JPH0371987A - Laser beam machining method - Google Patents
Laser beam machining methodInfo
- Publication number
- JPH0371987A JPH0371987A JP1205233A JP20523389A JPH0371987A JP H0371987 A JPH0371987 A JP H0371987A JP 1205233 A JP1205233 A JP 1205233A JP 20523389 A JP20523389 A JP 20523389A JP H0371987 A JPH0371987 A JP H0371987A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- laser beam
- amount
- reflectance
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 6
- 238000003754 machining Methods 0.000 title abstract 7
- 238000012545 processing Methods 0.000 claims description 11
- 238000003672 processing method Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 abstract description 10
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 238000009966 trimming Methods 0.000 description 19
- 238000010521 absorption reaction Methods 0.000 description 9
- 229910052743 krypton Inorganic materials 0.000 description 9
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 9
- 230000001681 protective effect Effects 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Landscapes
- Laser Beam Processing (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、例えば半導体装置における抵抗体のレーザー
・トリミングや配線導体のレーザー溶断などに用いられ
るレーザー光を利用した加工方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a processing method using laser light, which is used, for example, in laser trimming of resistors in semiconductor devices, laser cutting of wiring conductors, and the like.
[従来の技術]
従来のモノシリツクICのレーザー・トリミングでは、
第5図に示すように、シリコン基板上において下地膜と
保護膜との間に介設された抵抗体の所定箇所にパルスレ
ーザ−光を照射してそれを溶断することにより、抵抗値
を調整している。[Conventional technology] In conventional laser trimming of monolithic ICs,
As shown in Figure 5, the resistance value is adjusted by irradiating pulsed laser light to a predetermined location of the resistor interposed between the base film and the protective film on the silicon substrate and blowing it out. are doing.
この装置の運転に際して、レーザー出力は予め設定され
た一定値に固定されたままであった。During operation of the device, the laser power remained fixed at a preset constant value.
[発明が解決しようとする課題〕
しかしながら、上記レーザー・トリミング装置において
、抵抗体白身に吸収されてその溶断にかかわるレーザー
光1(すなわち抵抗体吸収熱量〉は、抵抗体や抵抗体上
下の下地膜及び保護膜の厚さの変化により一定レーザー
出力下でも大きく変動する。すなわち、抵抗体に照射さ
れたレーザー光は、第5図に示すように、各境界面30
−83で反射する。そして、下地膜及び保護膜はレーザ
−光を吸収しない材料で形成されているので、レーザー
光の一部は抵抗体及びシリコン基板で吸収され、残りは
外部へ反射される。[Problems to be Solved by the Invention] However, in the above laser trimming device, the laser beam 1 (i.e., the amount of heat absorbed by the resistor) that is absorbed by the white body of the resistor and is involved in fusing it, is absorbed by the resistor and the base film above and below the resistor. Even under a constant laser output, the laser light varies greatly due to changes in the thickness of the protective film and the thickness of the protective film.In other words, the laser light irradiated to the resistor is transmitted to each boundary surface 30 as shown in FIG.
Reflects at -83. Since the base film and the protective film are made of a material that does not absorb laser light, part of the laser light is absorbed by the resistor and the silicon substrate, and the rest is reflected to the outside.
更に説明すると、各境界面5o−83の面反射率は各反
射光成分及び照射レーザー光の干渉により決定され、こ
の干渉は6膜及び抵抗体の厚さにより変化する。To explain further, the surface reflectance of each boundary surface 5o-83 is determined by the interference of each reflected light component and the irradiated laser beam, and this interference changes depending on the thickness of the six films and the resistor.
結局、6膜及び抵抗体の膜厚のばらつきにより反射率、
抵抗体の吸収率及びシリコンウェハの吸収率が変化する
。抵抗体に吸収されるレーザー光量が不足する場合には
抵抗体のトリミングが不可能となり、過剰な場合には下
地膜及び保護膜にクラックや変形などの悪彰響が生じ、
これらが、レーザ・トリミングにおける信頼性及び歩留
りを低下する大きな原因となっていた。In the end, due to variations in the film thickness of the 6 films and the resistor, the reflectance
The absorption coefficient of the resistor and the absorption coefficient of the silicon wafer change. If the amount of laser light absorbed by the resistor is insufficient, it will be impossible to trim the resistor, and if it is excessive, bad effects such as cracks and deformation will occur in the base film and protective film.
