[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0371111B2 - - Google Patents

Info

Publication number
JPH0371111B2
JPH0371111B2 JP7937887A JP7937887A JPH0371111B2 JP H0371111 B2 JPH0371111 B2 JP H0371111B2 JP 7937887 A JP7937887 A JP 7937887A JP 7937887 A JP7937887 A JP 7937887A JP H0371111 B2 JPH0371111 B2 JP H0371111B2
Authority
JP
Japan
Prior art keywords
gif
fusion protein
pgif1
coli
dhfr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7937887A
Other languages
Japanese (ja)
Other versions
JPS63245680A (en
Inventor
Masahiro Iwakura
Tomokuni Kokubu
Kyotaka Furusawa
Shinichi Oohashi
Keishiro Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7937887A priority Critical patent/JPS63245680A/en
Publication of JPS63245680A publication Critical patent/JPS63245680A/en
Publication of JPH0371111B2 publication Critical patent/JPH0371111B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0028Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with NAD or NADP as acceptor (1.5.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/655Somatostatins

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Endocrinology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、成長ホルモン分泌抑制因子であるソ
マトスタチン(Ala−Gly−Gys−Lys−Asn−
Phe−Phe−Trp−Lys−Thr−Phe−Thy−Ser
−Cysの14個のアミノ酸配列よりなるペプチド、
以下、GIFと略す。)を生産可能とする新規組換
えプラスミドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to somatostatin (Ala-Gly-Gys-Lys-Asn-
Phe−Phe−Trp−Lys−Thr−Phe−Thy−Ser
- A peptide consisting of the 14 amino acid sequence of Cys,
Hereinafter, it will be abbreviated as GIF. ) is related to a new recombinant plasmid that enables the production of plasmids.

GIFは、視床下部ペプチドの一種であり、成長
ホルモンなど下垂体前葉ホルモン、及びインシユ
リン、グルカゴンなど消化管で産生される多くの
ペプチドホルモンの分泌を抑制する。このような
作用を有することから、GIFは、巨人症、糖尿病
等の治療薬としての利用が期待されている。本発
明の新規組換えプラスミドpGIF1は、第1図にお
いて示されるDNA配列を有する。この新規組換
えプラスミドpGIF1及びpGIF1を含有するE.coli
C600株は、微生物工業、発酵工業、医薬品工業
等の分野に好適である。
GIF is a type of hypothalamic peptide that suppresses the secretion of anterior pituitary hormones such as growth hormone, and many peptide hormones produced in the gastrointestinal tract such as insulin and glucagon. Because of this effect, GIF is expected to be used as a therapeutic agent for gigantism, diabetes, and the like. The novel recombinant plasmid pGIF1 of the present invention has the DNA sequence shown in FIG. This new recombinant plasmid pGIF1 and E.coli containing pGIF1
Strain C600 is suitable for fields such as microbial industry, fermentation industry, and pharmaceutical industry.

従来の技術 本発明の技術的背景としては、いわゆる遺伝子
操作技術がある。GIF遺伝子を組込んだプラスミ
ド及びそのE.coliでの発現に関しては、板倉らの
成果が公知である(K.Itakura et al.
Science′vol.198,pp.1056−1063(1977))。一般
に、分子量1万以下のポリペプチドは、E.coliな
どの宿主中で産生させてもプロテアーゼなどによ
つて分解されるため安定に存在しない。これは、
分子として小さいため安定なコンフオメーシヨン
をとれないためであると考えられている。従つ
て、遺伝子操作技術を利用してGIFなどの短いポ
リペプチドを生産しようとした場合、融合遺伝子
を作成し、融合タンパクとして発現させることが
必要である。彼らの方法は、GIFを暗号化する遺
伝子を化学合成し、これをβ−ガラクトシダーゼ
遺伝子と融合し、多コピープラスミドに組み込
み、組換えプラスミドをE.coliに導入し、融合タ
ンパクとして発現させたものである。融合タンパ
クは、β−ガラクトシダーゼとGIFとを、メチオ
ニン残基を介して結合している。このことから、
ブロムシアン処理によつて、融合タンパクから
GIFを特異的に切断分離することができる。
Prior Art The technical background of the present invention includes so-called genetic manipulation technology. Regarding the plasmid incorporating the GIF gene and its expression in E. coli, the results of Itakura et al. are known.
Science'vol.198, pp.1056-1063 (1977)). Generally, polypeptides with a molecular weight of 10,000 or less do not exist stably because they are degraded by proteases and the like even when produced in a host such as E. coli. this is,
It is thought that this is because the molecules are too small to form a stable conformation. Therefore, when attempting to produce a short polypeptide such as GIF using genetic engineering technology, it is necessary to create a fusion gene and express it as a fusion protein. Their method involved chemically synthesizing the gene encoding GIF, fusing it with the β-galactosidase gene, inserting it into a multicopy plasmid, introducing the recombinant plasmid into E. coli, and expressing it as a fusion protein. It is. The fusion protein combines β-galactosidase and GIF via a methionine residue. From this,
from the fusion protein by bromcyan treatment.
GIF can be specifically cleaved and separated.

問題点 しかしながら、上記の公知の方法の場合は、(1)
E.coliで発現した融合タンパクは不溶化している
こと、(2)β−ガラクトシダーゼはそれ自身活性測
定が容易であり、融合タンパクの分離精製の際、
酵素活性を指標に行うことが可能と考えらるれ
が、実際は、GIFと融合することによつてもはや
酵素活性を失つていること、などから、融合タン
パクの分離精製が問題となつている。
Problems However, in the case of the above known method, (1)
The fusion protein expressed in E. coli is insoluble, (2) β-galactosidase itself is easy to measure its activity, and when separating and purifying the fusion protein,
Although it is thought that it is possible to perform this using enzymatic activity as an indicator, in reality, separation and purification of the fusion protein has become a problem because it has already lost its enzymatic activity by fusion with GIF.

