[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0372027A - Production of grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss - Google Patents

Production of grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss

Info

Publication number
JPH0372027A
JPH0372027A JP20946489A JP20946489A JPH0372027A JP H0372027 A JPH0372027 A JP H0372027A JP 20946489 A JP20946489 A JP 20946489A JP 20946489 A JP20946489 A JP 20946489A JP H0372027 A JPH0372027 A JP H0372027A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
flux density
magnetic flux
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20946489A
Other languages
Japanese (ja)
Inventor
Shozaburo Nakajima
中島 正三郎
Kenzo Iwayama
岩山 健三
Isao Iwanaga
功 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20946489A priority Critical patent/JPH0372027A/en
Publication of JPH0372027A publication Critical patent/JPH0372027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce the silicon steel sheet excellent in iron loss by controlling the average grain size of secondary recrystallized grains to a value in a specific range in a steel sheet of a specific composition to which tension coating is applied and also specific magnetic domain control treatment is applied after secondary recrystallization. CONSTITUTION:A strop of 0.2-10mm thickness having a composition consisting of, by weight, <=0.12% C, 2.5-4.5% Si, 0.030-0.200% Mn, 0.01-0.06%, in total, of S and/or Se, 0.010-0.050% acid-soluble Al, 0.0030-0.0100% N, and the balance Fe with inevitable impurities is cast by a rapid solidification process. Subsequently, after cold rolling, decarburizing annealing, and high-temp. finish annealing are successively performed to form secondary recrystallization grains of 11-50mm average grain size, the resulting steel sheet is subjected to tension coating by 0.7kg/mm<2> coating weight per unit cross-sectional area of the steel sheet, to flattening annealing, and further to artificial magnetic domain control treatment in a direction practically perpendicular to the rolling direction. By this method, the grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼板の表面に磁区制御を施した、鉄損の著し
く優れた高磁束密度一方向性電磁鋼板の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a high magnetic flux density unidirectional electrical steel sheet with significantly superior iron loss, in which magnetic domain control is applied to the surface of the steel sheet.

(従来の技術) 高磁束密度一方向性電磁鋼板の表面に、圧延方向とほぼ
直角の方向に、人為的に磁区制御を施すことにより、鉄
損を低減させる方法が知られている。即ち、特開昭55
−18566号公報、特開昭58−73724号公報に
おける、間隔をもってレーザービームを照射する方法、
特開昭61−96036号公報における、間隔をもって
侵入体を形成させる方法、特開昭61−117218号
公報における、間隔をもって溝を形成させる方法、特開
昭61−117284号公報における、間隔をもって、
地鉄の一部を除去し、リン酸系張力付加被膜を施す方法
、特開昭62−151511号公報における、間隔をも
ってプラズマ炎を照射する方法等が開示されている。
(Prior Art) A method is known in which iron loss is reduced by artificially controlling magnetic domains on the surface of a high magnetic flux density unidirectional electrical steel sheet in a direction substantially perpendicular to the rolling direction. That is, JP-A-55
- A method of irradiating a laser beam at intervals, as disclosed in Japanese Patent Application Laid-open No. 18566 and Japanese Patent Application Laid-Open No. 58-73724,
A method of forming intruders at intervals in JP-A-61-96036, a method of forming grooves at intervals in JP-A-61-117218, and a method of forming grooves at intervals in JP-A-61-117284.
A method of removing a part of the steel base and applying a phosphoric acid-based tension-adding coating, and a method of irradiating plasma flame at intervals in Japanese Patent Application Laid-open No. 151511/1983 are disclosed.

(発明が解決しようとする課題) 前述の人為的磁区制御技術の適用により、高磁束密度一
方向性電磁鋼板の鉄損をかなり向上させることが可能に
なった。
(Problem to be Solved by the Invention) By applying the above-mentioned artificial magnetic domain control technology, it has become possible to considerably improve the iron loss of a high magnetic flux density unidirectional electrical steel sheet.

しかし、鉄損が一層優れ、且つ鉄損のばらつきの小さい
材料に対する要望は益々強く、更なる材料の高性能化が
必要である。
However, there is an increasing demand for materials with even better iron loss and less variation in iron loss, and there is a need for materials with even higher performance.

(課題を解決するための手段) 張力コーティングを有し、二次再結晶後に圧延方向とほ
ぼ直角の方向に磁区制御処理を施した高磁束密度一方向
性電磁鋼板について、二次再結晶粒の平均粒径を一定範
囲に制御することにより、著しく優れた鉄損が得られる
ことを知見し、本発明に至った。
(Means for solving the problem) Regarding a high magnetic flux density unidirectional electrical steel sheet that has a tension coating and is subjected to magnetic domain control treatment in a direction approximately perpendicular to the rolling direction after secondary recrystallization, the secondary recrystallized grains are It has been discovered that significantly superior core loss can be obtained by controlling the average particle size within a certain range, leading to the present invention.