These have been a major cause of lowering reliability and yield in laser trimming.
同様の問題が、例えば、配線導体のレーザー溶断におい
ても生じる。A similar problem occurs, for example, in laser cutting of wiring conductors.
本発明は、上記問題に鑑みなされたものであり、加工対
象の加工部位におけるレーザー光吸収量を、その反射率
の変動にかかわらず一定とし得るレーザー加工方法を提
供することを、その解決すべき課題としている。The present invention has been made in view of the above problem, and an object of the present invention is to provide a laser processing method that can keep the amount of laser light absorbed in the processing area of the processing target constant regardless of fluctuations in the reflectance. This is an issue.
[課題を解決するための手段]
本発明のレーザー加工方法は、加工対象物の加工部位に
レーザー光を照射してその形状又は特性を変更するレー
ザー加工方法において、前記加工部位に小出力の観測レ
ーザ光を照射してその反射光量から前記加工部位又はそ
の近傍の反射率を求め、求めた反射率に基づいて前記加
工部位に吸収されるレーザー光量が一定の所望値となる
ように、前記加工部位に照射する最適レーザー光量1直
を算出し、算出された最適レーザ光量値に調整されたレ
ーザー光を前記加工部位に照射することを特徴としてい
る。[Means for Solving the Problems] The laser processing method of the present invention is a laser processing method in which a processing part of a workpiece is irradiated with a laser beam to change its shape or characteristics, and a small output is observed at the processing part. The process is performed so that the reflectance of the processed area or its vicinity is determined by irradiating a laser beam and the amount of reflected light, and based on the calculated reflectance, the amount of laser light absorbed by the processed area becomes a constant desired value. The method is characterized in that the optimum amount of laser light for one shift to be irradiated to the site is calculated, and the laser beam adjusted to the calculated optimum amount of laser light is irradiated to the processed site.
[実施例]
本発明のレーザー加工方法を適用したレーザー・トリミ
ング装置の一実施例を第1図に示す。[Example] FIG. 1 shows an example of a laser trimming apparatus to which the laser processing method of the present invention is applied.
このレーザー・トリミング装置は、パルスレーザー光を
照射して溶断対象の所定の溶断部分を溶断するレーザー
光照射部1と、上記溶断部分の反射光量を測定する反射
光計測部2と、測定された反射光量から最適なレーザー
出力を算出してレーザー光照射部1の出力を制御する制
御部3とから成る。This laser trimming device includes a laser beam irradiation unit 1 that irradiates a pulsed laser beam to cut a predetermined fusing portion of a target to be fused, a reflected light measurement unit 2 that measures the amount of reflected light from the fusing portion, and a The control section 3 calculates the optimum laser output from the amount of reflected light and controls the output of the laser beam irradiation section 1.
レーザー光照射部1は、パルスレーザ−11と、溶断対
象となるウェハを載置する載置部12と、パルスレーザ
−11から出力されるパルス光を入射光軸と直角なX、
Y方向へ走査してウェハに導く導光系13とを備えてい
る。パルスレーザ−11は、超音波Qスイッチをもちク
リプトンアークランプにより励起されるNd:YAGレ
ーザーからなり、そのレーザー照射出力はクリプトンア
ークランプへの供給電流を制御して調節される。導光系
13はフォーカシング用の対物レンズ系(図示せず〉と
、反射ミラー系18と、ウェハからの反射レーザー光を
反射光計測部2に分岐するプリズム19とを有している
。The laser beam irradiation section 1 includes a pulsed laser 11, a mounting section 12 on which a wafer to be fused is placed, and a pulsed beam outputted from the pulsed laser 11 by an X perpendicular to the incident optical axis.
