JPH0369166A - Manufacture of mos semiconductor element - Google Patents
Manufacture of mos semiconductor elementInfo
- Publication number
- JPH0369166A JPH0369166A JP20509689A JP20509689A JPH0369166A JP H0369166 A JPH0369166 A JP H0369166A JP 20509689 A JP20509689 A JP 20509689A JP 20509689 A JP20509689 A JP 20509689A JP H0369166 A JPH0369166 A JP H0369166A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- gate electrode
- oxide film
- concentration
- polycrystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000012535 impurity Substances 0.000 claims abstract description 26
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 24
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 22
- 239000011574 phosphorus Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 238000009826 distribution Methods 0.000 claims abstract description 9
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 6
- 230000001590 oxidative effect Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 12
- 230000003647 oxidation Effects 0.000 claims description 11
- 238000007254 oxidation reaction Methods 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 abstract description 7
- 238000009279 wet oxidation reaction Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 23
- 230000005684 electric field Effects 0.000 description 15
- 229920005591 polysilicon Polymers 0.000 description 14
- 239000000969 carrier Substances 0.000 description 5
- NEPLKJAINOWIJL-DHNNRRLOSA-N dnc014884 Polymers C1C2=CC3=CC=CC=C3N2[C@@]2(C)[C@@H]1[C@@]1(C)CCC(=O)C(C)(C)[C@@H]1CC2 NEPLKJAINOWIJL-DHNNRRLOSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- OZJHCMYAXLCFKU-UHFFFAOYSA-N Polyavolensinone Natural products CC1(C)C2CCC3n4c(CC3(C)C2(C)CCC1=O)cc5ccccc45 OZJHCMYAXLCFKU-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、MOS型半導体素子の製造方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a MOS type semiconductor device.
高集積化の要請によるデバイスの微細化につれて、例え
ばMOSFETのようなMO3型半導体素子においてそ
のゲート酸化膜の膜厚は極薄化の傾向にある。そのため
、ゲート酸化膜に印加される電界強度は増大し、それに
伴うゲート酸化膜の絶縁破壊はMO3型半導体素子で避
けられない問題となっている。特に、ゲート電極の端部
(第6図においてA点)においては、該ゲート電極の形
状が急峻であるため、電界集中が生じ易く、この部分で
のゲート酸化膜の絶縁破壊は非常に起こり易いものとな
っている。なお、第6図は従来のnチャネルMO3FE
Tの概略断面図であり、lOは単結晶のシリコン基板に
形成したp−領域、11はn型高濃度ソース・ドレイン
領域、12はゲート酸化膜、13はpolysiからな
るゲート電極(以下polysiゲートとする)、14
は眉間絶縁膜、15は高濃度ソース・ドレイン領域11
およびpolysiゲート13と電気的に接続されたA
ffi配線である。As devices become smaller due to demands for higher integration, the thickness of gate oxide films in MO3 type semiconductor elements such as MOSFETs tends to become extremely thin. Therefore, the electric field strength applied to the gate oxide film increases, and the resulting dielectric breakdown of the gate oxide film becomes an unavoidable problem in MO3 type semiconductor devices. In particular, at the end of the gate electrode (point A in FIG. 6), since the shape of the gate electrode is steep, electric field concentration tends to occur, and dielectric breakdown of the gate oxide film at this part is very likely to occur. It has become a thing. Note that FIG. 6 shows a conventional n-channel MO3FE.
1 is a schematic cross-sectional view of T, where lO is a p-region formed on a single-crystal silicon substrate, 11 is an n-type high concentration source/drain region, 12 is a gate oxide film, and 13 is a gate electrode made of polysilicon (hereinafter referred to as polysilicon gate). ), 14
15 is a high concentration source/drain region 11.
and A electrically connected to polysi gate 13
This is ffi wiring.
本発明は、上記点に鑑み、例えば第5図のnチャネルM
O3FETに示すように、ゲート電極(polysiゲ
ート)13の端部(A部)を逆テーバ状にして、このA
部におけるゲート酸化膜12の膜厚を厚くするようにす
れば、ゲート電極13と高濃度ソース・ドレイン領域1
1との間の電界は緩和され、それによりゲート端部Aで
の電界集中を緩和してゲート耐圧を向上させ得ることに
着目し、上記構造を有するMO3型半導体素子を確実に
作製することができるMO3型半導体素子の製造方法を
提供することを目的とする。In view of the above points, the present invention provides, for example, an n-channel M as shown in FIG.