発明の目的 本発明の目的は、上記問題点、すなわち、(1)
GIFを組み込んだ融合タンパクが不溶化するこ
と、及び、(2)融合タンパクに容易に測定可能な酵
素活性がないこと、を解消し、GIF生産技術を改
良することにある。
Purpose of the invention The purpose of the present invention is to solve the above problems, namely (1)
The purpose of the present invention is to improve GIF production technology by solving the problems of insolubilization of a fusion protein incorporating GIF and (2) lack of easily measurable enzymatic activity in the fusion protein.

GIFは分子として小さいため安定なコンフオメ
ーシヨンをとれないため、E.coliなどの宿主中で
産生させてもプロテアーゼなどによつて分解され
るため安定に存在しない。従つて遺伝子操作技術
を利用してGIFを生産しようとした場合、融合遺
伝子を作成し、融合タンパクとして発現させるこ
とは避けることができない。よつて、GIF生産技
術の改良には、GIFと融合させるタンパクに関し
ての検討が重要であると考えられる。しかしなが
ら、これまで種々の研究が行われているが、融合
タンパクが可溶性で、かつ酵素活性を有するもの
はこれまで知られていなかつた。
GIF is a small molecule and cannot maintain a stable conformation, so even if it is produced in a host such as E. coli, it is degraded by proteases and does not exist stably. Therefore, when attempting to produce GIF using genetic engineering technology, it is unavoidable to create a fusion gene and express it as a fusion protein. Therefore, in order to improve GIF production technology, it is considered important to consider proteins to be fused with GIF. However, although various studies have been conducted to date, no fusion protein has been known to be soluble and have enzymatic activity.

本発明者らは、鋭意研究の結果、枯草菌のジヒ
ドロ葉酸還元酵素遺伝子を用いることにより、上
記問題点が解消できることを見いだし、その知見
に従つて、ジヒドロ葉酸還元酵素(以下、
DHFRと略す。)とGIFの融合タンパクを暗号化
する遺伝子を組み込んだ組換えプラスミドpGIF1
を作成し、本発明を完成させた。
As a result of intensive research, the present inventors discovered that the above-mentioned problems could be solved by using the dihydrofolate reductase gene of Bacillus subtilis.
Abbreviated as DHFR. ) and GIF fusion protein integrated recombinant plasmid pGIF1
and completed the present invention.

発明の構成 本発明者らは、B.subtilisのDHFRについて、
(1)168個のアミノ酸より成り立つていること、(2)
遺伝子中に存在するEcoRI部位の下流の配列によ
つて暗号化されるC−末端側の6アミノ酸より成
るアミノ酸配列を他のアミノ酸配列と置き換えて
もDHFRの生産性及び活性に問題がないこと、
(3)C−末端側アミノ産配列が変化したDHFRは、
不溶化しないこと、を明らかにしている。この結
果を利用し、GIFを暗号化する遺伝子を読み取り
枠をあわせてB.subtilisDHFR遺伝子のEcoRI部
位下流に組込むことにより、酵素活性を保有する
DHFR−GIF融合タンパクの合成が可能であり、
前述の問題点を解消できると考えられる。
Structure of the Invention The present inventors have discovered that DHFR of B. subtilis
(1) It is made up of 168 amino acids, (2)
Even if the amino acid sequence consisting of 6 amino acids on the C-terminal side encoded by the sequence downstream of the EcoRI site present in the gene is replaced with another amino acid sequence, there is no problem with the productivity and activity of DHFR;
(3) DHFR with a changed C-terminal amino acid sequence is
It is clear that it does not become insolubilized. Utilizing this result, the gene encoding GIF was inserted downstream of the EcoRI site of the B. subtilis DHFR gene with the same reading frame, thereby retaining the enzyme activity.
It is possible to synthesize DHFR-GIF fusion protein,
It is thought that the above-mentioned problems can be solved.

本発明の組換えプラスミドpGIF1は、(1)GIFを
暗号化するDNAの分子設計及び化学合成、及び
(2)化学合成DNAのB.subtilisのDHFR遺伝子の
EcoRI部位下流への組み込み、の結果得られたも
のであり、全く新規な化合物である。
The recombinant plasmid pGIF1 of the present invention is produced by (1) molecular design and chemical synthesis of DNA encoding GIF;
(2) Chemically synthesized DNA of B. subtilis DHFR gene
It was obtained as a result of integration downstream of the EcoRI site, and is a completely new compound.

GIFを暗号化するDNAとしては、以下に示す
配列のものをホスホアミダイト法により化学合成
し、それらを結合して用いているが、合成方法に
よつて本発明は制限されない。
The DNA encoding GIF was chemically synthesized using the phosphoramidite method using the sequence shown below, and was used by combining them, but the present invention is not limited by the synthesis method.