以下に本発明に至った経緯について説明する。The circumstances leading to the present invention will be explained below.

〔実験■〕[Experiment■]

Si3.2%を含有し、インヒビターとしてAZNの外
に、MnS 、 MnSe 、 CuxS 、Sn 、
 Sbのうち1種又は2種以上を活用し、最終冷延の板
厚を0.17 mmとし、脱炭焼鈍を施し、焼鈍分離剤
を塗布し、鋼板をフラットな状態に保って高温仕上焼鈍
を施し、焼鈍分離剤を除去して種々の一方向性電磁鋼板
を得、これ等の鋼板に鋼板の単位断面積当りの張力が1
.0)cg/mm2となる張力コーティングを施し、鋼
板の表面に、圧延方向と直角の方向にエネルギー密度2
. OJ /ci、照射幅0.25mm、照射間隔5I
111!1でパルスレーザ−を照射し、磁束密度B8(
iff化力800 Armにおける磁束密度)と鉄損W
IS15゜を測定した0表面被膜を除去し、二次再結晶
粒の圧延面内における粒径を、圧延方向、圧延方向と4
5°方向及び圧延方向と90’方向について線分法で測
定し、平均粒径を求めた(本発明にかかわる平均粒径は
すべてこの方法による〉。平均粒径及び磁束密度B、と
鉄損WIS/S。の関係を第1図に示す。
Contains 3.2% Si, and in addition to AZN as inhibitors, MnS, MnSe, CuxS, Sn,
Utilizing one or more types of Sb, the final cold-rolled plate thickness is 0.17 mm, decarburization annealing is performed, an annealing separator is applied, and the steel plate is kept in a flat state for high-temperature finish annealing. The annealing separator is removed to obtain various unidirectional electrical steel sheets, and these steel sheets have a tension of 1 per unit cross-sectional area of the steel sheet.
.. 0) Apply a tension coating with cg/mm2, and apply an energy density of 2 to the surface of the steel plate in the direction perpendicular to the rolling direction.
.. OJ/ci, irradiation width 0.25mm, irradiation interval 5I
Irradiated with a pulsed laser at 111!1, magnetic flux density B8 (
iffing force 800 (magnetic flux density in Arm) and iron loss W
IS15° was measured.The surface coating was removed and the grain size of the secondary recrystallized grains in the rolling plane was measured in the rolling direction and in the rolling direction.
The average grain size was determined by measuring the 5° direction, the rolling direction, and the 90' direction using the line segment method (all average grain sizes related to the present invention are determined by this method).The average grain size, magnetic flux density B, and iron loss The relationship between WIS/S is shown in FIG.

第1図において横軸は平均粒径であり、縦軸は磁束密度
B8である。符号(◎○△×で示す)は鉄損W 151
50を示す。
In FIG. 1, the horizontal axis is the average particle diameter, and the vertical axis is the magnetic flux density B8. The sign (indicated by ◎○△×) is iron loss W 151
50 is shown.

第1図から明らかなように、平均粒径が11mm以上で
且つ、B、が1.887以上の場合、特に良好な鉄損が
得られることが判明した。
As is clear from FIG. 1, it has been found that particularly good iron loss can be obtained when the average grain size is 11 mm or more and B is 1.887 or more.

〔実験■〕[Experiment■]

焼鈍分離剤の塗布迄、実験Iと同様な方法で処理し、治
具を用い、鋼板を圧延方向に曲率半径400 mmに曲
げた状態で高温仕上焼鈍を施し、焼鈍分離剤を除去し、
鋼板の平坦化焼鈍を行い、その後、実験■と同様の方法
で、張力コーティングとレーザー照射を施し、磁束密度
B、と二次再結晶粒の平均粒径を測定した。平均粒径と
B、の関係を第2図に示す。
The process was carried out in the same manner as in Experiment I until the application of the annealing separator, and a jig was used to perform high-temperature finish annealing with the steel plate bent to a radius of curvature of 400 mm in the rolling direction, and the annealing separator was removed.
The steel plate was flattened and annealed, then subjected to tension coating and laser irradiation in the same manner as in Experiment ①, and the magnetic flux density B and the average grain size of secondary recrystallized grains were measured. The relationship between the average particle diameter and B is shown in FIG.

第2図において横軸は平均粒径であり、縦軸はB@であ
る。
In FIG. 2, the horizontal axis is the average particle diameter, and the vertical axis is B@.