As shown in O3FET, the end (A part) of the gate electrode (polysi gate) 13 is made into an inverted tapered shape, and this A
By increasing the thickness of the gate oxide film 12 in the region, the gate electrode 13 and the high concentration source/drain region 1 can be thickened.
Focusing on the fact that the electric field between 1 and 1 is relaxed, thereby relaxing the electric field concentration at the gate end A and improving the gate breakdown voltage, it is possible to reliably produce an MO3 type semiconductor device having the above structure. An object of the present invention is to provide a method for manufacturing an MO3 type semiconductor device that can be manufactured using the following methods.
本発明は上記目的を達成するために、polySiの熱
酸化における酸化速度のpolysi中の不純物濃度依
存性を利用し、ゲート側壁におけるゲートの厚さ方向で
の側壁酸化膜の膜厚を積極的に変化させることにより、
ゲート端部下部における逆テーバを確実に形成しようと
するものである。In order to achieve the above object, the present invention utilizes the dependence of the oxidation rate on the impurity concentration in polySi in thermal oxidation of polySi, and actively increases the thickness of the sidewall oxide film in the gate thickness direction on the gate sidewall. By changing
This is intended to reliably form an inverted taper at the lower part of the gate end.
第2図のpolysiの熱酸化における酸化膜厚と不純
物濃度の関係を示す特性図に見るように、例えば不純物
濃度I X 10 ” (cm−3)とlXl0”(c
l’)では約8倍の酸化速度比がある。As shown in the characteristic diagram of the relationship between oxide film thickness and impurity concentration in thermal oxidation of polysi in Figure 2, for example, the impurity concentration IX10'' (cm-3) and lXl0'' (c
l') has an oxidation rate ratio of about 8 times.
すなわち、請求項1記載の発明において、導電性不純物
の含有濃度がその上部より下部において高濃度となる所
定の分布を有する多結晶あるいはアモルファスのシリコ
ンよりなるゲート電極を、酸化膜を介して半導体基板上
に形成するゲート形成工程と、
前記ゲート電極を酸化して、前記ゲート電極の側壁に前
記導電性不純物の含有濃度の分布に対応した膜厚の側壁
酸化膜を形成するゲート酸化工程と
を含んでMO3型半導体素子を製造するという技術的手
段を採用する。That is, in the invention according to claim 1, a gate electrode made of polycrystalline or amorphous silicon having a predetermined distribution in which the concentration of conductive impurities is higher in the lower part than in the upper part is attached to the semiconductor substrate through an oxide film. and a gate oxidation step of oxidizing the gate electrode to form a sidewall oxide film having a thickness corresponding to the concentration distribution of the conductive impurity on the sidewalls of the gate electrode. The technical means of manufacturing MO3 type semiconductor devices will be adopted.
上述のようにpolysiの酸化速度はpolySi中
に含有する不純物濃度に依存するため、ゲート形成工程
において、polysiゲートをその下部において導電
性不純物の濃度を高く上部に行くにしたがってこの不純
物濃度を低くするようにして形成しておけば、ゲート酸
化工程において第1図に示すようにゲート下部はど側壁
酸化膜(Sin、膜)は厚く形成され、その分poIy
Siゲートは下端部Aにおいて削られることになる。す
なわち、本発明の製造方法によれば、ゲート端部下部に
おける逆テーバを確実に形成することができ、ゲート端
部での電界集中を緩和してゲート耐圧を向上することが
できるMO3型半導体素子を提供することができるとい
う優れた効果がある。As mentioned above, the oxidation rate of polySi depends on the concentration of impurities contained in polySi, so in the gate formation process, the concentration of conductive impurities is high in the lower part of the polySi gate, and the impurity concentration is lowered toward the top. If formed in this way, the sidewall oxide film (Sin film) will be formed thickly under the gate in the gate oxidation process as shown in FIG.
The Si gate will be shaved off at the lower end A. That is, according to the manufacturing method of the present invention, it is possible to reliably form an inverted taper at the lower part of the gate end, and to reduce the electric field concentration at the gate end, thereby improving the gate breakdown voltage. It has the excellent effect of being able to provide
以下、本発明を図に示す実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on embodiments shown in the drawings.