1 5′−AATTCTATGGCTGGTTGT−3′ 2 5′−
AAGAACTTCTTTTGGAAGACTT
TCACTTCGTGTTAAG−3′ 3 5′−
GATCCTTAACACCAAGTGAAAGT
CTTCCAAAA−3′ 4 5′−GAAGTTCTTACAACCAGCCATAG
−3′ 本発明のプラスミドpGIF1は、4789塩基対の大
きさを有し、宿主であるE.coliをトリメトプリム
およびアンピシリン耐性に形質転換することがで
き、第1図に示される塩基配列によつて確定され
る新規組換えプラスミドである。プラスミド
pGIF1は、制限酵素EcoRI,BamHI,Bgl,
BstE,Pst,Pvu,Salによつて、各々
1箇所切断され、Aat,Cla,Hind,Hpa
によつて各々2箇所切断される。
1 5′−AATTCTATGGCTGGTTGT−3′ 2 5′−
AAGAACTTCTTTTGGAAGACTT
TCACTTCGTGTTAAG-3' 3 5'-
GATCCTTAACACCAAGTGAAAGT
CTTCCAAA-3' 4 5'-GAAGTTTCTTACAACCAGCCATAG
-3′ The plasmid pGIF1 of the present invention has a size of 4789 base pairs, can transform host E. coli to trimethoprim and ampicillin resistance, and has the base sequence shown in FIG. This is a new recombinant plasmid to be confirmed. plasmid
pGIF1 contains restriction enzymes EcoRI, BamHI, Bgl,
BstE, Pst, Pvu, Sal cut at one place each, Aat, Cla, Hind, Hpa
Each section is cut at two places.

第1図は、pGIF1の全塩基配列を示す図であり
2本鎖DNAのうち片方の配列だけを示している。
第2図は、pGIF1中に存在するDHFR−GIF融合
タンパクを暗号化する部分の塩基配列及びタンパ
クのアミノ酸配列を示す図である。制限酵素
EcoRIの認識切断部位は、第1図においては、
676〜681塩基の所に、第2図においては、480〜
485塩基の所に存在する。制限酵素BamHIの認識
切断部位は、第1図において、731〜736塩基の所
に存在する。このEcoRIとBamHI切断によつて
得られる55ヌクレオチド長よりなる配列が、上記
合成DNAによつて導入された配列である。
FIG. 1 is a diagram showing the entire base sequence of pGIF1, showing only one sequence of the double-stranded DNA.
FIG. 2 is a diagram showing the base sequence of the portion encoding the DHFR-GIF fusion protein present in pGIF1 and the amino acid sequence of the protein. restriction enzyme
The EcoRI recognition cleavage site is shown in Figure 1.
At bases 676 to 681, in Figure 2, bases 480 to 681
It is present at base 485. The recognition cleavage site for the restriction enzyme BamHI is present at bases 731 to 736 in FIG. The 55 nucleotide long sequence obtained by this EcoRI and BamHI cleavage is the sequence introduced by the synthetic DNA.

DHFR−GIF融合タンパクは、第2図に示され
るように177個のアミノ酸より構成される。融合
タンパクのアミノ末端側から162番目までは、B.
subtilisのDHFRのアミノ酸配列と同一であり、
164〜177番目の配列がGIFの配列である。163番
目のアミノ酸はメチオニン(Met)であり、ブロ
ムシアンで融合タンパクを処理することにより
GIFを切り出すことが可能な構造である。融合タ
ンパクの分子量は20380である。pGIF1を含有す
るE.coliは、DHFR−GIF融合タンパクを細胞内
で作ることができる。すなわち、pGIF1を含有す
るE.coliを培養し、菌体を集め、これを超音波破
砕し、20000回転/分で一時間遠心分離して得ら
れる上清中に、DHFR−GIF融合タンパクのほと
んど全てが存在する。即ち、融合タンパクは不溶
性でなく可溶性の状態でE.coli細胞中に産生され
ている。また、この上清から、DHFR酵素活性
を目安に精製した融合タンパクは、エンザイムイ
ムノアツセイにより、GIFに対する抗体と反応す
る。即ち、DHFR−GIF融合タンパクは、DHFR
酵素活性を有し、これを指標に分離精製を行うこ
とができる。従つて、本発明のpGIF1を用いるこ
とにより、遺伝子操作技術を利用したGIF生産に
係わる上記問題点を解消することができるのであ
る。
The DHFR-GIF fusion protein is composed of 177 amino acids as shown in FIG. The 162nd position from the amino terminus of the fusion protein is B.
It is identical to the amino acid sequence of DHFR of S. subtilis,
The 164th to 177th sequences are GIF sequences. The 163rd amino acid is methionine (Met), and by treating the fusion protein with bromcyanide,
It has a structure that allows you to extract GIFs. The molecular weight of the fusion protein is 20380. E. coli containing pGIF1 can make DHFR-GIF fusion protein intracellularly. That is, most of the DHFR-GIF fusion protein was found in the supernatant obtained by culturing E. coli containing pGIF1, collecting the bacterial cells, disrupting them by ultrasonication, and centrifuging them at 20,000 rpm for 1 hour. Everything exists. That is, the fusion protein is produced in E. coli cells in a soluble rather than insoluble state. Furthermore, the fusion protein purified from this supernatant using DHFR enzyme activity as a guide reacts with an antibody against GIF by enzyme immunoassay. That is, the DHFR-GIF fusion protein
It has enzymatic activity and can be used for separation and purification using this as an indicator. Therefore, by using pGIF1 of the present invention, the above-mentioned problems associated with GIF production using genetic engineering techniques can be solved.

本発明に係わる新規組換えプラスミドpGIF1
は、pBSFOLEK1(特開昭63−87981号公報)及
び化学合成したDNAをもちいて、実施例1に記
す方法に従つて作成することができるが、プラス
ミドの作成方法によつて本発明が制限されるもの
ではない。
Novel recombinant plasmid pGIF1 according to the present invention
can be constructed according to the method described in Example 1 using pBSFOLEK1 (Japanese Unexamined Patent Publication No. 63-87981) and chemically synthesized DNA, but the present invention is limited by the method of constructing the plasmid. It's not something you can do.