第2図から明らかなように、鋼板を曲げた状態で高温仕
上焼鈍を行った場合、平均粒径が大きくなり過ぎるとB
8が劣化する傾向が認められ、平均粒径が50mmを越
えるとBllが著しく劣化することが判明した。平均粒
径が50mmを越える場合、B、が劣化し、このため鉄
損が劣化することが第2図より推定される。
As is clear from Figure 2, when the steel plate is subjected to high temperature finish annealing in a bent state, if the average grain size becomes too large, B
It was found that Bll deteriorated significantly when the average particle size exceeded 50 mm. When the average grain size exceeds 50 mm, it is estimated from FIG. 2 that B deteriorates and therefore the iron loss deteriorates.

なお、SI/、I仕上焼鈍は高温、長時間を要するため
、通常コイル状に巻いた状態で、端面を上下方間として
、焼鈍されている。この場合のコイル内周部の曲率半径
は大略400mm以下である。コイルの曲率半径を大き
くすれば、設備規模が大きくなり、製造コスト面で不利
になる。
Note that SI/, I finish annealing requires high temperatures and a long time, so it is usually annealed in a coiled state with the end faces between the top and bottom. In this case, the radius of curvature of the inner peripheral portion of the coil is approximately 400 mm or less. Increasing the radius of curvature of the coil increases the scale of the equipment, which is disadvantageous in terms of manufacturing costs.

実験■、実験■の結果から、コイル状に巻いた状態で焼
鈍する通常の方法で高温仕上焼鈍を施し、張力コーティ
ングを有し、二次再結晶後に圧延方向とほぼ直角の方向
に磁区制御処理を施した高磁束密度−万同性電Mi鋼板
について、二次再結晶粒の平均粒径を11〜50III
Imに制御することにより、著しく優れた鉄損が得られ
ることが明らかになった。
From the results of Experiments ■ and Experiment ■, high-temperature finishing annealing was performed using the usual method of annealing the coiled state, the tension coating was applied, and after secondary recrystallization, magnetic domain control treatment was performed in a direction approximately perpendicular to the rolling direction. The average grain size of secondary recrystallized grains is 11 to 50
It has become clear that significantly superior iron loss can be obtained by controlling the iron loss to Im.

〔実験■〕[Experiment■]

C: 0.065%、Si:3.0%、Mn:0.07
5%、S : 0.025%、酸可溶性y : 0.0
260%、N:0.0085%、残部二Feおよび不可
避的不純物からなる溶鋼の急冷凝固による1、 1〜5
.0mm厚の薄鋳片を、1120°Cで2分間焼鈍し、
300°C迄を30゛C/秒で冷却し、板厚0.285
mm迄冷間圧延し、75%Hz、25%N2の湿潤雰囲
気中で、850°Cで3分間、脱炭焼鈍を施し、マグネ
シアを主とする焼鈍分離剤を塗布し、a板をフラットに
保って、高温仕上焼鈍を行った。高温仕上焼鈍において
は、昇温中雰囲気を75%N2.25%N2とし、昇温
速度15°C/時間で1200℃迄昇温し、水素雰囲気
で、1200 ℃で20時間焼鈍した。製品の磁束密度
B8と二次再結晶粒の平均粒径を測定し、冷延圧下率と
B、及び平均粒径の関係を第3図に示す。
C: 0.065%, Si: 3.0%, Mn: 0.07
5%, S: 0.025%, acid soluble y: 0.0
1 to 5 by rapid solidification of molten steel consisting of 260%, N: 0.0085%, balance diFe and inevitable impurities.
.. A thin slab with a thickness of 0 mm was annealed at 1120°C for 2 minutes,
Cooled to 300°C at 30°C/sec, plate thickness 0.285
The plate was cold-rolled to a thickness of 1.5 mm, decarburized annealed at 850°C for 3 minutes in a humid atmosphere of 75% Hz and 25% N2, and an annealing separator mainly composed of magnesia was applied to flatten the A-plate. Then, high-temperature finish annealing was performed. In high-temperature finish annealing, the atmosphere during heating was 75%N2.25%N2, the temperature was raised to 1200°C at a heating rate of 15°C/hour, and annealing was performed at 1200°C for 20 hours in a hydrogen atmosphere. The magnetic flux density B8 of the product and the average grain size of the secondary recrystallized grains were measured, and the relationship between the cold rolling reduction ratio, B, and the average grain size is shown in FIG.

第3図において、横軸が冷延圧下率であり、縦軸が、B
II及び平均粒径である。
In Fig. 3, the horizontal axis is the cold rolling reduction ratio, and the vertical axis is the B
II and the average particle size.