第3図(a)〜(f)は本発明一実施例を適用したnチ
ャネルMO3FETの製造工程順の断面図である。FIGS. 3(a) to 3(f) are cross-sectional views showing the manufacturing steps of an n-channel MO3FET to which an embodiment of the present invention is applied.
第3図(a)参照
まず、p−型単結晶シリコン基板10表面に酸化膜12
を被着してゲート酸化膜とし、このゲート酸化膜12上
に第1のpolysi層として高濃度にリンを含有した
polysiN13a’を減圧CVD法にて堆積する。Refer to FIG. 3(a). First, an oxide film 12 is formed on the surface of a p-type single crystal silicon substrate 10.
is deposited to form a gate oxide film, and polysiN 13a' containing a high concentration of phosphorus is deposited as a first polysilicon layer on this gate oxide film 12 by low pressure CVD.
polysiliiにリンを含有せしめる手段として、
ノンドープのP01ySi層を堆積させた後にリンを拡
散させる方法、あるいはpolysi層堆積と同時にリ
ンを含有させる方法がある。なお、後者は例えばPH。As a means of making polysilii contain phosphorus,
There is a method in which phosphorus is diffused after depositing a non-doped P01ySi layer, or a method in which phosphorus is contained at the same time as the polysi layer is deposited. Note that the latter is, for example, PH.
等のドーパントガス雰囲気下でpolysi層を堆積さ
せるものである。The polysilicon layer is deposited under a dopant gas atmosphere such as
第3図(b)参照
次に、この高濃度にリンを含有した第1のpO1ysi
層13a′上り第2のpolysi層として低濃度にリ
ンを含有あるいはノンドープのpolysi層13b’
層間3b’圧CVD法にて堆積する。Refer to FIG. 3(b) Next, the first pO1ysi containing this high concentration of phosphorus is
A polysi layer 13b' containing low concentration of phosphorus or non-doped as a second polysi layer on top of the layer 13a'
It is deposited by interlayer 3b' pressure CVD method.
なお、第3図(a)に示す工程がドーパントガス雰囲気
下でpolysi層を堆積するものである場合は、ある
程度高濃度にリンを含有したpolySiNが堆積した
らドーパントガスの供給を遮断して続けてpolysi
層を堆積するようにすれば、上部と下部においてリンの
含有度が異なるpolysi層が堆積させられる。If the process shown in FIG. 3(a) involves depositing a polySi layer in a dopant gas atmosphere, once polySiN containing a fairly high concentration of phosphorus is deposited, the dopant gas supply is cut off and the process is continued. polysi
When the layers are deposited, polysilicon layers with different phosphorus contents are deposited at the top and bottom.
第3図(C)参照
続いて、第2のpolysi層13b′上ニレジスト2
0を塗布し、これをバターニングした後、第2のpol
ysi層13b及び第1のpolySi層13a′を連
続して異方性エツチングする。Referring to FIG. 3(C), a resist 2 is then applied on the second polysilicon layer 13b'.
After applying 0 and buttering this, the second pol
The ysi layer 13b and the first polySi layer 13a' are successively anisotropically etched.
そして、図に示すように高濃度リン含有JW13aおよ
び低濃度リン含有(あるいはノンドープ)層13bから
なるpolysiゲート13が形威される。Then, as shown in the figure, a polysi gate 13 consisting of a high concentration phosphorus-containing JW 13a and a low concentration phosphorus-containing (or non-doped) layer 13b is formed.
第3図(d)参照 次に、レジスト20を剥離した後に、このp。See Figure 3(d) Next, after peeling off the resist 20, this p.
IySiゲート13をマスクとしてn型不純物をドープ
して、polysiゲート13と自己整合的にn型高濃
度ソース・ドレイン領域11を形成する。Using the IySi gate 13 as a mask, n-type impurities are doped to form n-type heavily doped source/drain regions 11 in self-alignment with the polysi gate 13.
第3図(e)参照
そして、次にpolysiゲート13を例えば750°
Cのウェット酸化により熱酸化し、potySiゲート
13の上面および側壁に酸化膜を形成する。この時、p
olysiゲート13の上部、下部においてリンの含有
度が異なるため、前述のようにpolysiの酸化速度
のリン濃度依存性により、高濃度にリンを含有した13
aJt!、すなわちpolysiゲートの下部における
側壁酸化膜16の膜厚が厚くなり、一方、リン含有度が
低濃度であるpolysiゲートの上部(13b層)の
側壁酸化膜17の膜厚は薄く形威される。Refer to FIG. 3(e). Next, the polysi gate 13 is rotated at an angle of, for example, 750°.
