JPH0369144A - Formation of single-crystal magnesia spinel film - Google Patents
Formation of single-crystal magnesia spinel filmInfo
- Publication number
- JPH0369144A JPH0369144A JP20496189A JP20496189A JPH0369144A JP H0369144 A JPH0369144 A JP H0369144A JP 20496189 A JP20496189 A JP 20496189A JP 20496189 A JP20496189 A JP 20496189A JP H0369144 A JPH0369144 A JP H0369144A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- mgo
- crystal
- film
- making
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 25
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 title claims description 33
- 239000000395 magnesium oxide Substances 0.000 title claims description 14
- 239000011029 spinel Substances 0.000 title claims description 5
- 229910052596 spinel Inorganic materials 0.000 title claims description 5
- 230000015572 biosynthetic process Effects 0.000 title 1
- 239000007789 gas Substances 0.000 claims abstract description 46
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 10
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims abstract 12
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims abstract 6
- 229910001629 magnesium chloride Inorganic materials 0.000 claims abstract 6
- 238000000034 method Methods 0.000 claims description 7
- 239000012808 vapor phase Substances 0.000 claims description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000001569 carbon dioxide Substances 0.000 claims 1
- 239000000460 chlorine Substances 0.000 claims 1
- NHYCGSASNAIGLD-UHFFFAOYSA-N chlorine monoxide Inorganic materials Cl[O] NHYCGSASNAIGLD-UHFFFAOYSA-N 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 20
- 238000006243 chemical reaction Methods 0.000 abstract description 13
- 239000012159 carrier gas Substances 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 2
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- 239000000203 mixture Substances 0.000 abstract 1
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、絶縁層上に単結晶Si膜が形成されたS O
I (Silicon on In5ulator)構
造の絶縁層として用いられる単結晶マグネシアスピネル
膜の形成方法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention is directed to an SO film in which a single crystal Si film is formed on an insulating layer.
The present invention relates to a method of forming a single crystal magnesia spinel film used as an insulating layer of an I (Silicon on In5ulator) structure.
(ロ)従来の技術
5OItll造は、素子分離が容易である、寄生容量を
小さくできる、ラッチアップ耐性がある等の特徴を有し
、半導体集積回路の高集積化、高速化が図れるものとし
て知られており、研究開発が盛んに行われている。なか
でも、Si基板上に単結晶絶縁膜をエピタキシャル成長
させ、その上に単結晶Si膜をエピタキシャル成長させ
る方法は、大面積のSo1基板を作成するのに適してい
る。(b) The conventional technology 5OItll structure has features such as easy element isolation, small parasitic capacitance, and latch-up resistance, and is known as a method that can achieve higher integration and higher speed of semiconductor integrated circuits. Research and development is being actively carried out. Among these, a method in which a single crystal insulating film is epitaxially grown on a Si substrate and a single crystal Si film is epitaxially grown thereon is suitable for creating a large-area So1 substrate.
単結晶絶縁膜として、Ca F x、BP、SrOlM
gA 1*04 (MgO−A I*Os)などの研究
がなされている。なかでも、マダネシアスピネル(Mg
O・A I、0 、)は、Siとの格子不整合率が0.
8%と小さく、更に残留応力も小さいことから、5O8
(Silicon on 5apphire)に比べて
高品質なSOI基板が得られる可能性が高い。As a single crystal insulating film, CaFx, BP, SrOlM
Research is being conducted on gA 1*04 (MgO-A I*Os) and the like. Among them, Madanesia spinel (Mg
O・A I,0,) has a lattice mismatch rate with Si of 0.
8%, and the residual stress is also small, so 5O8
(Silicon on 5apphire) There is a high possibility that a high quality SOI substrate can be obtained.
通常、単結晶Si基板上の単結晶Mg0−ALOs膜を
ヘテロエピタキシャル成長させる場合、例えば特公昭6
0−3304号公報やJ 、 E Iectroche
m、 S oc。Normally, when growing a single crystal Mg0-ALOs film on a single crystal Si substrate by heteroepitaxial growth, for example,
Publication No. 0-3304 and J, E Ielectroche
m, S oc.
Vol、 129. No、111982第2569−
2573頁にあるように、CV D (Chemica
l Vapor Deposition)によるA I
−HC1−MgC1,−CO、−H、系気相エピタキシ
ャル方法が取られる。Vol, 129. No. 111982 No. 2569-
As shown on page 2573, CV D (Chemica
AI by Vapor Deposition)
-HC1-MgC1, -CO, -H, system vapor phase epitaxial method is used.