It includes a light guide system 13 that scans in the Y direction and guides the light to the wafer. The pulse laser 11 consists of an Nd:YAG laser having an ultrasonic Q switch and excited by a krypton arc lamp, and its laser irradiation output is adjusted by controlling the current supplied to the krypton arc lamp. The light guiding system 13 includes a focusing objective lens system (not shown), a reflecting mirror system 18, and a prism 19 that branches the reflected laser light from the wafer to the reflected light measuring section 2.
反射光計測部2は反射レーザー光を電圧信号に変換する
光電変換装置で構成されている。The reflected light measuring section 2 is composed of a photoelectric conversion device that converts reflected laser light into a voltage signal.
制御部3はマイコン装置からなり、このマイコン装置は
、図示省略するが、反射光計測部2からの出力電圧をA
/D変換するA/Dコンバータをその入力インターフェ
イスに内蔵し、更に、算出した出力電流値をD/A変換
するD/Aコンバタと、D/Aコンバータから出力され
るアナログ出力電流を増幅してクリプトンアークランプ
に供給するドライバをその出力インターフェイスに内蔵
している。The control unit 3 consists of a microcomputer device, and although not shown, the microcomputer device controls the output voltage from the reflected light measurement unit 2 by A.
It has a built-in A/D converter that performs /D conversion in its input interface, a D/A converter that converts the calculated output current value into D/A, and a D/A converter that amplifies the analog output current output from the D/A converter. The output interface has a built-in driver that supplies the krypton arc lamp.
このレーザー・トリミング装置の動作を以下に説明する
。The operation of this laser trimming device will be explained below.
まず、第1図に示すようにウェハを載置部12上にセッ
トし、ウェハのトリミング位置を光軸に一致させ、次に
焦点深度を合せた後、第2図のフローチャートに示す発
光制御ルーチンを実行する。First, as shown in FIG. 1, a wafer is set on the mounting section 12, the trimming position of the wafer is aligned with the optical axis, and then the depth of focus is adjusted, and then the light emission control routine shown in the flowchart of FIG. 2 is performed. Execute.
なお、ウェハは第5図に示すように、シリコン基板と、
このシリコン上に順番に設けられた下地膜、CrS i
からなる抵抗体、保護膜からなる。なお入射光軸は各境
界面5o−33に対して直角に設定されている。In addition, as shown in FIG. 5, the wafer has a silicon substrate and
Base films, CrS i
It consists of a resistor and a protective film. Note that the incident optical axis is set perpendicular to each boundary surface 5o-33.
この発光制御動作ルーチンでは、まずパルスレ−グー1
1から、溶断出力の5%程度の一定光量に調整された観
測光をウェハのトリミング位置に照射しく510)、反
射光計測部2の出力信号電圧を所定比率で検線して求め
た反射光量からウェハの溶断部分の反射率Rを計算する
(312)。In this light emission control operation routine, first
1, the observation light adjusted to a constant light intensity of about 5% of the fusing output is irradiated to the trimming position of the wafer (510), and the reflected light amount is determined by checking the output signal voltage of the reflected light measuring section 2 at a predetermined ratio. The reflectance R of the fused portion of the wafer is calculated from (312).
反射率Rは、反射光量を観測光の照射光量でυ1ったち
のである。The reflectance R is the amount of reflected light equal to the amount of observation light irradiated by υ1.
次に、反射率尺に基づいて抵抗体溶断時のレーザー照射
出力(以下、溶断出力という)Pを計算する(S14)
。この計算は以下の式に基づいて行われる。Next, the laser irradiation output (hereinafter referred to as fusing output) P when fusing the resistor is calculated based on the reflectance scale (S14).
. This calculation is performed based on the following formula.
P=E/ (Ar)−E/((1−RXCI)xC2>
ここで、Eは抵抗体の最適吸収熱量/パルスであり、抵
抗体の膜厚、比熱、融点などにに合わせて予め決定され
ている。Arは抵抗体の吸収率であり、吸収率A「はA
r−(1−RXC1) XC2の式で決定される。P=E/ (Ar)-E/((1-RXCI)xC2> Here, E is the optimal amount of heat absorbed by the resistor/pulse, and is determined in advance according to the resistor's film thickness, specific heat, melting point, etc. Ar is the absorption rate of the resistor, and the absorption rate A is
It is determined by the formula r-(1-RXC1)XC2.