C is thermally oxidized by wet oxidation to form an oxide film on the top surface and sidewalls of the potySi gate 13. At this time, p
Since the phosphorus content differs between the upper and lower parts of the polysi gate 13, the oxidation rate of polysi depends on the phosphorus concentration as described above.
aJt! That is, the thickness of the sidewall oxide film 16 at the bottom of the polySi gate becomes thicker, while the thickness of the sidewall oxide film 17 at the upper part (layer 13b) of the polySi gate with a low concentration of phosphorus content becomes thinner. .
第3図(f)参照
その後、通常の製造方法により、層間絶縁膜14を形威
し、コンタクトホールを開口して所定の/M2配線15
を形成し、図に示すnチャネルMO3FETを製造した
。Refer to FIG. 3(f). Thereafter, the interlayer insulating film 14 is shaped using a normal manufacturing method, contact holes are opened, and predetermined /M2 wirings 15 are formed.
was formed to manufacture the n-channel MO3FET shown in the figure.
第3図(f)に示すように、polysiゲート13の
厚さ方向で側壁酸化膜は上部17は薄く下部工6は厚く
なるような分布を持っているので、po1ysiゲート
13の断面形状は端部において逆テーバ状となる。すな
わち、ゲート酸化膜12のゲート端部における膜厚は厚
くなり、polySiゲート13と高濃度ソース・ドレ
イン領域11との間のフリンジ電界は緩和される。この
ため、ゲート端部での電界集中は緩和され、ゲート耐圧
を向上することができる。As shown in FIG. 3(f), in the thickness direction of the polysilicon gate 13, the sidewall oxide film has a distribution such that the upper part 17 is thinner and the lower part 6 is thicker, so the cross-sectional shape of the polysilicon gate 13 is at the edge. It becomes an inverted tapered shape at the end. That is, the film thickness of the gate oxide film 12 at the gate end becomes thicker, and the fringe electric field between the polySi gate 13 and the heavily doped source/drain region 11 is relaxed. Therefore, electric field concentration at the gate end is alleviated, and gate breakdown voltage can be improved.
次に、本発明を適用してVLSIの基本デバイスとして
注目されているL D D (L ightly Do
pedDrain)構造のnチャネルMO3FETを製
造した例を第4図(a)〜(e)を用いて説明する。Next, by applying the present invention, LDD (Lightly Do
An example of manufacturing an n-channel MO3FET with a pedDrain structure will be described with reference to FIGS. 4(a) to 4(e).
第4図(a)参照
まず、第3図(a)〜(C)に示す工程と同様にして、
p型シリコン基板10上にゲート酸化膜12を介してリ
ン含有度が高濃度の13a層と低濃度の13b層とから
なるpolysiゲート13を形成した。Refer to FIG. 4(a) First, in the same manner as the steps shown in FIGS. 3(a) to (C),
A polysi gate 13 consisting of a layer 13a with a high concentration of phosphorus and a layer 13b with a low concentration of phosphorus was formed on a p-type silicon substrate 10 with a gate oxide film 12 interposed therebetween.
第4図(b)参照
次に、このpolysiゲート13をマスクとしてp型
シリコン基板10にn型不純物をドープしてpolys
iゲート13と自己整合的にn型低濃度ソース・ドレイ
ン領域21を形成した。Refer to FIG. 4(b) Next, using this polysilicon gate 13 as a mask, the p-type silicon substrate 10 is doped with n-type impurities to form polysilicon.
N-type low concentration source/drain regions 21 were formed in self-alignment with the i-gate 13.
第4図(C)参照 続いて、第3図(e)に示す工程と同様にしてp。See Figure 4 (C) Subsequently, p is carried out in the same manner as the step shown in FIG. 3(e).