本発明のプラスミドpGIF1は、E.coli C600株
に導入されて安定状態に保たれ、また、本発明の
pGIF1を含有するE.coli C600株は微工研に
FERM P−9301として寄託されている。
The plasmid pGIF1 of the present invention is introduced into E. coli C600 strain and maintained in a stable state, and the plasmid pGIF1 of the present invention is
E. coli C600 strain containing pGIF1 was sent to the Microtech Institute.
It has been deposited as FERM P-9301.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例 1 組換えプラスミドpGIF1の作成 0.001mgのプラスミドpBSFOEK1(特開昭63−
87981号公報)を制限酵素EcoRI及びBamHIを用
いて切断後、1%アガロースゲル電気泳動法によ
り分離した。約4.7キロ塩基対のDNA断片を切り
出し透析チユーブに入れ1mlの50mM Tris−
HCl,pH8.0を加えシールし、電気溶出法
(electroelution法、T.Maniatisら、Molecular
Cloning A Loboratory Manual,p.164,Cold
Spring Harbor Laboratory(1982),文献1)に
より、ゲルからDNAを回収し、エタノールで
DNAを沈殿後、減圧下に沈殿を乾燥した(DNA
−1と呼ぶ)。このDNA配列は、第1図の1〜
677番目と731〜4789番目の配列である。(第1図
は、環状構造の配列を便宜上直鎖上配列で表わし
ているため、4789番目の塩基と1番目の塩基は隣
り合つてつながつている。) GIFを暗号化するDNAとしては、以下に示す
配列のものをホスホアミダイト法により化学合成
して用いた。この配列の設計指針としては、(1)
pBSFOLEK1のEcoRI及びBamHI切断部位に導
入できること、その際、(2)EcoRI切断部位が
DHFRの160〜162番目を暗号化することから、
遺伝子の読み取り枠をあわせること、(3)DHFR
とGIFとをメチオニンを介して融合させ、ブロム
シアン処理によつてGIFを切り出せる構造にする
こと、を検討した。
Example 1 Creation of recombinant plasmid pGIF1 0.001 mg of plasmid pBSFOEK1 (JP-A-63-
87981) using restriction enzymes EcoRI and BamHI, and then separated by 1% agarose gel electrophoresis. Cut out a DNA fragment of approximately 4.7 kilobase pairs and place it in a dialysis tube with 1 ml of 50mM Tris-
Add HCl, pH 8.0, seal, and electroelution method (T. Maniatis et al., Molecular
Cloning A Loboratory Manual, p.164, Cold
DNA was collected from the gel using Spring Harbor Laboratory (1982), reference 1), and then extracted with ethanol.
After precipitating the DNA, the precipitate was dried under reduced pressure (DNA
-1). This DNA sequence is from 1 to 1 in Figure 1.
These are the 677th and 731st to 4789th sequences. (In Figure 1, the arrangement of the circular structure is shown as a linear arrangement for convenience, so the 4789th base and the 1st base are connected next to each other.) The DNA that encodes GIF is as follows: A compound having the sequence shown in was chemically synthesized by the phosphoramidite method and used. The design guidelines for this array are (1)
It can be introduced into the EcoRI and BamHI cleavage sites of pBSFOLEK1, and (2) the EcoRI cleavage site is
From encrypting 160th to 162nd of DHFR,
Aligning the open reading frames of genes, (3) DHFR
We considered fusing and GIF via methionine to create a structure that allows GIF to be excised by bromcyan treatment.

1 5′−AATTCTATGGCTGGTTGT−3′ 2 5′−
AAGAACTTCTTTTGGAAGACTT
TCACTTCGTGTTAAG−3′ 3 5′−
GATCCTTAACACGAAGTGAAAGT
CTTCCAAAA−3′ 4 5′−GAAGTTCTTACAACCAGCCATAG
−3′ の4本のDNAをホスホアミダイト法に従つて化
学合成し、精製後、ポリヌクレオチドキナーゼで
5′−末端をリン酸化した後、各々を約0.1ml(約
0.0001mgのDNAを含んでいる)ずつ取り、これ
を60℃でインキユベートすることによりアニール
させた(これをDNA−2と呼ぶ)。
1 5′−AATTCTATGGCTGGTTGT−3′ 2 5′−
AAGAACTTCTTTTGGAAGACTT
TCACTTCGTGTTAAG-3' 3 5'-
GATCCTTAACACGAAGTGAAAGT
CTTCCAAA-3' 4 5'-GAAGTTTCTTACAACCAGCCATAG
-3' four DNAs were chemically synthesized using the phosphoramidite method, purified, and then treated with polynucleotide kinase.
After phosphorylating the 5′-end, approximately 0.1 ml of each (approx.
(containing 0.0001 mg of DNA) was taken and annealed by incubating at 60°C (this is called DNA-2).