即ち、AIソースにHlとHCIガスを反応させたAl
Cl3ガスと、H,ガスをキャリアガスとする蒸気のM
gC1*ガスをSi基板上に輸送し、更にH8及びCO
,ガスを混合して、
MgC1,+ 2 AlC15+ 4 Co!+4 H
。In other words, Al made by reacting Hl and HCI gas with the AI source.
M of steam using Cl3 gas and H gas as carrier gas
gC1* gas is transported onto the Si substrate, and further H8 and CO
, gases are mixed to form MgC1,+ 2 AlC15+ 4 Co! +4H
.
→Mg0−A1.O,+4 CO+8HC1の反応によ
り、Si基板上に単結晶M g O−A I ! Os
膜が成長される。→Mg0-A1. By the reaction of O,+4CO+8HC1, single crystal M g O-A I ! is formed on the Si substrate. Os
A film is grown.
(ハ)発明が解決しようとする課題
ところで、Mgのソースとして用いるMgCl*は非常
に吸湿性が高く、また潮解性の物質である。(c) Problems to be Solved by the Invention By the way, MgCl* used as a source of Mg is a highly hygroscopic and deliquescent substance.
このため、MgCl*をCVD装置内にセットする際に
、多くの水分を含んでしまい、このようなソースを用い
て成長を行うと、M g C1m中の水分が蒸発してS
i基板表面上に薄い酸化膜を形成してしまう。この酸化
膜は、成長するMgOA I*0、膜の結晶性を乱す原
因となり、結晶成長再現性を悪化させてしまう。For this reason, when MgCl* is set in the CVD equipment, it contains a lot of water, and when growth is performed using such a source, the water in MgCl1m evaporates and S
A thin oxide film is formed on the i-substrate surface. This oxide film becomes a cause of disturbing the crystallinity of the growing MgOA I*0 film and deteriorates crystal growth reproducibility.
また、MgCl*の蒸発量は、加熱温度とキャリアガス
の流量によって制御されるが、MgCItの蒸発量を全
く零にすることはできないので、成長時以外にもM g
C1*ガスは基板上へと供給されてしまい、基板面を
汚す虞があった。Furthermore, the amount of evaporation of MgCl* is controlled by the heating temperature and the flow rate of the carrier gas, but since the amount of evaporation of MgClt cannot be completely reduced to zero, Mg
The C1* gas was supplied onto the substrate, and there was a risk of staining the substrate surface.
更に、MgCItは、現在のところ、高い純度のものは
得られておらず、半導体装置には不都合な重金属やナト
リウムなどの不純物が混入する可能性が高い。Furthermore, MgCIt of high purity cannot be obtained at present, and there is a high possibility that impurities such as heavy metals and sodium, which are undesirable for semiconductor devices, will be mixed in.
本発明は、斯様な点に鑑みて為されたもので、Mgのソ
ースとしてMgCItを用いずにMg0−AI。The present invention has been made in view of these points, and uses Mg0-AI as an Mg source without using MgCIt.
C1膜を成長させるものである。This is to grow a C1 film.
(ニ)課題を解決するための手段
本発明は、MgOにC1,とCOとの混合ガスを反応さ
せてM g C+ !ガスを発生させ、該M g CI
tガスと、AIにHCIを反応させて発生したAlC
l+ガスと、CO3と、H,とを反応させて、単結晶S
i層上に単結晶MgO・AI!0.膜を気相エピタキシ
ャル成長させる単結晶MgO−A LOs膜の形成方法
である。(d) Means for Solving the Problems The present invention reacts MgO with a mixed gas of C1 and CO to produce M g C+ ! Generate a gas, and the M g CI
AlC generated by reacting HCI with t gas and AI
By reacting L+ gas, CO3, and H, single crystal S
Single crystal MgO・AI on the i-layer! 0. This is a method of forming a single crystal MgO-A LOs film by growing the film by vapor phase epitaxial growth.
(ホ)作用
Mgのソースとして、直接M g C! 、を使わずに
、MgOを用い、MgOにCItとCOとの混合ガスを
反応させてM g C11ガスを発生させている。Mg
Oは、99.99%と高純度のものが得られ、潮解性も
ないことから、MgOをMg0−ALOtの成長におけ
るMgのソースとして用いることにより、結晶性、成長
再現性に優れた単結晶MgOaA ]tO、膜の気相エ
ピタキシャル成長が可能となる。(e) As a source of active Mg, directly M g C! , instead of using MgO, MgO is reacted with a mixed gas of CIt and CO to generate M g C11 gas. Mg
Since O can be obtained with a high purity of 99.99% and has no deliquescent properties, by using MgO as a source of Mg in the growth of Mg0-ALOt, a single crystal with excellent crystallinity and growth reproducibility can be obtained. MgOaA]tO allows vapor phase epitaxial growth of the film.
