures the temperature of a container containing water. Based on the correlation between the temperature of the water and the temperature of the temperature detector, the temperature of the temperature detector when the water boils is detected and the power supply to the heater is stopped. If the contact between the container and the temperature sensor deteriorates due to fruit, dirt, etc., the temperature sensor will be affected by the radiant heat of the heater rather than the temperature transferred from the container, and the temperature will reach the temperature before boiling. It started working and sometimes stopped heating. In addition, taking into consideration factors such as a decrease in the boiling point due to atmospheric pressure and variations in the operating temperature of the temperature detector,
The boiling detection point had to be set at around 90°C to 95°C. In other words, it was not possible to detect the completion of boiling at 100°C (at normal pressure).

このような従来の温度検出装置の欠点を補うも
のとして、水の沸騰前後の温度検出器の温度上昇
の変化を温度上昇率または温度勾配の変化として
検知し、沸騰点を検出する方法が考えられてい
る。この方法によれば、水の沸騰を検出すること
が可能であり、また、気圧による沸騰点の低下に
も対応して沸騰を検知することも可能である。
As a way to compensate for these shortcomings of conventional temperature detection devices, there is a method that detects the change in temperature rise of the temperature detector before and after boiling of water as a change in temperature rise rate or temperature gradient, and detects the boiling point. ing. According to this method, it is possible to detect boiling of water, and it is also possible to detect boiling in response to a decrease in the boiling point due to atmospheric pressure.

発明が解決しようとする問題点 しかしながら、この方法においても、温度検出
器と容器との熱的結合状態が悪い場合は、温度上
昇率または温度勾配の変化の検知が遅れ、沸騰後
も加熱を継続し、無駄な電力を消費するという問
題がある。また、容器に油等が入れられている場
合には、温度上昇率または温度勾配の変化がない
ため、検知ができないためにヒータの制御ができ
ず、その結果、加熱が継続されているときには油
等の発煙、発火を誘発する危険な状態になるとい
う問題もあつた。
Problems to be Solved by the Invention However, even with this method, if the thermal coupling between the temperature sensor and the container is poor, detection of changes in the temperature rise rate or temperature gradient will be delayed, and heating will continue even after boiling. However, there is a problem that power is wasted. In addition, if oil, etc. is placed in the container, there is no change in the temperature rise rate or temperature gradient, so detection is impossible and the heater cannot be controlled. As a result, when heating continues, the oil There was also the problem of creating a dangerous situation that could lead to smoke and ignition.

本発明はこのような問題点を解決した沸騰検出
装置を提供することを目的とするものである。
An object of the present invention is to provide a boiling detection device that solves these problems.

問題点を解決するための手段 上記問題点を解決するために本発明は、水収容
用容器を加熱する発熱体と、前記容器の温度を検
出する温度検出器と、この温度検出器が検出した
温度を入力信号として温度検出器の温度上昇率を
測定する温度上昇率測定手段と、前記温度検出器
が検出した温度を入力信号として温度検出器が設
定温度以上であることを判定する温度判定手段
と、前記温度上昇率測定手段の出力を入力信号と
して、所定の温度上昇率以下になつた時に前記容
器内の水が沸騰したと判定する沸騰判定手段と、
この沸騰判定手段の出力または前記温度判定段の
出力により前記発熱体への通電を制御する発熱体
通電制御手段とを備え、この発熱体通電制御手段
は、容器と温度検出器との熱的結合が良好な状態
のもとでは沸騰判定手段の出力により発熱体の通
電を停止し、また容器と温度検出器との熱的結合
が悪い状態のもとでは温度判定手段の出力により
発熱体の通電を停止するようにし、さらに前記温
度判定手段が出力を発する設定温度は、容器と温
度検出器との熱的結合が悪い状態における温度上
昇率が屈曲変化する屈曲点に相当する温度よりも
高くしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a heating element that heats a water storage container, a temperature detector that detects the temperature of the container, and a temperature sensor that detects the temperature of the container. Temperature increase rate measuring means for measuring the temperature increase rate of the temperature detector using temperature as an input signal; and temperature determination means for determining that the temperature of the temperature detector is higher than a set temperature using the temperature detected by the temperature detector as an input signal. and boiling determining means that uses the output of the temperature increase rate measuring means as an input signal and determines that the water in the container has boiled when the temperature decreases below a predetermined temperature increase rate;
heating element energization control means for controlling energization of the heating element based on the output of the boiling determination means or the output of the temperature determination stage; Under good conditions, the output of the boiling determination means will stop the energization of the heating element, and under conditions of poor thermal coupling between the container and the temperature sensor, the output of the temperature determination means will stop the energization of the heating element. Further, the set temperature at which the temperature determination means outputs an output is set higher than a temperature corresponding to a bending point at which the rate of temperature rise changes in a state where the thermal coupling between the container and the temperature sensor is poor. It is something.