第3図から明らかなように、冷延圧下率が83〜92%
の範囲で、平均粒径11〜50mm、磁束密度B8が1
.88 T以上の高磁束密度一方向性電磁鋼板が得られ
る。
As is clear from Figure 3, the cold rolling reduction ratio is 83 to 92%.
Within the range of , the average particle size is 11 to 50 mm, and the magnetic flux density B8 is 1.
.. A unidirectional electrical steel sheet with a high magnetic flux density of 88 T or more can be obtained.

次に材料成分その他の条件の限定理由について述べる。Next, the reasons for limiting the material components and other conditions will be described.

Cは0.12%以下とする。0.12%を超えると脱炭
焼鈍における脱炭が困難となる。Siは2゜5〜4.5
%とする。2.5%未満では良好な鉄損が得られず、4
.5%を超えると加工性が劣化する。Mnは0、030
〜0.200%とする。0.030%未満では加工性が
劣化し、0.200%を超えると良好な鉄損が得られな
い。S又はSeの1種又は2種の合計:0.01−0.
06%とする。0.01%未満又は0.06%を超える
と良好な鉄損が得られない。酸可溶性Mは0.010〜
0.050%とする。0.010%未満では、良好な磁
束密度が得られず、0.050%を超えると、二次再結
晶が不良となる。Nは0.0030〜0.0100%と
する。0.0030%未満では、二次再結晶が不良とな
り、0.0100%を超えると、ブリスターきずが発生
する。
C shall be 0.12% or less. If it exceeds 0.12%, decarburization during decarburization annealing becomes difficult. Si is 2°5~4.5
%. If it is less than 2.5%, good iron loss cannot be obtained;
.. If it exceeds 5%, workability deteriorates. Mn is 0,030
~0.200%. If it is less than 0.030%, workability deteriorates, and if it exceeds 0.200%, good iron loss cannot be obtained. Total of one or two types of S or Se: 0.01-0.
06%. If it is less than 0.01% or more than 0.06%, good iron loss cannot be obtained. Acid soluble M is 0.010~
It shall be 0.050%. If it is less than 0.010%, good magnetic flux density cannot be obtained, and if it exceeds 0.050%, secondary recrystallization becomes poor. N is 0.0030% to 0.0100%. If it is less than 0.0030%, secondary recrystallization will be poor, and if it exceeds 0.0100%, blister flaws will occur.

薄鋳片の厚みは0.2〜10 mmとする。0.2 m
m未満、あるいは10mm1を超えると良好な磁気特性
が得られない。
The thickness of the thin slab is 0.2 to 10 mm. 0.2 m
If it is less than 10 mm or more than 10 mm, good magnetic properties cannot be obtained.

最終冷延を行う迄に少くとも一度、1050〜1200
°Cの温度範囲で焼鈍し急冷処理を行わないと、良好な
製品磁気特性が得られない。
1050-1200 at least once before final cold rolling
Good magnetic properties of the product cannot be obtained unless annealing and rapid cooling are performed in the temperature range of °C.

鋼板の単位断面積当りの表面被膜(フォルステライトを
含む)による張力はo、7kg/mm2以上とする。0
.7 kg / m4未満では良好な鉄損が得られない
The tension due to the surface coating (including forsterite) per unit cross-sectional area of the steel plate is 7 kg/mm2 or more. 0
.. If it is less than 7 kg/m4, good iron loss cannot be obtained.

磁化力800Nmにおける磁束密度が1.88T以上で
良好な鉄損特性が得られる。1.88 T未満では良好
な鉄損が得られない。
Good iron loss characteristics can be obtained when the magnetic flux density at a magnetizing force of 800 Nm is 1.88 T or more. If it is less than 1.88 T, good iron loss cannot be obtained.

(作 用) 二次再結晶の平均粒径が11〜50mmで、鋼板の単位
断面積当りの張力が0.7kg/mm2以上となる表面
被膜を有し、磁化力800Nmにおける磁束密度1.8
8 T以上で、鋼板表面に圧延方向とほぼ直角の方向に
人為的に磁区制御を施した高磁束密度一方向性電磁鋼板
で、著しく優れた鉄損が得られる。
(Function) The average grain size of secondary recrystallization is 11 to 50 mm, the surface coating has a tension per unit cross-sectional area of the steel sheet of 0.7 kg/mm2 or more, and the magnetic flux density is 1.8 at a magnetizing force of 800 Nm.
8 T or more, a high magnetic flux density unidirectional electrical steel sheet in which magnetic domains are artificially controlled in a direction substantially perpendicular to the rolling direction on the surface of the steel sheet can provide significantly superior iron loss.