(へ)実施例
第1図は、本発明一実施例に係るCVD装置の概略構成
図である。(f) Embodiment FIG. 1 is a schematic diagram of a CVD apparatus according to an embodiment of the present invention.
(1)は石英製の反応管、(11)は該反応管(1)に
反応ガス、CO!とHlを供給するためのガス導入管で
ある。(1) is a reaction tube made of quartz, and (11) is a reaction gas in the reaction tube (1), CO! This is a gas introduction pipe for supplying H1 and H1.
(2)は反応管(1)の中央付近まで挿入されたAIの
ためのソース管で、途中にA1ソース(3)が配置され
、このソース管(2)にはH。(2) is a source tube for AI inserted to the center of the reaction tube (1), with an A1 source (3) placed in the middle, and H in this source tube (2).
とHCIガスが供給される。and HCI gas are supplied.
(4)は、ソース管(2)と同様に反応管(1)の中央
付近まで挿入されたMgのためのソース管で、途中にM
gソースとしてのMg0(5)が配置され、このソース
管(4)にはC1゜とCOl及び希薄化のためのキャリ
アガスN、が供給される。このMg0(5)は、高純度
(例えば99.99%)のものが用いられる。(4) is a source tube for Mg that is inserted up to the center of the reaction tube (1) in the same way as source tube (2).
Mg0 (5) as a g source is arranged, and this source tube (4) is supplied with C1°, CO1, and a carrier gas N for dilution. This Mg0(5) is of high purity (for example, 99.99%).
(6)は単結晶Mg0−ALO,膜を成長させる単結晶
Si層としての(100)面を主面とする単結晶Si基
板で、サセプタ(10)上にセットされる。(6) is a single-crystal Si substrate having a (100) plane as a main surface, which serves as a single-crystal Si layer for growing a single-crystal Mg0-ALO film, and is set on a susceptor (10).
(7)、(8)及び(9)は反応管(1)の外部に設け
られた加熱炉で、夫々AIソース(3)、Mg0(5)
及びSi基板(6)を、図示しない制御装置による温度
制御をしつつ加熱する。(7), (8), and (9) are heating furnaces installed outside the reaction tube (1), and are heated with AI source (3) and Mg0 (5), respectively.
and the Si substrate (6) are heated while controlling the temperature by a control device (not shown).
さて、斯様の装置による、単結晶Si基板(6)上への
単結晶MgO−A lto s膜をエピタキシャル成長
について説明する。Now, epitaxial growth of a single crystal MgO-Altos film on a single crystal Si substrate (6) using such an apparatus will be explained.
加熱炉(7)、(8)、(9)により、A1ソース(3
)、MgO(5)及びSi基板(6)を夫々650℃、
900℃、950℃に加熱保持する。A1 sauce (3
), MgO (5) and Si substrate (6) at 650°C, respectively.
Heat and maintain at 900°C and 950°C.
ソース管(2)にHlとHCIの混合ガスを導入して、
次式の反応によりA ICI、ガスを発生させ、Si基
板(6)上に輸送する。Introducing a mixed gas of Hl and HCI into the source tube (2),
A ICI gas is generated by the reaction of the following formula and transported onto the Si substrate (6).
2A1+6HCI→2AICI、+3H。2A1+6HCI→2AICI, +3H.
このとき、MCIガス流量は15cc/min、 H1
ガス流量は51 /minとする。At this time, the MCI gas flow rate is 15cc/min, H1
The gas flow rate is 51/min.
同時に、ソース管(4)には、Ct、とCOl及び希薄
化のためのキャリアガスN、の混合ガスを導入して、次
式の反応によりMgC]zガスを発生させ、Si基板(
6)上に輸送する。At the same time, a mixed gas of Ct, COl, and carrier gas N for dilution is introduced into the source tube (4), and MgC]z gas is generated by the reaction of the following formula, and the Si substrate (
6) Transport above.
M g O+ Cl * + C00M g C1g
+ COrこのとき、C++ガス流量はlocc7mi
n、 COガス流量は10cc/min、 N !ガス
流量は5Il/minとする。M g O+ Cl * + C00M g C1g
+ COr At this time, the C++ gas flow rate is locc7mi
n, CO gas flow rate is 10cc/min, N! The gas flow rate is 5 Il/min.