DNA−1を0.05mlのリガーゼ用反応液
(10mM Tris−HCl,pH7.4,5mM MgC12,
10mMジチオトレイトール,0.5mM ATP)に溶
解した後、0.05mlのDNA−2及び、0.5ユニツト
のT4−DNAリガーゼを加え、37℃、1時間、
DNAの連結反応を行なわせた。この反応を、形
質転換法(transformation method,上記文献
1,pp.250)に従つて、E.colC600株に取り込ま
せた。この処理をした菌体を、50mg/のアンピ
シリンナトリウム及び 10mg/のトリメトプリ
ムを含む栄養寒天培地(1中に、1gのグルコ
ース、1gのリン酸2カリウム、5gのポリペプ
トン、及び15gの寒天を含む寒天培地)上に塗布
し、37℃で24時間培養することにより、30個のコ
ロニーを得ることができた。これらのコロニーか
ら、適当に8個選び、1.5mlのYT+Ap培地(1
中に、5gのNaCl、8gのトリプトン、5g
のイーストエキス、及び50mgのアンピシリンナト
リウムを含む液体培地)で37℃で、一晩菌体を培
養した。培養液をそれぞれ、エツペンドルフ遠心
管にとり、12000回転/分で10分間遠心し、菌体
を集めた。上清を捨て、これに0.1mlの電気泳動
サンプル調製液(0.0625MのTris−HCl,pH6.8,
2%のラウリル硫酸ナトリウム(SDSと略す。)、
10%グリセリン、5%の2−メルカプトエタノー
ル、及び0.001%ブロムフエノールブルーを含
む。)を加え、菌体を懸濁し、これを沸騰水中に
5分間保つことにより菌体を溶かした。この処理
をしたサンプルをSDS−ポリアクリルアミド電気
泳動法(U.K.Lammli,Nature,vol.227,
pp.680−685(1970))に従つて分析した。標準サ
ンプルとしてpBSFOLEK1を含有するE.coliに同
様な処理をしたもの及び分子量マーカーサンプル
としてラクトアルブミン、トリプシンインヒビタ
ー、トリプシノーゲン、カーボニツクアンヒドラ
ーゼ、グリセロアルデヒド−3リン酸デヒドロゲ
ナーゼ、卵アルブミン、及び牛血清アルブミンを
含むサンプルを泳動した。その結果、8個のコロ
ニーのうち、6個のコロニーでは、
pBSFOLEK1を含有するE.coliが作るDHFR−ロ
イシンエンケフアリン融合タンパクが消失し、新
たに、それより約1000ダルトン大きいタンパクが
作られていることが明らかとなつた。また、新た
に得られたタンパクバンドの量は、
pBSFOLEK1を含有するE.coliが作るDHFR−ロ
イシンエンケフアリン融合タンパクのバンドの量
と大差がないことから、遺伝子発現の効率は変化
していないものと考えられた。この6個から適当
に1個選び、これをYT+Ap培地で培養し、
TanakaとWeisblumの方法(T.Tanaka,B.
Weisblum;J.Bacteriology,vol121,pp.354
(1975)にしたがつてプラスミドを調製した。得
られたプラスミドを制限酵素EcoRI,BamHI,
Bgl,BstE,Pst,Sal,Aat,Cla,
Hind,Hpaによつて切断を試みたところ、
各々1,1,1,1,1,1,2,2,2,2箇
所切断されることが明らかとなつた。得られたプ
ラスミドをpGIF1と称した。pGIF1の全塩基配列
を、ジデオキシ法に従つて決定した。その結果、
第1図に示す塩基配列が明らかとなり、プラスミ
ドpGIF1は4789塩基対より成り立つていることが
明らかとなつた。
DNA-1 was mixed with 0.05ml of ligase reaction solution (10mM Tris-HCl, pH7.4, 5mM MgC12,
After dissolving in 10mM dithiothreitol, 0.5mM ATP), 0.05ml of DNA-2 and 0.5 units of T4-DNA ligase were added, and the mixture was incubated at 37°C for 1 hour.
A DNA ligation reaction was performed. This reaction was incorporated into the E. colC600 strain according to the transformation method (cited in Reference 1, pp. 250). The treated bacterial cells were transferred to a nutrient agar medium containing 50 mg of sodium ampicillin and 10 mg of trimethoprim (agar containing 1 g of glucose, 1 g of dipotassium phosphate, 5 g of polypeptone, and 15 g of agar). 30 colonies were obtained by coating the cells on a medium (medium) and culturing at 37°C for 24 hours. Select 8 colonies from these colonies and add 1.5 ml of YT+Ap medium (1.
Inside, 5g NaCl, 8g tryptone, 5g
Bacterial cells were cultured overnight at 37°C in a liquid medium containing yeast extract and 50 mg of ampicillin sodium. Each culture solution was placed in an Etzpendorf centrifuge tube and centrifuged at 12,000 rpm for 10 minutes to collect bacterial cells. Discard the supernatant and add 0.1 ml of electrophoresis sample preparation solution (0.0625M Tris-HCl, pH 6.8,
2% sodium lauryl sulfate (abbreviated as SDS),
Contains 10% glycerin, 5% 2-mercaptoethanol, and 0.001% bromophenol blue. ) was added to suspend the bacterial cells, which were then kept in boiling water for 5 minutes to dissolve the bacterial cells. This treated sample was subjected to SDS-polyacrylamide electrophoresis (UKLammli, Nature, vol.227,
pp. 680-685 (1970)). E.coli containing pBSFOLEK1 was treated in the same way as a standard sample, and lactalbumin, trypsin inhibitor, trypsinogen, carbonic anhydrase, glyceraldehyde-3-phosphate dehydrogenase, ovalbumin, and bovine serum were used as molecular weight marker samples. Samples containing albumin were run. As a result, in 6 out of 8 colonies,
It was revealed that the DHFR-leucine enkephalin fusion protein produced by E. coli containing pBSFOLEK1 disappeared, and a new protein approximately 1000 Daltons larger was produced. In addition, the amount of newly obtained protein band is
Since there was no significant difference in the amount of the band of the DHFR-leucine enkephalin fusion protein produced by E. coli containing pBSFOLEK1, it was thought that the efficiency of gene expression had not changed. Choose one out of these six and culture it in YT+Ap medium.
Tanaka and Weisblum's method (T. Tanaka, B.
Weisblum; J. Bacteriology, vol121, pp.354
(1975). The obtained plasmid was treated with restriction enzymes EcoRI, BamHI,
Bgl、BstE、Pst、Sal、Aat、Cla、
Trimming with Hind and Hpa resulted in
It became clear that the cuts were made at 1, 1, 1, 1, 1, 1, 2, 2, 2, and 2 locations, respectively. The resulting plasmid was named pGIF1. The entire base sequence of pGIF1 was determined according to the dideoxy method. the result,
The base sequence shown in Figure 1 was revealed, and it was revealed that plasmid pGIF1 consists of 4789 base pairs.