作 用 上記構成によれば、水を収容する容器の温度を
検出する温度検出器の温度上昇率を継続的に測定
し、容器と温度検出器の熱的結合状態が良い場合
には、沸騰後の温度検出器の温度上昇率が所定の
値以下になつた時に発熱体への通電を制御し、ま
た、容器と温度検出器の間に汚れあるいは異物等
が付着して両者の熱的結合が悪く、沸騰後も温度
検出器の温度上昇率が所定の温度上昇率以下にな
らずに加熱が継続される場合や、容器に油等が入
れられていて温度検出器の温度上昇率に変化がな
くて加熱が継続される場合には、温度検出器の温
度が所定の温度以上になつた時に、発熱体への通
電を制御するため、無駄な電力消費や油の過熱、
さらには発火といつた危険を防止することができ
るものである。
Effect According to the above configuration, the temperature rise rate of the temperature sensor that detects the temperature of the container containing water is continuously measured, and if the thermal coupling state between the container and the temperature sensor is good, the water is heated after boiling. The power supply to the heating element is controlled when the temperature rise rate of the temperature sensor falls below a predetermined value, and it also prevents dirt or foreign matter from adhering between the container and the temperature sensor, causing thermal coupling between the two. Worse, the temperature rise rate of the temperature sensor may continue even after boiling without dropping below the specified temperature rise rate, or there may be a change in the temperature rise rate of the temperature sensor due to oil, etc. being placed in the container. If the heating continues without the oil being turned off, the power supply to the heating element is controlled when the temperature detected by the temperature sensor reaches a predetermined temperature or higher, thereby reducing wasteful power consumption, overheating of the oil, and so on.
Furthermore, it is possible to prevent dangers such as ignition.

実施例 以下、本発明の一実施例としての電気コンロに
ついて説明する。第1図において、1は交流電源
で、この交流電源1に接続されたコンデンサ2、
抵抗3、ツエナーダイオード4、抵抗5、ダイオ
ード6で制御回路動作用の直流電源を形成してい
る。7は水を収容する容器で、発熱体8上に着脱
自在に載置されている。前記発熱体8は渦巻状の
シーズヒータで形成されている。9は発熱体8に
接続された発熱体通電制御手段である三端子双方
向性サイリスタである。この三端子双方向性サイ
リスタ9がオンすると発熱体8が発熱し、容器7
を加熱する。10は温度検出器であるサーミスタ
で、容器7の側面下部に接離自在に熱的に結合し
ている。なお、温度検出器10は前記発熱体8の
中央部に上下に出没自在に設け、容器7の外底面
と接離自在に熱的に結合させてもよいものであ
る。制御回路は、マイクロコンピユータ11及び
周辺回路から構成され、マイクロコンピユータ1
1は、CPU、ROM、RAMおよび入出力ポート
から構成されている、いわゆるワンチツプ・マイ
クロコンピユータである。12はスタートスイツ
チで、マイクロコンピユータ11の入力ポートに
接続され、閉路によつてマイクロコンピユータ1
1の出力ポートに接続されたトランジスタ13を
駆動し、発熱体通電制御手段9を通電状態にす
る。14はA/D変換器で、温度検出器10のア
ナログ信号をデジタル信号に変換してコンピユー
タ11に出力する。15は沸騰報知手段を構成す
る発光ダイオードで、マイクロコンピユータ11
の出力ポートに接続されている。
Embodiment Hereinafter, an electric stove as an embodiment of the present invention will be described. In FIG. 1, 1 is an AC power supply, and a capacitor 2 connected to this AC power supply 1,
The resistor 3, Zener diode 4, resistor 5, and diode 6 form a DC power source for operating the control circuit. Reference numeral 7 denotes a container for containing water, which is removably placed on the heating element 8. The heating element 8 is formed of a spiral sheathed heater. Reference numeral 9 denotes a three-terminal bidirectional thyristor connected to the heating element 8 and serving as heating element energization control means. When this three-terminal bidirectional thyristor 9 is turned on, the heating element 8 generates heat, and the container 7
heat up. A thermistor 10 is a temperature detector, and is thermally coupled to the lower side of the container 7 so as to be detachable. The temperature detector 10 may be provided at the center of the heating element 8 so as to be vertically retractable, and may be thermally coupled to the outer bottom surface of the container 7 so as to be able to come into contact with and separate from it. The control circuit is composed of a microcomputer 11 and peripheral circuits.
1 is a so-called one-chip microcomputer consisting of a CPU, ROM, RAM, and input/output ports. A start switch 12 is connected to the input port of the microcomputer 11, and is connected to the input port of the microcomputer 11 through a closed circuit.
The transistor 13 connected to the output port 1 is driven, and the heating element energization control means 9 is energized. 14 is an A/D converter which converts the analog signal of the temperature detector 10 into a digital signal and outputs it to the computer 11. 15 is a light emitting diode constituting the boiling alarm means, and the microcomputer 11
connected to the output port of the