更に、ガス導入管(11)からガス流量70cc/mi
nでCOlを、ガス流量8 l /minでH8を反応
管(1)内に導入する。Furthermore, a gas flow rate of 70 cc/mi from the gas introduction pipe (11)
COl is introduced into the reaction tube (1) at a gas flow rate of 8 l/min, and H8 is introduced into the reaction tube (1) at a gas flow rate of 8 l/min.
而して、ソース管(2)で輸送されるAlCl5と、ソ
ース管(4)で輸送されるMgCl1と、ガス導入管(
11)から供給されるCOよとH2とで、MgC1,+
2AICL+4COt+4H。Thus, AlCl5 transported by the source pipe (2), MgCl1 transported by the source pipe (4), and the gas introduction pipe (
11) With CO and H2 supplied from MgC1,+
2AICL+4COt+4H.
→Mg0−A1.O,+4CO+8HC1の反応が起こ
り、単結晶Si基板(6)上に単結晶Mg0−A1.O
,膜がエビクキシャル成長される。このときのMg0−
AItos膜の成長速度は、およそ100人/minで
ある。→Mg0-A1. A reaction of O, +4CO+8HC1 occurs, and a single crystal Mg0-A1. O
, the film is grown eviaxially. Mg0- at this time
The growth rate of the AItos film is approximately 100 people/min.
以上のようにして膜厚2000人に成長させた単結晶M
gO−A 110 S膜の結晶性をX線回折法で調べた
ところ、従来のM g CI xをMgのソースとして
いた場合と比べて、約2倍のX線回折強度が得られ、M
gA l*o + (400) (’)X線回折ノロッ
キングカーブの半値幅は約1/3であり、結晶性の良好
な単結晶MgO・A I ! Os膜が得られた。Single crystal M grown to a film thickness of 2000 nm as described above
When the crystallinity of the gO-A 110 S film was investigated by X-ray diffraction, it was found that the X-ray diffraction intensity was about twice that of the conventional case where MgCIx was used as the Mg source.
gA l*o + (400) (') The half width of the X-ray diffraction Norrocking curve is about 1/3, indicating that single crystal MgO・A I! has good crystallinity. An Os film was obtained.
また、第2図に、同一条件で単結晶Mg0−AIto、
膜を成長させた場合の各膜のMgAl101 (400
)のX線回折によるロッキングカーブの半値幅の変動を
示す。第2図ではロッキングカーブの半値幅の変動は±
5%内であり、成長の再現性が高いことを示している。In addition, Fig. 2 shows that under the same conditions, single crystal Mg0-AIto,
MgAl101 (400
) shows the fluctuation of the half-width of the rocking curve by X-ray diffraction. In Figure 2, the fluctuation of the half-width of the rocking curve is ±
It is within 5%, indicating that the reproducibility of growth is high.
(ト)発明の効果
本発明は、以上の説明から明らかな如く、Mg0をMg
0−AItosの成長におけるMgのソースとして用い
、MgOにCI!とCOとの混合ガスを反応させてM
g C+ !ガスを発生させている。MgOは、高純度
のものが得られ、潮解性がないので水分の含有量が著し
く少ない。このため、MgO−A110、膜の成長初期
において、Si基板表面の酸化を抑えることができ、不
純物の混入の少ないので、結晶性、成長再現性に優れた
単結晶Mg0−AI、0 、膜を成長させることができ
る。(g) Effects of the invention As is clear from the above explanation, the present invention provides a method for replacing Mg0 with Mg0.
Used as a source of Mg in the growth of 0-AItos, CI to MgO! By reacting a mixed gas of and CO, M
gC+! It generates gas. MgO can be obtained with high purity and has no deliquescent properties, so its water content is extremely low. For this reason, oxidation of the Si substrate surface can be suppressed in the initial stage of growth of the MgO-A110 film, and since there is little contamination of impurities, a single crystal Mg0-AI,0 film with excellent crystallinity and growth reproducibility can be produced. can be grown.
そして、結晶性の良い単結晶Mg0−A1.0.膜が得
られるので、その上に良質な単結晶5itliを成長さ
せることが可能になり、良好なデバイス特性の得られる
高品質なSOI基板を得ることができる。And single crystal Mg0-A1.0. with good crystallinity. Since a film is obtained, it becomes possible to grow a high-quality single crystal 5itli on it, and a high-quality SOI substrate with good device characteristics can be obtained.