実施例 2 組換えプラスミドpGIF1を含有するE.coliC600
株からのDHFR−GIF融合タンパクの精製。
Example 2 E.coliC600 containing recombinant plasmid pGIF1
Purification of DHFR-GIF fusion protein from strains.

プラスミドpGIF1を含有するE.coli C600株を
3のYA+Ap培地中で37℃で一晩培養後、菌
体を遠心分離により集めた。湿重量約14gの菌体
が得られた。菌体を28mlの1mMのジチオトレイ
トール(DTT)及び0.1mMのエチレンジアミン
4酢酸2ナトリウム(EDTA)を含む10mMリン
酸カリウム緩衝液pH7.0に懸濁し、超音波破砕に
より細胞を破砕した後、20000回転/分、1時間
の遠心分離により上清30mlを得た。えられた上清
のDHFRの酵素活性を測定したところ、144ユニ
ツト/ml(全活性4320ユニツト、全タンパク量
1200mg、比活性3.6ユニツト/mgタンパク)とい
う値であつた。上清を、DEAE−トヨパール
650Mカラム(250mm×1500mm、約75cm3)吸着さ
せ、0Mから50mMのKC1濃度勾配をかけ溶出し
た。約6mlずつフラクシヨンを集め、DHFRの
酵素活性を測定し、酵素活性を有する画分を集め
た。82mlの酵素液が得られた(回収活性1830ユニ
ツト(42%)、回収タンパク量20.0mg、比活性
9.06ユニツト/mgタンパク)。これを限外ろ過装
置を用いて約1mlにまで濃縮し、これをトヨパー
ルHW55カラムクロマトグラフイーにより分画し
た。約2.8mlずつフラクシヨンを集め、DHFRの
酵素活性を測定し、酵素活性のピーク画分を集め
た(約8.4ml、回収活性462ユニツト(10.7%)、
回収タンパク量1.9mg、比活性243ユニツト/mgタ
ンパク)。得られた酵素タンパクをSDS電気泳動
法により分析したところ、均一であり、ラクトア
ルブミン、トリプシンインヒビター、トリプシノ
ーゲン、カーボニツクアンヒドラーゼ、グリセリ
ろアルデヒド−3リン酸デヒドロゲナーゼ、卵ア
ルブミン、及び牛血清アルブミンを分子量マーカ
ーとして精製ジヒドロ葉酸還元酵素の分子量を推
定したところ21000であり、塩基配列から予想さ
れる分子量20380とほぼ一致した値であつた。
E. coli C600 strain containing plasmid pGIF1 was cultured in 3 YA+Ap medium at 37° C. overnight, and the bacterial cells were collected by centrifugation. Bacterial cells with a wet weight of approximately 14 g were obtained. The cells were suspended in 28 ml of 10 mM potassium phosphate buffer pH 7.0 containing 1 mM dithiothreitol (DTT) and 0.1 mM disodium ethylenediaminetetraacetate (EDTA), and the cells were disrupted by ultrasonication. 30 ml of supernatant was obtained by centrifugation at 20,000 rpm for 1 hour. When the DHFR enzyme activity of the obtained supernatant was measured, it was found to be 144 units/ml (total activity 4320 units, total protein amount
The specific activity was 3.6 units/mg protein). Transfer the supernatant to DEAE-Toyo Pearl.
It was adsorbed on a 650M column (250mm x 1500mm, approximately 75cm 3 ) and eluted using a KC1 concentration gradient from 0M to 50mM. Approximately 6 ml of fractions were collected, the enzyme activity of DHFR was measured, and the fractions having enzyme activity were collected. 82 ml of enzyme solution was obtained (recovered activity 1830 units (42%), amount of recovered protein 20.0 mg, specific activity
9.06 units/mg protein). This was concentrated to about 1 ml using an ultrafiltration device, and fractionated using Toyopearl HW55 column chromatography. Fractions of approximately 2.8 ml were collected, the enzyme activity of DHFR was measured, and the peak fraction of enzyme activity was collected (approximately 8.4 ml, collected activity 462 units (10.7%),
Amount of recovered protein: 1.9 mg, specific activity: 243 units/mg protein). When the obtained enzyme protein was analyzed by SDS electrophoresis, it was found to be homogeneous and contained lactalbumin, trypsin inhibitor, trypsinogen, carbonic anhydrase, glycerolaldehyde-3-phosphate dehydrogenase, egg albumin, and bovine serum albumin. The estimated molecular weight of purified dihydrofolate reductase as a molecular weight marker was 21,000, which was almost the same as the predicted molecular weight of 20,380 from the base sequence.