次に上記構成の沸騰検出装置の動作について説
明する。容器7に水を入れ、スタートスイツチ1
2を閉じると、マイクロコンピユータ11の中の
ROMに記憶された第3図のフローチヤートに示
すプログラムの手順に基づいて温度検出が開始さ
れる。
Next, the operation of the boiling detection device having the above configuration will be explained. Pour water into container 7 and press start switch 1.
2 closes, the microcomputer 11
Temperature detection is started based on the program procedure shown in the flowchart of FIG. 3 stored in the ROM.

まず、ステツプで発熱体8へ通電し、容器7
を加熱し、ステツプ(温度判定手段)で温度検
出器10の温度が所定の温度以上であるかどうか
を判断し、その温度に達していなければ、ステツ
プ(温度上昇率測定手段)で温度上昇率を測定
し、ステツプで所定の温度上昇率以下かを比較
し、所定の温度上昇率以上の場合は、ステツプ
にもどり、温度検出器10の温度が所定の温度以
上であるかどうかを判断し、所定の温度に達して
いなければ再びステツプ、、を繰返し、継
続的に温度上昇率を測定する。ステツプで所定
の温度上昇率以下になつた場合はステツプ(沸
騰判定手段)で沸騰したと判断し、ステツプ6で
沸騰報知手段である発光ダイオード15を点灯
し、ステツプで発熱体8への通電を停止し、沸
騰検出動作を完了する。以上のプログラムのフロ
ーは、容器7と温度検出器10との熱的結合が良
い場合の容器7中の水の沸騰の検出と発熱8の制
御を示すものであるが、容器7と温度検出器10
との間に汚れや異物が介在し、両者の熱的結合が
悪い場合、及び容器に油が入れられ、温度検出が
できない場合のプログラムのフローについて次に
説明する。
First, in a step, the heating element 8 is energized, and the container 7 is heated.
is heated, and a step (temperature determining means) determines whether the temperature of the temperature detector 10 is higher than a predetermined temperature. If the temperature has not reached that temperature, a step (temperature increase rate measuring means) determines the temperature increase rate. is measured and compared in step to see if it is below a predetermined temperature increase rate, and if it is above the predetermined temperature increase rate, returns to step and determines whether the temperature of the temperature detector 10 is above the predetermined temperature, If the predetermined temperature has not been reached, step 2 is repeated and the rate of temperature rise is continuously measured. If the temperature rise rate falls below a predetermined rate in the step, it is determined that the boiling has occurred in the step (boiling determination means), the light emitting diode 15, which is the boiling alarm means, is turned on in step 6, and the power to the heating element 8 is turned off in step 6. Stop and complete boil detection operation. The above program flow shows the detection of boiling water in the container 7 and the control of the heat generation 8 when the thermal coupling between the container 7 and the temperature sensor 10 is good. 10
The following describes the program flow when there is dirt or foreign matter between the two and the thermal coupling between the two is poor, or when oil is placed in the container and temperature cannot be detected.