第1図は本発明一実施例に係るCVD装置の概略構成図
、第2図はMgA1101 (400) ノX線回折に
よるロッキングカーブの半値幅の変動を示す図である。
(1)・・・反応管、(2)、(4)・・・ソース管、
(3)−41’/−ス、(5)−−−MgO1(6)・
・・単結晶Si基板、(7)、(8)、(9)・・・加
熱炉、(11)・・・ガス導入管。FIG. 1 is a schematic configuration diagram of a CVD apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing fluctuations in the half-width of a rocking curve due to X-ray diffraction of MgA1101 (400). (1)...Reaction tube, (2), (4)...Source tube,
(3)-41'/-su, (5)---MgO1(6)・
... Single crystal Si substrate, (7), (8), (9) ... Heating furnace, (11) ... Gas introduction tube.
Claims (1)
スを反応させて塩化マグネシウムガスを発生させ、該塩
化マグネシウムガスと、アルミニウムに塩化水素を反応
させて発生した塩化アルミニウムガスと、二酸化炭素と
、水素とを反応させて、単結晶シリコン層上に単結晶マ
グネシアスピネル膜を気相エピタキシャル成長させるこ
とを特徴とする単結晶マグネシアスピネル膜の形成方法
。(1) Magnesium chloride gas is generated by reacting a mixed gas of chlorine and carbon monoxide with magnesium oxide, and the magnesium chloride gas, aluminum chloride gas generated by reacting aluminum with hydrogen chloride, and carbon dioxide are combined. A method for forming a single-crystal magnesia spinel film, which comprises reacting with hydrogen to form a single-crystal magnesia spinel film on a single-crystal silicon layer by vapor phase epitaxial growth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20496189A JPH0369144A (en) | 1989-08-08 | 1989-08-08 | Formation of single-crystal magnesia spinel film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20496189A JPH0369144A (en) | 1989-08-08 | 1989-08-08 | Formation of single-crystal magnesia spinel film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0369144A true JPH0369144A (en) | 1991-03-25 |
Family
ID=16499173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20496189A Pending JPH0369144A (en) | 1989-08-08 | 1989-08-08 | Formation of single-crystal magnesia spinel film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0369144A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10326578B4 (en) * | 2003-06-12 | 2006-01-19 | Siltronic Ag | Process for producing an SOI disk |
-
1989
- 1989-08-08 JP JP20496189A patent/JPH0369144A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10326578B4 (en) * | 2003-06-12 | 2006-01-19 | Siltronic Ag | Process for producing an SOI disk |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7404858B2 (en) | Method for epitaxial growth of silicon carbide | |
JPH01162326A (en) | Method for manufacturing β-silicon carbide layer | |
JPH0695554B2 (en) | Method for forming single crystal magnesia spinel film | |
JPH0369144A (en) | Formation of single-crystal magnesia spinel film | |
JPH01252776A (en) | Formation of aluminum film by vapor growth | |
JPS58135633A (en) | Epitaxial growth of silicon | |
JP2966459B2 (en) | Method of forming single crystal magnesia spinel film | |
JPS5855119B2 (en) | Vapor phase growth method and equipment for magnesia spinel | |
JPH02262324A (en) | X-ray transmitting film and its manufacture | |
JPS60169563A (en) | Manufacture and device for telluride metal | |
JPS5942980B2 (en) | semiconductor equipment | |
JPH0369145A (en) | Formation of single-crystal magnesia spinel film | |
US3821020A (en) | Method of deposition of silicon by using pyrolysis of silane | |
JP4871823B2 (en) | Aluminum nitride single crystal and method for producing the same | |
JPS60175412A (en) | Growing method of gallium nitride | |
JPS5924760B2 (en) | Vapor phase growth method of magnesia spinel | |
JPH06302524A (en) | Formation of single crystal magnesia spinel film | |
JPS5931985B2 (en) | Vapor phase growth method of magnespinel | |
JPS6242517A (en) | Semiconductor vapor phase processing method | |
JPH01103996A (en) | Vapor growth method for compound semiconductor | |
JPS6175531A (en) | Formation of crystal for insulating film | |
JPH02192755A (en) | Forming method of single crystal magnesia spinel film | |
JPS60210837A (en) | Crystal substrate for semiconductor device | |
JPH0371398B2 (en) | ||
JPS63119521A (en) | Metal organic vapor phase epitaxy equipment |