IySiゲート13を熱酸化し、polysiゲート1
3上部および側壁部に酸化膜を形成する。The IySi gate 13 is thermally oxidized, and the polysi gate 1 is
3. Form an oxide film on the top and sidewalls.
この時、前述のように側壁酸化膜は、polysゲート
13の厚さ方向において上部17は膜厚が薄く、下部1
6は膜厚が厚く形成され、polySiゲー1−13の
下部(13a層)は酸化膜により削られ、逆テーバ状と
なる。At this time, as described above, in the thickness direction of the polys gate 13, the sidewall oxide film is thinner in the upper part 17 and thinner in the lower part 17.
6 is formed to have a large film thickness, and the lower part (layer 13a) of polySi gate 1-13 is shaved off by the oxide film, resulting in an inverted tapered shape.
第4図(d)参照
次に、polysiゲート13および側壁酸化膜16を
マスクとしてP型シリコン基板10にn型不純物を高濃
度にドープして、側壁酸化膜16と自己整合的にn型高
濃度ソース・ドレイン領域11を形成した。Refer to FIG. 4(d) Next, using the polysilicon gate 13 and the sidewall oxide film 16 as a mask, the P-type silicon substrate 10 is doped with n-type impurities at a high concentration, and the n-type impurity is doped in a self-aligned manner with the sidewall oxide film 16. Concentrated source/drain regions 11 were formed.
第4図(e)参照
そして、通常の製造方法により、層間絶縁膜14を形成
し、コンタクトホールを開口して所定のAf配線15を
形成し、図に示ずLDD構造のnチャネルMOS F
ETを製造した。Refer to FIG. 4(e). Then, by a normal manufacturing method, an interlayer insulating film 14 is formed, a contact hole is opened, and a predetermined Af wiring 15 is formed.
ET was manufactured.
第4図(e)に示すLDD構造nチャネルMO3FET
も、第3図(f)に示すnチャネルMO3FETと同様
の効果が得られる。すなわち、polysiゲート13
の断面形状が端部において逆テーパ状となるために、ゲ
ート端部におけるゲート酸化膜12の膜厚は厚くなり、
ゲート端部での電界集中を緩和することができ、低濃度
ドレイン領域21によるソース・ドレイン間の横方向の
電界強度緩和をより向上することができる。LDD structure n-channel MO3FET shown in FIG. 4(e)
Also, the same effect as the n-channel MO3FET shown in FIG. 3(f) can be obtained. That is, polysi gate 13
Since the cross-sectional shape of the gate oxide film 12 becomes inversely tapered at the end, the thickness of the gate oxide film 12 at the gate end becomes thicker.
Electric field concentration at the gate end can be alleviated, and the lateral electric field intensity relaxation between the source and drain by the lightly doped drain region 21 can be further improved.
また、LDT)構造は、上述のように低濃度ドレイン領
域を形成することにより、電圧印加時のソース・ドレイ
ン間の横方向の広がり電界を緩和し、アバランシェ降伏
およびホットキャリア(電界からエネルギーを得て高エ
ネルギー状態となったキャリア)の発生を抑制するもの
であるが、このLDD構造の電界緩和の効果を高めるた
めに低濃度ドレイン領域の不純物濃度を低くすると、逆
に、特にストレス時間の初期(高電圧印加の初期)にお
いて、ゲート電極の側壁に形成された側壁酸化膜に注入
されるホットキャリアに起因して素子特性に大きな劣化
が現れることが報告されている。In addition, by forming a lightly doped drain region as described above, the LDT (LDT) structure alleviates the lateral spreading electric field between the source and drain when a voltage is applied, and prevents avalanche breakdown and hot carriers (which gain energy from the electric field). However, if the impurity concentration in the low-concentration drain region is lowered to enhance the electric field relaxation effect of this LDD structure, conversely, especially in the early stage of the stress period, It has been reported that (in the initial stage of high voltage application), significant deterioration in device characteristics appears due to hot carriers injected into the sidewall oxide film formed on the sidewalls of the gate electrode.
これは、LDD構造において電界強度が最大となる位置
が低濃度ドレイン領域上にあり、この領域上の側壁酸化
膜中にホットキャリアが注入されてトラップされること
によって負電荷による電界が形成され、低濃度ドレイン
領域の抵抗を増大させてしまうためである。すなわち、
この寄生抵抗によりドレイン電流の減少を引き起こすの
である。This is because the position where the electric field strength is maximum in the LDD structure is on the lightly doped drain region, and hot carriers are injected and trapped in the sidewall oxide film on this region, thereby forming an electric field due to negative charges. This is because the resistance of the lightly doped drain region increases. That is,
This parasitic resistance causes a decrease in drain current.