スタートスイツチ12を閉じると、ステツプ
で発熱体8へ通電し、容器7を加熱し、ステツプ
で温度検出器10の温度が所定の温度以上であ
るかどうかを判断し、その温度に達していなけれ
ば、ステツプで温度上昇率を測定し、ステツプ
で所定の温度上昇率以下かを比較し、以上の場
合は、ステツプにもどり温度検出器10の温度
が所定の温度以上であるかどうかを判断し、所定
の温度に達していなければ再びステツプ、、
を繰返し、継続的に温度上昇率を判定する。こ
こまでのフローは前記した容器7と温度検出器1
0との熱的結合が良い場合と同様である。ところ
で、上記の熱的結合が悪い場合には、水が沸騰を
始めても発熱体8の放射熱により温度検出器10
の温度上昇率は後述する所定の値以下にならず、
その結果、ステツプ、、を繰返して発熱体
8は加熱を継続する。この発熱体8の加熱の継続
により温度検出器10は昇温し、これも後述する
が、所定の温度以上になる。この時、プログラム
はステツプからステツプへ移り、発熱体8の
通電が停止される。容器7に油が入れられている
場合も同様に、温度検出器10の温度上昇率は所
定の値以下になることはなく、ステツプ、、
を繰返し、やがて温度検出器10は所定の温度
以上になり、ステツプからステツプへ移つて
発熱体8への通電が停止される。
When the start switch 12 is closed, the heating element 8 is energized in step to heat the container 7, and in step it is determined whether the temperature of the temperature detector 10 is above a predetermined temperature. , step measures the temperature increase rate, and compares whether the temperature increase rate is below a predetermined temperature increase rate in step, and if the temperature increase rate is above, returns to step and determines whether the temperature of the temperature detector 10 is above the predetermined temperature, If the predetermined temperature has not been reached, repeat the steps.
Repeat this to continuously determine the temperature rise rate. The flow up to this point is the container 7 and temperature sensor 1 described above.
This is the same as when the thermal coupling with 0 is good. By the way, if the thermal coupling described above is poor, even if the water starts to boil, the temperature sensor 10 will be heated due to the radiant heat of the heating element 8.
The temperature rise rate of does not fall below a predetermined value, which will be described later.
As a result, the heating element 8 continues heating by repeating steps . As the heating element 8 continues to heat, the temperature of the temperature detector 10 increases, and as will be described later, the temperature reaches a predetermined temperature or higher. At this time, the program moves from step to step, and the power supply to the heating element 8 is stopped. Similarly, when oil is placed in the container 7, the temperature rise rate of the temperature detector 10 will not fall below a predetermined value, and the steps .
The process is repeated until the temperature of the temperature detector 10 reaches a predetermined temperature or higher, and as the process moves from step to step, the power supply to the heating element 8 is stopped.

次に、第2図により前述の温度検出器の所定の
温度上昇率並びに所定の温度について説明する。
図において、イは容器中の水温を、ロは容器7と
の熱的結合が良い場合の温度検出器10の温度
を、ハは熱的結合が悪い場合の温度検出器10の
温度を示している。温度検出器10は先にも説明
したように容器7の外側面下部、あるいは外底面
に接離自在に熱的結合するように設けられてお
り、主として容器7の温度を検知しているが、電
気コンロの構成上、発熱体8の放射熱を受け、容
器7の温度よりも高温となることは容易に理解さ
れる。従つて、図に示すように容器7中の水温の
上昇イよりも早く温度上昇ロするが、熱的結合が
良い場合には、両者の間には相関性があり、水の
沸騰までは水温とほぼ平行状態で温度上昇する。
やがて水が沸騰を始めると温度検出器10の温度
も100℃を超えた温度でほぼ一定温度となるが、
発熱体8の放射熱により時間の経過とともにわず
かづつ温度上昇する。この状態の単位時間当りの
温度上昇を温度上昇率とし、機器固有の値を設定
して温度検出器10の所定の温度上昇率としてい
る。ところが、容器7と温度検出器10との熱的
結合が悪い場合には、両者の温度的相関が崩れ、
温度検出器10は熱的結合が良い場合よりも発熱
体8の放射熱による温度の影響を多く受け、水温
の上昇イよりも相当早く温度上昇ハする。そし
て、水が沸騰した時(A)よりもやや遅れて屈曲(B)
し、その後も熱的結合が良い場合の所定の温度上
昇率よりも大きな上昇率をもつて温度上昇する。
Next, the predetermined temperature increase rate and predetermined temperature of the above-mentioned temperature detector will be explained with reference to FIG.
In the figure, A indicates the water temperature in the container, B indicates the temperature of the temperature detector 10 when the thermal coupling with the container 7 is good, and C indicates the temperature of the temperature detector 10 when the thermal coupling is poor. There is. As described above, the temperature detector 10 is provided so as to be thermally coupled to the lower part of the outer surface of the container 7 or the outer bottom surface so as to be able to come into contact with and be separated from the container 7, and mainly detects the temperature of the container 7. It is easily understood that due to the structure of the electric stove, the temperature will be higher than that of the container 7 due to the radiant heat of the heating element 8. Therefore, as shown in the figure, the temperature of the water in the container 7 rises faster than A, but if the thermal coupling is good, there is a correlation between the two, and the water temperature increases until the water boils. The temperature rises almost parallel to .
Eventually, when the water starts to boil, the temperature of the temperature detector 10 also exceeds 100 degrees Celsius and becomes a nearly constant temperature.
The temperature rises little by little over time due to the radiant heat of the heating element 8. The temperature rise per unit time in this state is defined as the temperature rise rate, and a value unique to the device is set as the predetermined temperature rise rate of the temperature detector 10. However, if the thermal coupling between the container 7 and the temperature detector 10 is poor, the temperature correlation between the two will collapse.
The temperature sensor 10 is more influenced by the temperature due to the radiant heat of the heating element 8 than when the thermal coupling is good, and the temperature rises much faster than the water temperature rises. Then, when the water boils (A), it bends a little later (B)
However, even after that, the temperature increases at a higher rate than the predetermined rate of increase in temperature when the thermal coupling is good.