なお、反射率Rに一定比率C1を掛けるのは、入射光軸
とは異なる方向への反射光の存在を考慮して反射率Rを
高く補正したものであり、ウェハの吸収率(1−RXC
l)に一定比率C2を掛けるのは、吸収が抵抗体及びシ
リコン基板の双方で行われるために、抵抗体自身の吸収
率A「を低く粋定するためである。Note that multiplying the reflectance R by a constant ratio C1 is a correction of the reflectance R to a higher value in consideration of the presence of reflected light in a direction different from the incident optical axis.
The reason why 1) is multiplied by a constant ratio C2 is to set the absorption rate A' of the resistor itself to be low, since absorption occurs in both the resistor and the silicon substrate.
なお、抵抗体及びシリコン基板の吸収率は、実際には各
膜厚のばらつきによって変動するが、ここでは簡単化の
ために両者は比例関係にあるものと仮定する。また、抵
抗体の膜厚が増加すると、その溶断に要する熱エネルギ
が増加するが、簡単化のためにそれも無視する。その他
、抵抗体の溶融時の吸収率は固体の場合と異なるが、こ
れらのフックターを考慮する場合には、実験で補正係数
を求めて上記式を補正すればよい。Note that although the absorption rates of the resistor and the silicon substrate actually vary depending on variations in the respective film thicknesses, it is assumed here that they are in a proportional relationship for the sake of simplicity. Furthermore, as the film thickness of the resistor increases, the thermal energy required to blow it out also increases, but this will also be ignored for the sake of simplicity. In addition, the absorption rate when a resistor is melted is different from that when it is a solid, but if these Hookters are to be taken into account, the above equation can be corrected by finding a correction coefficient through experiments.
測定した反射率Rと、それから計算したレーザー照射出
力Pとの関係を第3図に示す。FIG. 3 shows the relationship between the measured reflectance R and the laser irradiation output P calculated from it.
次に、パルスレーザ−11が上記で計算されたレーザー
照射出力Pでレーザー光を照射するように、予め記憶し
たテーブルを参照してレーザー光照射部11のクリプト
ンアークランプに供給する電流値を計算しく516)、
計算された電流値でパルスレーザ−11を駆動して一定
間隔でレーザパルスを出力しつつ導光系13により照射
位置を移動して抵抗体を完全に溶断する(318)。Next, calculate the current value to be supplied to the krypton arc lamp of the laser beam irradiation unit 11 with reference to a pre-stored table so that the pulse laser 11 irradiates the laser beam with the laser irradiation output P calculated above. 516),
The pulse laser 11 is driven with the calculated current value to output laser pulses at regular intervals, and the irradiation position is moved by the light guide system 13 to completely blow out the resistor (318).
上記説明した本実施例のレーザー・トリミング装置によ
れば、レーザー・トリミングにおいて、各ウェハ毎の反
fM率の変動にかかわらず、各抵抗体に常に最適量の熱
エネルギを加えることができ、抵抗体の受熱量の不足に
よる溶断不良、及び、抵抗体の受熱量の過剰による保護
膜及び下地膜の劣化や変形を防ぐことができる。According to the laser trimming apparatus of the present embodiment described above, in laser trimming, it is possible to always apply an optimum amount of thermal energy to each resistor regardless of variations in the anti-fM ratio for each wafer, and the resistor It is possible to prevent defective fusing due to an insufficient amount of heat received by the resistor, and deterioration or deformation of the protective film and base film due to an excessive amount of heat received by the resistor.
(実施例2)
本発明のレーザー加工方法を用いたレーザー・トリミン
グ装置の他の実施例を第4図に示す。(Example 2) Another example of a laser trimming apparatus using the laser processing method of the present invention is shown in FIG.
このレーザー・トリミング装置は、レーザー光照射部1
と、反射光計測部2と、制御部3、照射光計測部4とか
らなり、実施例1のレーザー・トリミング装置に照射光
計測部4を付加し、かつ、レーザー光照射部1にプリズ
ム14を付加したものである。This laser trimming device consists of a laser beam irradiation section 1
, a reflected light measurement section 2, a control section 3, and an irradiation light measurement section 4.The irradiation light measurement section 4 is added to the laser trimming device of the first embodiment, and the prism 14 is added to the laser light irradiation section 1. is added.