平均粒径11mm未満の場合鉄損が劣化する原因は、本
発明にかかわる磁区制御材の場合、細かい粒界が鉄損を
最小とする磁区形成パターンに対し有害となっているも
のと考えられる。鋼板を曲げた状態で高温仕上焼鈍する
場合(工業製品ベース)に平均粒径50++n++超で
、B、が低下するのは、高温焼鈍後の平坦化焼鈍による
圧延面からのゴス方位のずれ等が関与しているものと考
えられる。
The reason why the core loss deteriorates when the average grain size is less than 11 mm is considered to be that, in the case of the magnetic domain control material according to the present invention, fine grain boundaries are harmful to the magnetic domain formation pattern that minimizes the core loss. When a steel plate is subjected to high-temperature finish annealing in a bent state (industrial product basis), the reason why B decreases when the average grain size exceeds 50++n++ is due to deviation of the Goss orientation from the rolled surface due to flattening annealing after high-temperature annealing. It is thought that they are involved.

急冷凝固による薄鋳片を素材とし、AZNを主インヒビ
ターとして活用する一方向性′1ilt磁鋼板の製造に
おいて、最終冷延を行うまでに少くとも一回1050〜
1200 ℃の温度範囲で焼鈍し、この焼鈍の後、急冷
し、圧下率83〜92%で最終冷延を行うことにより、
磁束密度B、が1.88T以上で、二次再結晶粒の平均
粒径が11〜50fll111の高磁束密度一方向性を
磁鋼板が得られる。
In the production of unidirectional '1ilt magnetic steel sheets using rapidly solidified thin cast slabs and using AZN as the main inhibitor, it is rolled at least once to
By annealing in a temperature range of 1200 ° C., rapid cooling after this annealing, and final cold rolling at a reduction rate of 83 to 92%,
When the magnetic flux density B is 1.88 T or more, a magnetic steel sheet with high magnetic flux density unidirectionality in which the average grain size of secondary recrystallized grains is 11 to 50 flll111 can be obtained.

(実施例) 実施例1 C:0.080%、Si:3.2%、Mn:0.075
%、酸可溶性A7 : 0.0250%、N : 0.
0085%、およびS:0、025%又は0.015%
、Se : 0.020%、Sn:0.12%、Cu:
0.07%、sb:o、o2o%のうちから選ばれた1
種又は2種以上、残部Feおよび不可避的不純物からな
る溶鋼から0.9〜4.4 mm厚の薄鋳片を急冷凝固
法により製造した。
(Example) Example 1 C: 0.080%, Si: 3.2%, Mn: 0.075
%, acid soluble A7: 0.0250%, N: 0.
0085%, and S: 0,025% or 0.015%
, Se: 0.020%, Sn: 0.12%, Cu:
1 selected from 0.07%, sb:o, o2o%
Thin slabs with a thickness of 0.9 to 4.4 mm were produced by a rapid solidification method from molten steel consisting of a seed or two or more, the balance being Fe and unavoidable impurities.

この薄鋳片を1000〜1220 ℃の各種温度で10
0秒間焼鈍し、300°C迄を35°C/秒で冷却した
。その後、下記に示す製造プロセス■■により、最終冷
延前迄処理した。製造プロセスIの場合、焼鈍後直ちに
最終冷延を行った。
This thin slab was heated at various temperatures from 1000 to 1220℃ for 10
Annealed for 0 seconds and cooled to 300°C at 35°C/second. Thereafter, the following manufacturing process (■■) was performed until the final cold rolling. In the case of manufacturing process I, final cold rolling was performed immediately after annealing.

製造プロセス■の場合、焼鈍後、所定の厚み迄中間冷延
を行い、1000°Cで100秒間焼鈍し、300°C
迄25°C/秒で冷却し、その後、最終冷延を行った。
In the case of manufacturing process (■), after annealing, perform intermediate cold rolling to a specified thickness, annealing at 1000°C for 100 seconds, and then rolling at 300°C.
The sample was cooled at a rate of 25° C./sec until final cold rolling.

最終冷延後、75%N2.25%N2の湿潤雰囲気中で
、850°Cで3分間、脱炭焼鈍を施し、マグネシアを
主とする焼鈍分離剤を塗布し、曲率半径約400国でコ
イル状に巻き、高温仕上焼鈍を行った。高温仕上焼鈍に
おいては、昇温中雰囲気を75%Hz、25%N2とし
、昇温速度15”C/時間で、1200 ℃迄昇温し、
水素雰囲気で1200℃で20時間焼鈍した。その後、
焼鈍分離剤を除去し、次に示すA、B、C,Dの4種の
方法による磁区制御処理、張力コーティング、焼鈍等を
行った。
After the final cold rolling, decarburization annealing was performed at 850°C for 3 minutes in a humid atmosphere of 75% N2. It was rolled into a shape and subjected to high temperature finish annealing. In high-temperature finish annealing, the atmosphere during heating was 75% Hz and 25% N2, and the temperature was raised to 1200°C at a heating rate of 15"C/hour.
It was annealed at 1200° C. for 20 hours in a hydrogen atmosphere. after that,
The annealing separator was removed, and magnetic domain control treatment, tension coating, annealing, etc. were performed using the following four methods A, B, C, and D.