ここで、第3図のフローチヤートのステツプ
の作用との関係について説明する。温度検出器1
0の温度は、上記したように第2図ロまたはハの
経過をたどるのであるが、この場合、水温の上昇
中の温度上昇率は所定の温度上昇率以上であるた
め、ステツプ、、を繰返す。この繰返しは
容器7と温度検出器10との熱的結合が良い場合
も悪い場合も同様である。やがて、水が沸騰を始
めると、熱的結合が良い場合には温度検出器10
の温度はほぼ一定、ないしはやや上昇気味(第2
図ロ)となり、予め設定された所定の温度上昇率
以下の上昇率となつてステツプへ移り、水が沸
騰したと判定される。
Here, the relationship with the operation of the steps in the flowchart of FIG. 3 will be explained. Temperature detector 1
As mentioned above, the temperature at 0 follows the course of B or C in Figure 2, but in this case, the rate of temperature increase while the water temperature is rising is greater than the predetermined rate of temperature increase, so steps , , etc. are repeated. . This repetition is the same whether the thermal coupling between the container 7 and the temperature sensor 10 is good or bad. Eventually, when the water starts to boil, the temperature sensor 10 will react if there is good thermal coupling.
The temperature is almost constant or slightly rising (second
When the temperature rise rate becomes lower than the predetermined temperature rise rate set in advance, the process moves on to step 2, and it is determined that the water has boiled.

一方、熱的結合が悪い場合には、水の沸騰後も
温度検出器10は温度上昇し(第2図ハ)、所定
の温度上昇率以上の上昇率となるため、ステツプ
へ戻り、ステツプ、、を繰返して発熱体
8による加熱は継続される。なお、容器7に油が
入れられている場合は、当然のことながら水の沸
騰に相当する時点での温度検出器10の温度の屈
曲点はない。したがつて、所定の温度上昇率以下
になることはなく、発熱体8による加熱は継続さ
れる。
On the other hand, if the thermal coupling is poor, the temperature of the temperature sensor 10 will rise even after the water boils (Fig. 2 (c)), and the temperature rise rate will exceed the predetermined temperature rise rate, so the process returns to step Heating by the heating element 8 is continued by repeating . In addition, when oil is put in the container 7, there is of course no inflection point of the temperature of the temperature sensor 10 at the time corresponding to the boiling of water. Therefore, the temperature rise rate does not fall below a predetermined temperature increase rate, and heating by the heating element 8 continues.

次に、所定の温度について説明する。上記のよ
うに、容器7と温度検出器10との熱的結合が悪
い場合や容器7に油が入れられている場合には、
沸騰判定されずに発熱体8による加熱が継続され
るので、無駄な電力消費や、油の発火の危険性が
生じる。これらの不具合に対しては、発熱体8へ
の通電を強制的に停止させることが最も望まし
く、そのために、温度検出器10がある温度以上
になつたときにステツプからステツプへ移行
するようにする温度を、温度検出器10の所定の
温度Cとし、容器7と温度検出器10の熱的結合
が良い場合に水の沸騰後に安定的な温度経過をた
どる温度検出器10の温度ロより高い温度を機器
固有の値(第2図の例では、熱的結合が悪い場合
の温度検出器の温度ハの屈曲点Bよりもやや高い
温度)に設定している。
Next, the predetermined temperature will be explained. As mentioned above, if the thermal coupling between the container 7 and the temperature sensor 10 is poor or if the container 7 is filled with oil,
Since heating by the heating element 8 continues without determining boiling, there is a risk of wasteful power consumption and oil ignition. To deal with these problems, it is most desirable to forcibly stop the power supply to the heating element 8, and for this purpose, the step is made to shift from step to step when the temperature detector 10 reaches a certain temperature or higher. The temperature is a predetermined temperature C of the temperature detector 10, and when the thermal coupling between the container 7 and the temperature detector 10 is good, the temperature is higher than the temperature B of the temperature detector 10 which shows a stable temperature course after boiling of the water. is set to a value unique to the device (in the example of FIG. 2, a temperature slightly higher than the bending point B of the temperature C of the temperature sensor when thermal coupling is poor).