しかしながら、第4図(e)に示すように、本発明によ
るLDD構造MO3FETは、第4図(C)に示すpo
lysiゲート13の酸化時に形成されるpolysi
ゲート側壁の酸化膜16の膜厚により、側壁酸化膜はサ
イドウオールとして利用でき、前述の発生したホットキ
ャリアを酸化膜中に注入する電界強度が緩和されて、こ
の酸化膜中へのホットキャリアの注入が抑制されるため
、上記素子特性の劣化を防止することができる。However, as shown in FIG. 4(e), the LDD structure MO3FET according to the present invention has a po
polysi formed during oxidation of lysi gate 13
Due to the thickness of the oxide film 16 on the gate sidewall, the sidewall oxide film can be used as a sidewall, and the electric field strength for injecting the generated hot carriers into the oxide film is relaxed, and the hot carriers are injected into the oxide film. Since the injection is suppressed, deterioration of the above-mentioned device characteristics can be prevented.
なお、以上、第3図、第4図において、nチャネルMO
S F ETを例にとって本発明の製造方法を説明した
が、これに限らず例えばpチャネルMO3FET、キャ
パシタ等、本発明はMO3型半導体素子において適用可
能である。In addition, in FIGS. 3 and 4 above, n-channel MO
Although the manufacturing method of the present invention has been described using an SFET as an example, the present invention is not limited to this, and the present invention can be applied to MO3 type semiconductor devices such as p-channel MO3FETs and capacitors.
また、上記製造方法では、ゲート電極を形成する上で、
polysiを堆積するものであったが、これはアモル
ファスSiであってもよく、このものはpolysiゲ
ートを熱酸化する工程時にPo1ysiとなる。In addition, in the above manufacturing method, in forming the gate electrode,
Although polysilicon was deposited in the previous embodiment, amorphous silicon may also be used, and this material becomes polysilicon during the process of thermally oxidizing the polysilicon gate.
また、polysi層に拡散する不純物もリンを使用し
ているが、これに限らず他の導電性不純物を用いてもよ
い。Further, although phosphorus is used as the impurity diffused into the polysi layer, the present invention is not limited to this, and other conductive impurities may be used.
また、上記製造方法では、polysiゲートの下部端
部は側壁酸化膜に削られ、逆テーパ状に形成されるもの
であったが、リン含有度に分布をもたせて丸みをつける
ようにすることも可能である。In addition, in the above manufacturing method, the lower end of the polysi gate is cut into the sidewall oxide film and formed in a reverse tapered shape, but it is also possible to make it rounded by giving a distribution to the phosphorus content. It is possible.
第1図は本発明によるMO3型半導体素子の基本構造を
示す断面図、第2図は多結晶Si熱酸化における酸化膜
厚と不純物濃度との関係を示す特性図、第3図(a)〜
(f)は本発明一実施例を適用したnチャネルMO3F
ETの製造工程順断面図、第4図(a)〜(e)は本発
明によるnチャネルLDD構造MO3FETの製造工程
順断面図、第5図はゲート電極下端部が逆テーパ状に形
成されたnチャネルMO3FETの断面図、第6図はデ
ー1−電極下端部が急峻な形状である従来のnチャネル
MO3FETの断面図である。
10・・・基板、11・・・高濃度ソース・ドレイン領
域、12・・・ゲート酸化膜、13・・・polysi
ゲート、13a・・・第1のゲート電極層としての高濃
度リン含有層、13b・・・第2のゲート電極層として
の低濃度リン含有層、16.17・・・側壁酸化膜。
21・・・低濃度ソース・ドレイン領域、A・・・ゲー
ト電極下端部。Fig. 1 is a cross-sectional view showing the basic structure of an MO3 type semiconductor device according to the present invention, Fig. 2 is a characteristic diagram showing the relationship between oxide film thickness and impurity concentration in thermal oxidation of polycrystalline Si, and Figs.