この照射光計測部4は反射光計測部2と同じ構造をもっ
ており、プリズム14から分岐された照射レーザー光を
光電変換して制御部3に入力している。The irradiated light measurement section 4 has the same structure as the reflected light measurement section 2, and photoelectrically converts the irradiated laser light branched from the prism 14 and inputs it to the control section 3.
この実施例では、照射光計測部4から出力される出力信
号電圧を所定比率で換緯して求めた照射光量と、実施例
1と同様に反射光計測部2で計測された反射光量とによ
り反射率Rを算出している。In this example, the amount of irradiated light obtained by converting the output signal voltage output from the irradiated light measuring section 4 at a predetermined ratio and the amount of reflected light measured by the reflected light measuring section 2 as in the first embodiment are used. The reflectance R is calculated.
他の制御動作は実施例1の場合と同じである。Other control operations are the same as in the first embodiment.
このようにすれば、パルスレーザ−11の出力変動に伴
う抵抗体の受熱量のばらつきを抑制することができる。In this way, variations in the amount of heat received by the resistor due to variations in the output of the pulsed laser 11 can be suppressed.
すなわち、パルスレーザ−11の出力はクリプトンアー
クランプへの供給電流を一定としても電源電圧変動、温
度変化、経時的特性変化、塵などの影響で変動する。That is, even if the current supplied to the krypton arc lamp is constant, the output of the pulsed laser 11 fluctuates due to fluctuations in power supply voltage, temperature changes, changes in characteristics over time, dust, and the like.
実施例1のレーザー・トリミング装置では、パルスレー
ザ−11の出力低下は反射率の低下すなわち抵抗体の吸
収率の増加と誤認され、この場合、制御部3はレーザー
出力を低減する。その結果、レーザー照射出力はこれら
の相乗作用に大きく影響されて低下し、この結果抵抗体
の受熱量は大幅に減少する。In the laser trimming device of the first embodiment, a decrease in the output of the pulsed laser 11 is mistakenly recognized as a decrease in reflectance, that is, an increase in the absorption rate of the resistor, and in this case, the control unit 3 reduces the laser output. As a result, the laser irradiation output is significantly influenced by these synergistic effects and is reduced, and as a result, the amount of heat received by the resistor is significantly reduced.
本実施例によれば、パルスレーザ−11から実際に照射
された観測光の照射光量と反射光量とから反射率Rを算
出しているので、反射率Rの測定がより正確になる。According to this embodiment, the reflectance R is calculated from the amount of observation light actually emitted from the pulsed laser 11 and the amount of reflected light, so the measurement of the reflectance R becomes more accurate.
また、クリプトンアークランプへの供給電流と、観測光
の照射光量との関係がわかるので、例えば、観測光の照
射光量が減少した場合にその減少率に応じて、溶断時に
クリプトンアークランプに供給する電流量を増加すれば
、溶断出力の減少を補償し、逆に、観測光の照射光量が
増加した場合にその増加率に応じて、溶断時にクリプト
ンアークランプに供給する電流量を低減して溶断出力の
増加を補償することもできる。In addition, since you can see the relationship between the current supplied to the krypton arc lamp and the amount of light irradiated by the observation light, for example, if the amount of light irradiated by the observation light decreases, the current will be supplied to the krypton arc lamp at the time of fusing according to the rate of decrease. Increasing the amount of current will compensate for the decrease in fusing output, and conversely, if the amount of light irradiated by the observation light increases, the amount of current supplied to the krypton arc lamp at the time of fusing will be reduced according to the rate of increase. It is also possible to compensate for increases in power.
更に、上記各実施例では、観測光と加工光とを同一レー
ザーから出力しているので、両者の光軸を一致させかつ
構成を簡単とすることができる。Furthermore, in each of the embodiments described above, since the observation light and the processing light are outputted from the same laser, the optical axes of both can be made to coincide and the configuration can be simplified.