ここで、第3図のフローチヤートのステツプ
の作用との関係について説明する。容器7と温度
検出器10の熱的結合が良い場合には、温度検出
器10の温度は第2図ロのような経過をたどるの
で、所定の温度以上になることはなく、ステツプ
、、を繰返し、水の沸騰とともにステツプ
からに移り沸騰が判定される。一方、熱的結
合が悪い場合は、ステツプ、、を繰返しな
がら温度検出器10の温度は第2図ハのような経
過をたどつて所定の温度Cに達し、所定の温度以
上となつた時、ステツプからステツプに移り
発熱体8への通電を停止する。容器に油が入れら
れている場合も同様に、温度検出器10の温度が
所定の温度C以上となつた時にステツプからス
テツプに移り、発熱体8への通電を停止する。
Here, the relationship with the operation of the steps in the flowchart of FIG. 3 will be explained. When the thermal coupling between the container 7 and the temperature sensor 10 is good, the temperature of the temperature sensor 10 follows the course shown in Fig. 2 (b), so the temperature never exceeds the predetermined temperature, and steps . Repeatedly, as the water boils, the process moves from step to step and boiling is determined. On the other hand, if the thermal coupling is poor, the temperature of the temperature detector 10 follows the course shown in Fig. 2C while repeating steps , and reaches the predetermined temperature C. When the temperature exceeds the predetermined temperature, , the process moves from step to step and the power supply to the heating element 8 is stopped. Similarly, when oil is placed in the container, when the temperature of the temperature detector 10 reaches a predetermined temperature C or higher, the process moves from step to step, and the power supply to the heating element 8 is stopped.

以上のように本発明の実施例における沸騰検出
装置は、温度検出器10の温度上昇が水の温度上
昇と相関があり、特に、水の沸騰後は容器7と温
度検出器10との熱的結合の良否によつて温度検
出器10の温度上昇率に差異があることに着目
し、沸騰後の温度検出器10の温度上昇率が所定
の温度上昇率以下である場合、すなわち、熱的結
合が良い場合には沸騰と判定して発熱体8への通
電を停止するように制御し、所定の温度上昇率以
上である場合、すなわち、熱的結合が悪い場合に
は温度検出器10が所定の温度以上になつた時に
発熱体8への通電を停止するように制御すること
によつて、沸騰の検出と電力消費の無駄をなくす
ることができるものである。
As described above, in the boiling detection device according to the embodiment of the present invention, the temperature rise of the temperature sensor 10 is correlated with the temperature rise of the water, and in particular, after the water boils, the thermal relationship between the container 7 and the temperature sensor 10 is Focusing on the fact that there is a difference in the temperature rise rate of the temperature sensor 10 depending on the quality of the bond, if the temperature rise rate of the temperature sensor 10 after boiling is below a predetermined temperature rise rate, that is, thermal bond If the temperature rise rate is good, it is determined that boiling has occurred, and the power supply to the heating element 8 is stopped. By controlling the electricity supply to the heating element 8 to be stopped when the temperature exceeds , it is possible to eliminate boiling detection and wasteful power consumption.