(f) is an n-channel MO3F to which an embodiment of the present invention is applied
4(a) to 4(e) are sectional views in the order of manufacturing steps of an ET. FIG. 4(a) to (e) are sectional views in the order of the manufacturing steps of an n-channel LDD structure MO3FET according to the present invention. FIG. FIG. 6 is a cross-sectional view of a conventional n-channel MO3FET in which the lower end of the D1-electrode has a steep shape. DESCRIPTION OF SYMBOLS 10...Substrate, 11...High concentration source/drain region, 12...Gate oxide film, 13...Polysi
Gate, 13a...High concentration phosphorus containing layer as a first gate electrode layer, 13b...Low concentration phosphorus containing layer as a second gate electrode layer, 16.17...Side wall oxide film. 21: Low concentration source/drain region, A: Lower end portion of gate electrode.
Claims (3)
いて高濃度となる所定の分布を有する多結晶あるいはア
モルファスのシリコンよりなるゲート電極を、酸化膜を
介して半導体基板上に形成するゲート形成工程と、 前記ゲート電極を酸化して、前記ゲート電極の側壁に前
記導電性不純物の含有濃度の分布に対応した膜厚の側壁
酸化膜を形成するゲート酸化工程と を含むことを特徴とするMOS型半導体素子の製造方法
。(1) A gate formation process in which a gate electrode made of polycrystalline or amorphous silicon having a predetermined distribution in which the concentration of conductive impurities is higher in the lower part than in the upper part is formed on the semiconductor substrate via an oxide film. and a gate oxidation step of oxidizing the gate electrode to form a sidewall oxide film on the sidewalls of the gate electrode with a thickness corresponding to the concentration distribution of the conductive impurity. A method for manufacturing semiconductor devices.
導電性不純物を拡散した多結晶あるいはアモルファスの
シリコン膜からなる第1のゲート電極層を堆積し、この
第1のゲート電極層上に低濃度に導電性不純物を拡散し
た多結晶あるいはアモルファスのシリコン膜からなる第
2のゲート電極層を堆積し、続いて、この第2および第
1のゲート電極層を所定の領域を残してエッチングして
ゲート電極を形成するようにしたことを特徴とする請求
項(1)記載のMOS型半導体素子の製造方法。(2) In the gate forming step, a first gate electrode layer made of a polycrystalline or amorphous silicon film in which conductive impurities are diffused at a high concentration is deposited on the oxide film, and a first gate electrode layer is deposited on the oxide film. A second gate electrode layer made of a polycrystalline or amorphous silicon film with conductive impurities diffused at a low concentration is deposited on the substrate, and then the second and first gate electrode layers are etched leaving a predetermined region. 2. The method of manufacturing a MOS type semiconductor device according to claim 1, wherein the gate electrode is formed by using a MOS semiconductor device.
請求項(1)もしくは(2)に記載のMOS型半導体素
子の製造方法。(3) The method for manufacturing a MOS type semiconductor device according to claim 1 or 2, wherein the conductive impurity is phosphorus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20509689A JPH0369166A (en) | 1989-08-08 | 1989-08-08 | Manufacture of mos semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20509689A JPH0369166A (en) | 1989-08-08 | 1989-08-08 | Manufacture of mos semiconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0369166A true JPH0369166A (en) | 1991-03-25 |
Family
ID=16501360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20509689A Pending JPH0369166A (en) | 1989-08-08 | 1989-08-08 | Manufacture of mos semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0369166A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993023878A1 (en) * | 1992-05-13 | 1993-11-25 | Tadahiro Ohmi | Semiconductor device |
US5572304A (en) * | 1994-01-24 | 1996-11-05 | Ricoh Company, Ltd. | Intermediate image transfer element and image forming apparatus using the same |
EP0784244A2 (en) | 1996-01-10 | 1997-07-16 | Canon Kabushiki Kaisha | Intermediate transfer member and electrophotographic apparatus including same |
US5655199A (en) * | 1995-03-22 | 1997-08-05 | Ricoh Company, Ltd. | Intermediate transfer type image forming apparatus and an intermediate transfer medium therefor |
JPH10242065A (en) * | 1997-02-20 | 1998-09-11 | Siemens Ag | Method of manufacturing and patterning polysilicon layer and layer structure |
JP2002009283A (en) * | 2000-04-19 | 2002-01-11 | Seiko Instruments Inc | Semiconductor device and its manufacturing method |
JP2002222947A (en) * | 2001-01-29 | 2002-08-09 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method therefor |