精製したDHFR活性を有するタンパクをエン
ザイムイムノアツセイにより測定したところ、
GIFによつて抗原−抗体反応が競争てきに阻害さ
れることが明らかとなつた。また、精製した
DHFR活性を有するタンパクのカルボキシ末端
側の配列をカルボキシペプツターゼ法を用いて検
討したところ、−Trp−Lys−(Thr,Phe,Thr)
−Ser−(カルボキシ末端)であることが判明し
た。DHFR−GIFのカルボキシ末端のアミノ酸は
Cys(システイン)であるが、このアミノ酸は本
発明者らが用いた方法では検出できないので、さ
らに、Ellmanの方法を用いて、5,5′−ジチオ
ビス2−ニトロ安息香酸を用いてDHFR−GIF融
合タンパクのチオール(SH)基の含量を測定し
たところ、4.2〜4.6残基/分子という値が得られ
た。第2図に示したDHFR−GIFのCys含量は、
5残基/分子であり、この値とほぼ一致した。ま
た、カルボキシ末端側を変化させていない
DHFR(1−168)のSH基の含量を同様に測定し
た結果は、2.4〜2.7残基/分子という値であつ
た。以上の結果は、組換えプラスミド pGIF1を
含有するE.coliC600株から得られたDHFR−GIF
融合タンパクが、確かにGIFを含んでいることを
示している。
When the purified protein with DHFR activity was measured by enzyme immunoassay,
It has become clear that the antigen-antibody reaction is competitively inhibited by GIF. In addition, purified
When the carboxy-terminal sequence of a protein with DHFR activity was examined using the carboxypeptase method, it was found that -Trp-Lys-(Thr, Phe, Thr)
-Ser- (carboxy terminal). The carboxy-terminal amino acid of DHFR-GIF is
Cys (cysteine), but since this amino acid cannot be detected by the method used by the present inventors, we further performed DHFR-GIF using 5,5'-dithiobis2-nitrobenzoic acid using Ellman's method. The content of thiol (SH) groups in the fusion protein was determined to be 4.2 to 4.6 residues/molecule. The Cys content of DHFR-GIF shown in Figure 2 is
5 residues/molecule, which was almost in agreement with this value. Also, the carboxy terminal side is not changed.
The SH group content of DHFR (1-168) was similarly measured and was found to be 2.4 to 2.7 residues/molecule. The above results are based on the DHFR-GIF obtained from E. coli C600 strain containing the recombinant plasmid pGIF1.
This shows that the fusion protein does indeed contain GIF.

発明の効果 上記のように、組換えプラスミドpGIF1は、
DHFR−GIF融合タンパクを暗号化しており、か
つpGIF1を含有するE.coliC600株は、DHFR−
GIF融合タンパクを可溶性の状態で生産する。さ
らに、産生したDHFR−GIF融合タンパクは
DHFR酵素活性を示し、精製を容易に行うこと
ができる。このような性質を有することから、本
発明の新規組換えプラスミドpGIF1及びそれを含
有するE.coliC600は、DHFR−GIF融合タンパク
の生産、及びそれを利用したGIFの生産に有益で
ある。
Effects of the invention As mentioned above, the recombinant plasmid pGIF1 is
The E. coli C600 strain that encodes the DHFR-GIF fusion protein and contains pGIF1 is DHFR-GIF.
Produce GIF fusion protein in soluble form. Furthermore, the produced DHFR-GIF fusion protein
It exhibits DHFR enzymatic activity and can be easily purified. Because of these properties, the novel recombinant plasmid pGIF1 of the present invention and E. coli C600 containing it are useful for the production of DHFR-GIF fusion protein and the production of GIF using it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、pGIF1の全塩基配列を示した図であ
り、2本鎖DNAのうち片方のDNA鎖配列だけ
を、5′末端の方向に記述している。図中符号は、
核酸塩基を表し、Aはアデニンを、Cはシトシン
を、Gはグアニンを、Tはチミンを示している。
図中番号はpGIF1に2箇所存在する制限酵素ClaI
切断認識部位のうち制限酵素Hind切断部位に
近い方のClaI切断認識部位の、ATCGATの最初
の“A”を1番として数えた番号を示している。 第2図は、pGIF1中存在するDHFR−GIF融合
タンパクを暗号化する部分の塩基配列及びタンパ
クのアミノ酸配列を示す図である。図中符号は、
核酸塩基及びアミノ酸を表わし、Aはアデニン、
Cはシトシン、Gはグアニンを、Tはチミンを、
Alaはアラニンを、Agrはアルギニンを、Asnは
アスパラギンを、Aspはアスパラギン酸を、Cys
はシステインを、Glnはグルタミンを、Gluはグ
ルタミン酸を、Glyはグリシンを、Hisはヒスチ
ジンを、Ileはイソロイシンを、Leuはロイシン
を、Lysはリジンを、Metはメチオニンを、Phe
はフエニルアラニンを、Proはプロリンを、Ser
はセリンを、Thrはトレオニンを、Trpはトリプ
トフアンを、Tyrはチロシンを、Valはバリンを
示している。図中番号は、一番目のアミノ酸であ
るメチオニンを暗号化するATGコドンの“A”
を1番として数えた番号を示している。
FIG. 1 is a diagram showing the entire base sequence of pGIF1, and only one DNA strand sequence of the double-stranded DNA is written in the direction of the 5' end. The symbols in the figure are
Nucleic acid bases are represented, with A representing adenine, C representing cytosine, G representing guanine, and T representing thymine.
The numbers in the figure indicate the restriction enzyme ClaI, which exists in two places in pGIF1.
The number of the ClaI cleavage recognition site that is closer to the restriction enzyme Hind cleavage site among the cleavage recognition sites is shown, counting from the first "A" of ATCGAT as number 1. FIG. 2 is a diagram showing the base sequence of the portion encoding the DHFR-GIF fusion protein present in pGIF1 and the amino acid sequence of the protein. The symbols in the figure are
Represents a nucleobase and an amino acid, A is adenine,
C is cytosine, G is guanine, T is thymine,
Ala is alanine, Agr is arginine, Asn is asparagine, Asp is aspartic acid, Cys
is cysteine, Gln is glutamine, Glu is glutamic acid, Gly is glycine, His is histidine, Ile is isoleucine, Leu is leucine, Lys is lysine, Met is methionine, Phe
is phenylalanine, Pro is proline, Ser
represents serine, Thr represents threonine, Trp represents tryptophan, Tyr represents tyrosine, and Val represents valine. The number in the diagram is “A” of the ATG codon that encodes the first amino acid, methionine.
It shows the number counted starting from 1.