また、温度検出器10の温度が所定の温度以上
になつた時に発熱体8への通電を停止するように
制御することによつて、容器7中に油が入れられ
ているような場合も油の過熱を防止することがで
き、発煙、発火等の危険を防止することができる
ものである。この容器7中の油に対する過熱防止
の作用は次のように利用される。近年、家事機能
の合理化のために、調理用の加熱機器も複数の加
熱部を有する、いわゆる電気レンジタイプの大熱
量のものが使用されるようになつてきている。こ
うした加熱器を省エネルギー的に、あるいは最適
調理器として使用するために、利用頻度の高い湯
沸しにおける省電力、調理器としての自動制御化
が望まれている。そこで、前記のように電気レン
ジには複数の加熱部があることに着目すれば、複
数の加熱部の一つに湯沸し用の沸騰検出装置を装
着し、他の一つに揚げ物用の自動制御装置を装着
して省電力と機能の向上を図ることができる。と
ころで、実際の使用の場においては、湯沸し用の
加熱部に揚げ物用の油の入つた容器が載せられる
こともあり、この場合には油温の自動制御はでき
ないのであるから、発煙、発火に至るまでに加熱
を止めることが実際的であり、また、安全であ
る。このようなケースに対し、本発明の沸騰検出
装置は、湯沸しの場合の沸騰検出と加熱停止、並
びに油加熱の場合の加熱停止という動作と作用を
的確に行うことができ、その結果、加熱機器の省
電力、危険防止のための装置として有効に利用す
ることができるものである。
Furthermore, by controlling the power supply to the heating element 8 to be stopped when the temperature of the temperature detector 10 reaches a predetermined temperature or higher, even when oil is contained in the container 7, the oil can be removed. It is possible to prevent overheating of the product, and to prevent dangers such as smoke and ignition. This effect of preventing overheating of the oil in the container 7 is utilized as follows. BACKGROUND ART In recent years, in order to rationalize housework functions, heating devices for cooking that have a plurality of heating parts and have a large heat capacity, such as the so-called electric range type, have come to be used. In order to use such a heater in an energy-saving manner or as an optimal cooking device, it is desired to save power in the frequently used water boiler and automatically control the cooking device. Therefore, if we focus on the fact that an electric range has multiple heating parts as mentioned above, one of the multiple heating parts is equipped with a boiling detection device for boiling water, and the other one is equipped with an automatic control device for frying food. The device can be installed to save power and improve functionality. By the way, in actual use, a container containing oil for frying is sometimes placed on the heating section of a water boiler, and in this case, the oil temperature cannot be automatically controlled, so there is a risk of smoke or ignition. It is practical and safe to stop heating until the end of the process. In such cases, the boiling detection device of the present invention can accurately detect boiling and stop heating in the case of boiling water, and stop heating in the case of oil heating. This device can be effectively used as a power saving and danger prevention device.

なお、沸騰検出による発熱体への通電の停止
は、発熱体への通電量制御とし、沸騰後、お湯を
保温するようにしてもよいことはいうまでもな
い。
Note that it goes without saying that stopping the energization to the heating element upon detection of boiling may be done by controlling the amount of energization to the heating element, and keeping the hot water warm after boiling.

発明の効果 上記実施例の説明から明らかなように本発明の
沸騰検出装置は、容器と温度検出器との熱的結合
の良否にかかわらず、沸騰を検出し、発熱体への
通電を制御するようにしているため、加熱機器の
省電力化が可能となり、また揚げ物等の油加熱の
場合も加熱途中で発熱体への通電を制御して発
煙、発火等の危険を未然に防止することができる
とともに、複数の加熱部を有する加熱機器に使用
して省電力化、安全性の確保が図れるものであ
る。
Effects of the Invention As is clear from the description of the above embodiments, the boiling detection device of the present invention detects boiling and controls energization to the heating element regardless of whether the thermal coupling between the container and the temperature sensor is good or not. This makes it possible to save power on heating equipment, and when heating oil for frying, etc., it is possible to control the current to the heating element during heating to prevent dangers such as smoke and ignition. In addition, it can be used in heating equipment having multiple heating parts to save power and ensure safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す沸騰検出装置
の電気回路図、第2図は同要部の温度特性図、第
3図は同沸騰検出装置の沸騰検出のためのプログ
ラムの一例を示すフローチヤートである。 7……容器、8……発熱体、9……発熱体通電
制御手段、10……温度検出器、11……マイク
ロコンピユータ、15……沸騰報知手段。
Fig. 1 is an electric circuit diagram of a boiling detection device showing an embodiment of the present invention, Fig. 2 is a temperature characteristic diagram of the main parts, and Fig. 3 is an example of a program for boiling detection of the same boiling detection device. This is a flowchart. 7... Container, 8... Heating element, 9... Heating element energization control means, 10... Temperature detector, 11... Microcomputer, 15... Boiling alarm means.