WO2003088365A1 (en) * | 2002-04-17 | 2003-10-23 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and its manufacturing method |
KR100678476B1 (en) * | 2005-04-21 | 2007-02-02 | 삼성전자주식회사 | Double Gate Transistors Having At Least Two Gate Silicon Patterns On Active Region Formed In Thin Body And Methods Of Forming The Same |
-
1989
- 1989-08-08 JP JP20509689A patent/JPH0369166A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5528068A (en) * | 1992-05-13 | 1996-06-18 | Ohmi; Tadahiro | Semiconductor device |
WO1993023878A1 (en) * | 1992-05-13 | 1993-11-25 | Tadahiro Ohmi | Semiconductor device |
US5572304A (en) * | 1994-01-24 | 1996-11-05 | Ricoh Company, Ltd. | Intermediate image transfer element and image forming apparatus using the same |
US5655199A (en) * | 1995-03-22 | 1997-08-05 | Ricoh Company, Ltd. | Intermediate transfer type image forming apparatus and an intermediate transfer medium therefor |
US6704535B2 (en) | 1996-01-10 | 2004-03-09 | Canon Kabushiki Kaisha | Fiber-reinforced intermediate transfer member for electrophotography, and electrophotographic apparatus including same |
EP0784244A2 (en) | 1996-01-10 | 1997-07-16 | Canon Kabushiki Kaisha | Intermediate transfer member and electrophotographic apparatus including same |
JPH10242065A (en) * | 1997-02-20 | 1998-09-11 | Siemens Ag | Method of manufacturing and patterning polysilicon layer and layer structure |
JP2002009283A (en) * | 2000-04-19 | 2002-01-11 | Seiko Instruments Inc | Semiconductor device and its manufacturing method |
JP2002222947A (en) * | 2001-01-29 | 2002-08-09 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method therefor |
WO2003088365A1 (en) * | 2002-04-17 | 2003-10-23 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and its manufacturing method |
US6876045B2 (en) | 2002-04-17 | 2005-04-05 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and process for manufacturing the same |
CN100405612C (en) * | 2002-04-17 | 2008-07-23 | 松下电器产业株式会社 | Semiconductor device and process for manufacturing the same |
KR100678476B1 (en) * | 2005-04-21 | 2007-02-02 | 삼성전자주식회사 | Double Gate Transistors Having At Least Two Gate Silicon Patterns On Active Region Formed In Thin Body And Methods Of Forming The Same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6188104B1 (en) | Trench DMOS device having an amorphous silicon and polysilicon gate | |
KR100237279B1 (en) | Misfet, complementary misfet and manufacturing method thereof | |
US20060017097A1 (en) | Method of manufacturing a trench-gate semiconductor device | |
JP3915180B2 (en) | Trench type MOS semiconductor device and manufacturing method thereof | |
KR20050069702A (en) | Transistor of semiconductor device and fabricating method thereof | |
US8017494B2 (en) | Termination trench structure for mosgated device and process for its manufacture | |
US3951702A (en) | Method of manufacturing a junction field effect transistor | |
JPH07249770A (en) | Semiconductor device and its fabrication | |
KR970011641B1 (en) | Semiconductor device and method of manufacturing the same | |
JPH0369166A (en) | Manufacture of mos semiconductor element | |
US4261761A (en) | Method of manufacturing sub-micron channel width MOS transistor | |
CA1119733A (en) | Narrow channel mos devices and method of manufacturing | |
JP4932087B2 (en) | Semiconductor device and manufacturing method thereof | |
KR20050028828A (en) | Semiconductor device and manufacturing method therefor | |
US9331152B2 (en) | Semiconductor device and method of manufacturing the same | |
JPH0582465A (en) | Semiconductor device and mos fet | |
JPH0923013A (en) | Semiconductor element and its preparation | |
JPH08255902A (en) | Insulated gate semiconductor device and fabrication thereof | |
CN105762077A (en) | Manufacturing method of insulated gate bipolar transistor | |
JPS62229880A (en) | Semiconductor device and manufacture thereof | |
EP0481965A2 (en) | Step-cut insulated gate static induction transistors and method of manufacturing the same | |
JPH06163905A (en) | Fabrication of insulated gate semiconductor | |
JP2000243952A (en) | Semiconductor device and manufacture thereof | |
JPH05275437A (en) | Semiconductor device and its manufacture | |
JPH036863A (en) | Semiconductor device |