A法においては、鋼板の単位断面積当りの張力が1.0
 kg/mm2となるよう、張力コーティングを行い、
コーティングの焼付けを兼ねて、850°Cで30秒間
の平坦化焼鈍を施し、鋼板の表面に、圧延方向と直角の
方向に、エネルギー密度2.OJ/ctA、照射幅0.
25mm、照射間隔5Mでパルスレーザ−を照射した。
In method A, the tension per unit cross-sectional area of the steel plate is 1.0
Tension coating is applied so that it is kg/mm2,
In addition to baking the coating, flattening annealing was performed at 850°C for 30 seconds, and the surface of the steel plate was given an energy density of 2. OJ/ctA, irradiation width 0.
Pulse laser irradiation was performed at a distance of 25 mm and an irradiation interval of 5M.

B法においては、A法で処理した後、sb金属粉を塗布
し、800°Cで2時間焼鈍した。
In method B, after processing in method A, sb metal powder was applied and annealed at 800°C for 2 hours.

C法においては、鋼板の表面に、圧延方向に直角の方向
に、エネルギー密度3.OJ/ctll、照射幅0.2
鴎、照射間隔5鶴でパルスレーザ−を照射し、フォルス
テライト層を部分的に除去し、61%硝酸液中に20秒
間浸漬し、鋼板の単位断面積当りの張力が1.0kg/
mm2となるよう、張力コーティングを行い、コーティ
ングの焼付けを兼ねて、850°Cで30秒間の平坦化
焼鈍を行った。
In method C, an energy density of 3. OJ/ctll, irradiation width 0.2
The steel plate was irradiated with a pulsed laser at an irradiation interval of 5 to partially remove the forsterite layer, and immersed in a 61% nitric acid solution for 20 seconds, so that the tension per unit cross-sectional area of the steel plate was 1.0 kg/
Tension coating was performed so that the thickness was 2 mm2, and flattening annealing was performed at 850° C. for 30 seconds to also bake the coating.

D法においては、歯車ピッチ8M、歯車先端曲率半径1
100Ir、刃の傾きが圧延方向に対して75°である
歯車型ロールにより荷重180 kg / mjで歪導
入を行い、鋼板の単位断面積当りの張力が1.0kg/
mm2となるよう、張力コーティングを行い、コーティ
ングの焼付けを兼ねて、850°Cで30秒間の平坦化
焼鈍を行った。
In the D method, gear pitch is 8M, gear tip curvature radius is 1
Strain was introduced with a load of 180 kg/mj using a gear-shaped roll with a blade angle of 75° to the rolling direction, and the tension per unit cross-sectional area of the steel plate was 1.0 kg/mj.
Tension coating was performed so that the thickness was 2 mm2, and flattening annealing was performed at 850° C. for 30 seconds to also bake the coating.

A法、B法、C法又はD法により処理した後、磁束密度
B、及び鉄損を測定し、しかる後、表面被膜を除去し、
酸洗し、二次再結晶粒の圧延面内における平均粒径を測
定した。
After processing by method A, method B, method C, or method D, the magnetic flux density B and iron loss are measured, and then the surface coating is removed,
After pickling, the average grain size of the secondary recrystallized grains in the rolling plane was measured.

材料の成分、薄鋳片厚、製造プロセス(■又は■)、薄
鋳片焼鈍の均熱温度、中間冷延後の板厚。
Material composition, thin slab thickness, manufacturing process (■ or ■), soaking temperature for thin slab annealing, plate thickness after intermediate cold rolling.

最終冷延後の板厚、最終冷延の圧下率、二次再結晶粒の
平均粒径、磁区制御法(A、B、C又はD〉。
Sheet thickness after final cold rolling, rolling reduction ratio of final cold rolling, average grain size of secondary recrystallized grains, magnetic domain control method (A, B, C or D>).

磁束密度BS+Siを第1表に示す。The magnetic flux density BS+Si is shown in Table 1.

第1表に明らかなように、本発明例の場合に著しく鉄損
の優れた高磁束密度一方向性電磁鋼板が得られる。
As is clear from Table 1, in the case of the examples of the present invention, high magnetic flux density unidirectional electrical steel sheets with significantly excellent core loss can be obtained.