Claims (1)

【特許請求の範囲】 1 E.coliにおいて安定に複製され、宿主である
E.coliにトリメトプリム耐性及びアンピリシン耐
性を与えることができ、トリメトプリム耐性を付
与する遺伝子がBacillus subtilisのジヒドロ葉酸
還元酵素遺伝子の3′末端側が一部改変されたこと
によりジヒドロ葉酸還元酵素−ソマトスタチン融
合タンパクを暗号化し、4789塩基対の大きさを有
し、下記に示されるDNA配列を有する新規組換
えプラスミドpGIF1。 【表】 【表】 【表】 【表】 【表】 2 E.coliにおいて安定に複製され、宿主である
E.coliにトリメトプリム耐性及びアンピリシン耐
性を与えることができ、トリメトプリム耐性を付
与する遺伝子がBacillus subtilisのジヒドロ葉酸
還元酵素遺伝子の3′末端側が一部改変されたこと
によりジヒドロ葉酸還元酵素−ソマトスタチン融
合タンパクを暗号化し、4789塩基対の大きさを有
し、下記に示されるDNA配列を有する新規組換
えプラスミドpGIF1を含有するE.coli C600株。 【表】 【表】 【表】 【表】 【表】
[Claims] 1. Stably replicates in E.coli and is a host
The gene that confers trimethoprim resistance can confer trimethoprim resistance and ampicillin resistance to E. coli, and the gene that confers trimethoprim resistance is a dihydrofolate reductase-somatostatin fusion protein created by partially modifying the 3' end of the dihydrofolate reductase gene of Bacillus subtilis. The novel recombinant plasmid pGIF1 encodes , has a size of 4789 base pairs and has the DNA sequence shown below. [Table] [Table] [Table] [Table] [Table] 2 Stably replicates in E.coli and is a host
The gene that confers trimethoprim resistance can confer trimethoprim resistance and ampicillin resistance to E. coli, and the gene that confers trimethoprim resistance is a dihydrofolate reductase-somatostatin fusion protein created by partially modifying the 3' end of the dihydrofolate reductase gene of Bacillus subtilis. E. coli strain C600 containing the novel recombinant plasmid pGIF1 encoding , having a size of 4789 base pairs and having the DNA sequence shown below. [Table] [Table] [Table] [Table] [Table]
JP7937887A 1987-03-31 1987-03-31 Novel recombined plasmid pgif1 Granted JPS63245680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7937887A JPS63245680A (en) 1987-03-31 1987-03-31 Novel recombined plasmid pgif1

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7937887A JPS63245680A (en) 1987-03-31 1987-03-31 Novel recombined plasmid pgif1

Publications (2)

Publication Number Publication Date
JPS63245680A JPS63245680A (en) 1988-10-12
JPH0371111B2 true JPH0371111B2 (en) 1991-11-12

Family

ID=13688209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7937887A Granted JPS63245680A (en) 1987-03-31 1987-03-31 Novel recombined plasmid pgif1

Country Status (1)

Country Link
JP (1) JPS63245680A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890799B2 (en) 2002-03-13 2014-11-18 Dolby Laboratories Licensing Corporation Display with red, green, and blue light sources
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight
US9143657B2 (en) 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890799B2 (en) 2002-03-13 2014-11-18 Dolby Laboratories Licensing Corporation Display with red, green, and blue light sources
US9143657B2 (en) 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight

Also Published As

Publication number Publication date
JPS63245680A (en) 1988-10-12

Similar Documents

Publication Publication Date Title
KR930008093B1 (en) New polypeptide and its composition
EP0372352B1 (en) Aequorin fused with a protein having a specific-binding activity, its preparation, its purification and detection method by its use
JPH0371112B2 (en)
JPH0371111B2 (en)
JPH0349559B2 (en)
JPH0364111B2 (en)
JPH0371110B2 (en)
JPH0364110B2 (en)
JPH0354560B2 (en)
JPH0355111B2 (en)
JPH0355112B2 (en)
JPH0364517B2 (en)
JP2829368B2 (en) Dihydrofolate reductase-antiallergic pentapeptide fusion protein
JPH0370480B2 (en)
JPH042236B2 (en)
JPH0354555B2 (en)
JP3012908B2 (en) Fusion protein of dihydrofolate reductase-antiallergic pentapeptide multimer (I)
JPH04117284A (en) Dihydrofolate reductase-antiallergic pentapeptide fused protein
JPH02142476A (en) Novel recombinant plasmid pgrfm44-6
JPH0355109B2 (en)
JPH0354556B2 (en)
JPH0355110B2 (en)
JPH0414958B2 (en)
JPH0371113B2 (en)
JPH0364114B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term