上記各実施例において、溶断出力の制御にはクリプトン
アークランプへの電流供給量を制御する他、各種の制御
方法がある。各種アッテネータを用いること、半導体レ
ーザーを用いてその印加電圧を制御することはその一例
である。In each of the above embodiments, there are various control methods for controlling the fusing output in addition to controlling the amount of current supplied to the krypton arc lamp. Examples include using various attenuators and controlling the applied voltage using a semiconductor laser.
上記説明した抵抗体のレーザー・トリミングは、本発明
の用途の一例であり、その他、半導体装置では、不良修
理などに用いられる配線導体の溶断、レーザーアニール
における加熱熱量の制御などに応用できる。その場合、
パルスレーザ−11の代りに連続発振レーザーを用いる
ことも可能である。The above-described laser trimming of a resistor is an example of the application of the present invention. In addition, in semiconductor devices, the present invention can be applied to fusing wiring conductors used for repairing defects, controlling the amount of heating heat in laser annealing, etc. In that case,
It is also possible to use a continuous wave laser instead of the pulsed laser 11.
更に、本発明は、半導体装置以外の各種の被加熱物を、
その反射率のばらつきにかかわらず常に一定に加熱する
場合に利用することができる。例えば、被加熱物表面に
汚損や模様又は色調変化又は凹凸があるために、一定の
レーザー光を照射しても個々の被加熱物毎に又は各照射
部位毎に、加熱量が変動する場合でも、本発明のレーザ
ー加工方法を適用すれば、各被加熱物又は各照射部位を
一定の熱エネルギで加熱することができる。Furthermore, the present invention can heat various objects other than semiconductor devices,
It can be used for constant heating regardless of variations in reflectance. For example, even if the surface of the heated object has stains, patterns, color changes, or irregularities, even if a constant laser beam is irradiated, the amount of heating may vary for each heated object or for each irradiated area. By applying the laser processing method of the present invention, each object to be heated or each irradiation site can be heated with a constant thermal energy.
[発明の効果]
以上説明したように、本発明のレーザー加工方法は、加
工部位にその部位の形状又は特性変化が実質的に生じな
い程度の小出力の観測レーザ光を照射してその反射光量
から反射率を求め、求めた反射率から最適レーザ光量を
算出しているので、加工部位の反射率のばらつきによる
加工部位の受熱エネルギの変動を防止して、常に最適な
加熱量でガロエを行うことができる。[Effects of the Invention] As explained above, the laser processing method of the present invention irradiates a processed part with observation laser light of a low output that does not substantially cause a change in the shape or characteristics of the part, and reduces the amount of reflected light. Since the reflectance is calculated from the calculated reflectance and the optimum laser light amount is calculated from the calculated reflectance, it prevents fluctuations in the received heat energy of the processing area due to variations in the reflectance of the processing area, and always performs galoeing with the optimum heating amount. be able to.
第1図は本発明のレーザー加工方法を用いたレーザー・
トリミング装置を示すブロック図、第2図はその制御動
作を示すフローチャート、第3図は試料として用いたウ
ェハの反射率Rと、それから算出された溶断出力Pとの
関係を示す線図、第4図は本発明のレーザー加工方法を
用いた第2実施例のレーザー・トリミング装置を示すブ
ロック図である。第5図はレーザー・トリミングに用い
られるウェハの一例を示す一部断面図である。
1・・・レーザー光照射部
2・・・反射光計測部
3・・・制御部Figure 1 shows the laser processing using the laser processing method of the present invention.