(発明の効果) 本発明により、鉄損の著しく低いトランスの鉄芯等の材
料の供給が可能となり、トランス等電気機器のエネルギ
ー損が大幅に節減できる。
(Effects of the Invention) According to the present invention, it is possible to supply materials such as iron cores of transformers with extremely low iron loss, and energy loss of electrical equipment such as transformers can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼板をフラットな状態で高温仕上焼鈍を施した
張力コーティングを有する一方向性電磁鋼板の表面にレ
ーザー照射により磁区制御を施した後の磁束密度B、及
び二次再結晶粒の平均粒径と鉄損WIS/S。の関係を
示す図である。 第2図は鋼板を曲げて高温仕上焼鈍を施した後、平坦化
焼鈍を行い、張力コーティングを施し、表面にレーザー
照射にまり磁区制御を施した一方向性電磁鋼板の磁束密
度B、を二次再結晶粒の平均粒径との関係で示した図で
ある。 第3図は最終冷延圧下率と、鋼板をフラットな状態で高
温仕上焼鈍を施した後の、磁束密度B。 及び二次再結晶粒の平均粒径の関係を示す図である。 第1図 、30   40    50 平均粒経(ynyn)
Figure 1 shows the average magnetic flux density B and secondary recrystallized grains after controlling the magnetic domain by laser irradiation on the surface of a unidirectional electrical steel sheet with a tension coating that has been annealed at high temperature in a flat state. Particle size and iron loss WIS/S. FIG. Figure 2 shows the magnetic flux density B of a unidirectional electrical steel sheet, which has been bent and subjected to high-temperature finish annealing, flattened annealed, tension coated, and magnetic domain controlled by laser irradiation on the surface. FIG. 3 is a diagram showing the relationship with the average grain size of secondary recrystallized grains. Figure 3 shows the final cold rolling reduction and the magnetic flux density B after high temperature finish annealing of the steel plate in a flat state. FIG. 2 is a diagram showing the relationship between the average grain size of secondary recrystallized grains and secondary recrystallized grains. Figure 1, 30 40 50 Average grain size (ynyn)

Claims (1)

【特許請求の範囲】[Claims] 重量で、C:0.12%以下、Si:2.5〜4.5%
、Mn:0.030〜0.200%、S又はSeの1種
又は2種の合計:0.01〜0.06%、酸可溶性N:
0.010〜0.050%、N:0.0030〜0.0
100%、残部:Feおよび不可避的不純物からなる溶
鋼を、急冷凝固法によって0.2〜10mmの薄鋳片(
薄帯)に鋳造する工程、最終冷間圧延を行うまでに少な
くとも1回1050〜1200℃の温度域で焼鈍し急冷
する焼鈍工程、83〜92%の圧下率の適用下に最終冷
間圧延を行う工程、最終冷延板に脱炭焼鈍を施し、焼鈍
分離剤を塗布し巻き取ってストリップコイルとする脱炭
焼鈍工程、高温仕上焼鈍工程からなるプロセスによって
、二次再結晶粒の鋼板圧延面内における平均粒径を11
〜50mmとし、次いで、焼鈍分離剤除去、鋼板の単位
断面積当り0.7kg/mm^2以上となる張力コーテ
ィングおよび平坦化焼鈍を施す工程を採り、さらに、前
記高温仕上焼鈍工程後或いは前記焼鈍分離剤除去、鋼板
の単位断面積当り0.7kg/mm^2以上となる張力
コーティングおよび平坦化焼鈍を施す工程の途中または
該工程の前もしくは後で鋼板表面に人為的磁区制御処理
を施す過程を付加することを特徴とする磁化力800A
/mにおける磁束密度が1.88T以上で鉄損の優れた
高磁束密度一方向性電磁鋼板の製造方法。
By weight, C: 0.12% or less, Si: 2.5-4.5%
, Mn: 0.030-0.200%, Total of one or two of S or Se: 0.01-0.06%, Acid-soluble N:
0.010-0.050%, N: 0.0030-0.0
Molten steel consisting of 100%, balance: Fe and unavoidable impurities is made into thin slabs of 0.2 to 10 mm (
An annealing step of annealing and quenching at a temperature range of 1050 to 1200°C at least once before final cold rolling, and final cold rolling with a rolling reduction of 83 to 92%. The rolled surface of the steel plate of secondary recrystallized grains is removed by a process consisting of a decarburization annealing process on the final cold-rolled sheet, a decarburization annealing process in which an annealing separator is applied and coiled to form a strip coil, and a high-temperature finishing annealing process. The average particle size within 11
~ 50 mm, then remove the annealing separator, apply tension coating to 0.7 kg/mm^2 or more per unit cross-sectional area of the steel plate, and flatten annealing, and further, after the high-temperature finish annealing step or after the annealing. A process in which artificial magnetic domain control treatment is applied to the surface of the steel plate during, before, or after the process of removing the separating agent, applying tension coating to 0.7 kg/mm^2 or more per unit cross-sectional area of the steel plate, and flattening annealing. Magnetizing force of 800A characterized by adding
A method for producing a high magnetic flux density unidirectional electrical steel sheet having a magnetic flux density of 1.88 T or more at /m and excellent iron loss.
JP20946489A 1989-08-11 1989-08-11 Production of grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss Pending JPH0372027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20946489A JPH0372027A (en) 1989-08-11 1989-08-11 Production of grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20946489A JPH0372027A (en) 1989-08-11 1989-08-11 Production of grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss

Publications (1)

Publication Number Publication Date
JPH0372027A true JPH0372027A (en) 1991-03-27

Family

ID=16573303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20946489A Pending JPH0372027A (en) 1989-08-11 1989-08-11 Production of grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss

Country Status (1)

Country Link
JP (1) JPH0372027A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585956B1 (en) * 1992-09-04 1998-01-07 Nippon Steel Corporation Thick grain-oriented electrical steel sheet exhibiting excellent magnetic properties
US6739384B2 (en) 2001-09-13 2004-05-25 Ak Properties, Inc. Method of continuously casting electrical steel strip with controlled spray cooling
JP2004526862A (en) * 2000-12-18 2004-09-02 チッセンクラップ アッチアイ スペチアリ テルニ ソシエタ ペル アチオニ Method of manufacturing directional electric steel strip
WO2011040723A3 (en) * 2009-10-01 2011-07-07 주식회사 포스코 Low-core-loss, high-magnetic-flux density, grain-oriented electrical steel sheet and production method therefor
JP2012140665A (en) * 2010-12-28 2012-07-26 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
JP2012177161A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method of producing grain-oriented electromagnetic steel sheet
WO2013094218A1 (en) * 2011-12-22 2013-06-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet, and method for producing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585956B1 (en) * 1992-09-04 1998-01-07 Nippon Steel Corporation Thick grain-oriented electrical steel sheet exhibiting excellent magnetic properties
JP2004526862A (en) * 2000-12-18 2004-09-02 チッセンクラップ アッチアイ スペチアリ テルニ ソシエタ ペル アチオニ Method of manufacturing directional electric steel strip
JP4697841B2 (en) * 2000-12-18 2011-06-08 チッセンクラップ アッチアイ スペチアリ テルニ ソシエタ ペル アチオニ Method for producing grain-oriented electrical steel sheet
US6739384B2 (en) 2001-09-13 2004-05-25 Ak Properties, Inc. Method of continuously casting electrical steel strip with controlled spray cooling
JP2013505365A (en) * 2009-10-01 2013-02-14 ポスコ Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
WO2011040723A3 (en) * 2009-10-01 2011-07-07 주식회사 포스코 Low-core-loss, high-magnetic-flux density, grain-oriented electrical steel sheet and production method therefor
CN102575314A (en) * 2009-10-01 2012-07-11 Posco公司 Low-core-loss, high-magnetic-flux density, grain-oriented electrical steel sheet and production method therefor
JP2012140665A (en) * 2010-12-28 2012-07-26 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
JP2012177161A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method of producing grain-oriented electromagnetic steel sheet
WO2013094218A1 (en) * 2011-12-22 2013-06-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet, and method for producing same
CN104011241A (en) * 2011-12-22 2014-08-27 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet, and method for producing same
JPWO2013094218A1 (en) * 2011-12-22 2015-04-27 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
US10020101B2 (en) 2011-12-22 2018-07-10 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
US3636579A (en) Process for heat-treating electromagnetic steel sheets having a high magnetic induction
JP5273944B2 (en) Manufacturing method of mirror-oriented electrical steel sheet
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0230740A (en) High magnetic flux density grain oriented electrical steel sheet having drastically excellent iron loss and its manufacture
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0832929B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH0567683B2 (en)
JP7569381B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH0372027A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JPH01208421A (en) Manufacture of unidirectional electrical sheet having high magnetic flux density and excellent iron loss
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH042723A (en) Production of double oriented silicon steel sheet having high magnetic flux density
JP3390109B2 (en) Low iron loss high magnetic flux density
JPH0372026A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and remarkably excellent in iron loss
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2000038618A (en) Production of grain oriented silicon steel sheet good in magnetic property