Claims (1)

【特許請求の範囲】[Claims] 1 水収容用容器を加熱する発熱体と、前記容器
の温度を検出する温度検出器と、この温度検出器
が検出した温度を入力信号として温度検出器の温
度上昇率を測定する温度上昇率測定手段と、前記
温度検出器が検出した温度を入力信号として温度
検出器が設定温度以上であることを判定する温度
判定手段と、前記温度上昇率測定手段の出力を入
力信号として、所定の温度上昇率以下になつた時
に前記容器内の水が沸騰したと判定する沸騰判定
手段と、この沸騰判定手段の出力または前記温度
判定手段の出力により前記発熱体への通電を制御
する発熱体通電制御手段とを備え、この発熱体通
電制御手段は、容器と温度検出器との熱的結合が
良好な状態のもとでは沸騰判定手段の出力により
発熱体の通電を停止し、また容器と温度検出器と
の熱的結合が悪い状態のもとでは温度判定手段の
出力により発熱体の通電を停止するようにし、さ
らに前記温度判定手段が出力を発する設定温度
は、容器と温度検出器との熱的結合が悪い状態に
おける温度上昇率が屈曲変化する屈曲点に相当す
る温度よりも高くしたことを特徴とする沸騰検出
装置。
1. A heating element that heats a water storage container, a temperature detector that detects the temperature of the container, and a temperature rise rate measurement that measures the temperature rise rate of the temperature sensor using the temperature detected by the temperature detector as an input signal. a temperature determining means that uses the temperature detected by the temperature detector as an input signal to determine that the temperature is higher than a set temperature; a boiling determination means for determining that the water in the container has boiled when the water reaches a temperature below the boiling point; and a heating element energization control means for controlling energization to the heating element based on the output of the boiling determination means or the output of the temperature determination means. The heating element energization control means stops the energization of the heating element by the output of the boiling determination means when the thermal coupling between the container and the temperature sensor is good, and the heating element energization control means Under conditions of poor thermal coupling between the container and the temperature detector, the output of the temperature determining means is used to stop the energization of the heating element. A boiling detection device characterized in that the rate of temperature rise in a state of poor coupling is higher than the temperature corresponding to the bending point at which the bending changes.
JP16691482A 1982-09-25 1982-09-25 Boiling detecting device Granted JPS5956630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16691482A JPS5956630A (en) 1982-09-25 1982-09-25 Boiling detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16691482A JPS5956630A (en) 1982-09-25 1982-09-25 Boiling detecting device

Publications (2)

Publication Number Publication Date
JPS5956630A JPS5956630A (en) 1984-04-02
JPH037852B2 true JPH037852B2 (en) 1991-02-04

Family

ID=15839979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16691482A Granted JPS5956630A (en) 1982-09-25 1982-09-25 Boiling detecting device

Country Status (1)

Country Link
JP (1) JPS5956630A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613008B2 (en) * 1984-07-20 1994-02-23 株式会社東芝 Water heater
JPS6164217A (en) * 1984-09-07 1986-04-02 シャープ株式会社 Electric pot
JPS62284618A (en) * 1986-06-04 1987-12-10 象印マホービン株式会社 Heating control of electric pot
JPS63296708A (en) * 1987-05-29 1988-12-02 松下電器産業株式会社 Control apparatus of electric pot
DE112004000252B4 (en) * 2003-02-06 2018-09-06 Edgecraft Corp. Electric hot water boiler and method for operating an electric hot water boiler
JP4828496B2 (en) * 2007-09-13 2011-11-30 リンナイ株式会社 Cooker

Also Published As

Publication number Publication date
JPS5956630A (en) 1984-04-02

Similar Documents

Publication Publication Date Title
AU2015261116B2 (en) Method of conducting a liquid-based cooking process, controller and cooking hob assembly
EP0380369A1 (en) Controls for electrically powered heating elements
US4714822A (en) Cooker with means for automatically controlling the heating of a pan with food material
JPH037852B2 (en)
JP2903681B2 (en) Temperature control device of cooking device
JPH0152004B2 (en)
JPH0124490B2 (en)
JPH0137923B2 (en)
JPS6348791A (en) Radio frequency electromagnetic induction heating cooker
JPS59135026A (en) Rice cooker
JPS6410737B2 (en)
JP3109160B2 (en) Induction heating cooker
JP2005310384A (en) Induction heating cooker
KR20230045316A (en) Safely control induction overheating according to cooking capacity
JP4311154B2 (en) Electromagnetic induction heating cooker
JPS6249050B2 (en)
JPS643492B2 (en)
JP3141706B2 (en) Electric water heater
JPH022054B2 (en)
JPS6041915A (en) Heating machinery
JPS59231326A (en) Temperature controller of heating cooker
JPS6021716A (en) Electric cooker
JPH0456615B2 (en)
JPH0443150Y2 (en)
JPH0466564B2 (en)