FIG. 2 is a block diagram showing the trimming device; FIG. 2 is a flowchart showing its control operation; FIG. 3 is a diagram showing the relationship between the reflectance R of the wafer used as a sample and the fusing power P calculated from it; The figure is a block diagram showing a second embodiment of a laser trimming apparatus using the laser processing method of the present invention. FIG. 5 is a partial cross-sectional view showing an example of a wafer used for laser trimming. 1...Laser light irradiation section 2...Reflected light measurement section 3...Control section
Claims (1)
形状又は特性を変更するレーザー加工方法において、 前記加工部位に小出力の観測レーザー光を照射してその
反射光量から前記加工部位又はその近傍の反射率を求め
、 求めた反射率に基づいて前記加工部位に吸収されるレー
ザー光量が一定の所望値となるように、前記加工部位に
照射する最適レーザ光量値を算出し、 算出された最適レーザー光量値に調整されたレーザ光を
前記加工部位に照射することを特徴とするレーザー溶断
方法。(1) In a laser processing method in which a laser beam is irradiated onto a processing part of a workpiece to change its shape or characteristics, the processing part is irradiated with a low-output observation laser beam, and the amount of reflected light is determined based on the amount of reflected light. Determine the reflectance in the vicinity thereof, and calculate the optimum amount of laser light to be irradiated to the processed area so that the amount of laser light absorbed by the processed area becomes a constant desired value based on the calculated reflectance. A laser fusing method characterized in that the processing area is irradiated with a laser beam adjusted to an optimum laser beam intensity value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1205233A JPH0371987A (en) | 1989-08-08 | 1989-08-08 | Laser beam machining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1205233A JPH0371987A (en) | 1989-08-08 | 1989-08-08 | Laser beam machining method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0371987A true JPH0371987A (en) | 1991-03-27 |
Family
ID=16503611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1205233A Pending JPH0371987A (en) | 1989-08-08 | 1989-08-08 | Laser beam machining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0371987A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7199026B2 (en) | 2003-10-01 | 2007-04-03 | Denso Corporation | Semiconductor device, cutting equipment for cutting semiconductor device, and method for cutting the same |
WO2016208686A1 (en) * | 2015-06-24 | 2016-12-29 | 株式会社豊田自動織機 | Cutting apparatus |
-
1989
- 1989-08-08 JP JP1205233A patent/JPH0371987A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7199026B2 (en) | 2003-10-01 | 2007-04-03 | Denso Corporation | Semiconductor device, cutting equipment for cutting semiconductor device, and method for cutting the same |
DE102004047649B4 (en) * | 2003-10-01 | 2014-10-16 | Denso Corporation | Semiconductor device, cutting device for cutting the semiconductor device and method for cutting the same |
WO2016208686A1 (en) * | 2015-06-24 | 2016-12-29 | 株式会社豊田自動織機 | Cutting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5968382A (en) | Laser cleavage cutting method and system | |
US6441337B1 (en) | Laser machining method, laser machining device and control method of laser machining | |
US11097375B2 (en) | Laser processing apparatus and laser processing method | |
JP2753284B2 (en) | Workpiece processing equipment | |
JP2016097412A (en) | Laser welding method | |
JPH06252485A (en) | Laser processing machine | |
US20120037603A1 (en) | Method and apparatus for irradiating a semiconductor material surface by laser energy | |
JPH08103880A (en) | Laser cutting device | |
JP2001096386A (en) | Method of and equipment for positioning focal point of laser beam | |
US6998572B2 (en) | Light energy processing device and method | |
JPH04272122A (en) | Laser-beam machine | |
WO2019176753A1 (en) | Laser power control device, laser processing device, and laser power control method | |
US20010037580A1 (en) | Position measuring system including partial scale elements | |
JP3154176B2 (en) | Focus position control device for laser welding machine | |
JPH0758448A (en) | Device and method for laser bonding | |
JPH0639574A (en) | Laser device and particularly robot with focusing head having sensor means for process quality monitoring in automatic production device | |
JPH0371987A (en) | Laser beam machining method | |
JP2016170104A (en) | Laser beam intensity distribution measurement device, and laser beam intensity distribution measurement method | |
JP7308439B2 (en) | LASER PROCESSING DEVICE AND OPTICAL ADJUSTMENT METHOD | |
JPH0839273A (en) | Laser beam machining method | |
US20230364718A1 (en) | Laser processing machine and method of correcting spot diameter of laser processing machine | |
JP2021167001A (en) | Laser beam position confirmation method, work-piece processing method, and laser processing device | |
JPH1085973A (en) | Controller for laser beam welding | |
JP2006281250A (en) | Laser beam machine, and output control method therefor | |
JPH11147188A (en) | Laser beam machining device |