[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0368485B2 - - Google Patents

Info

Publication number
JPH0368485B2
JPH0368485B2 JP2771586A JP2771586A JPH0368485B2 JP H0368485 B2 JPH0368485 B2 JP H0368485B2 JP 2771586 A JP2771586 A JP 2771586A JP 2771586 A JP2771586 A JP 2771586A JP H0368485 B2 JPH0368485 B2 JP H0368485B2
Authority
JP
Japan
Prior art keywords
conductive
powder
weight
parts
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2771586A
Other languages
Japanese (ja)
Other versions
JPS62186407A (en
Inventor
Tomoko Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2771586A priority Critical patent/JPS62186407A/en
Publication of JPS62186407A publication Critical patent/JPS62186407A/en
Publication of JPH0368485B2 publication Critical patent/JPH0368485B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の属する技術分野 本発明は、絶縁基板上に電子回路を形成した
り、電子部品の電極を形成するために用いられる
厚膜導電性組成物、特に窒化アルミニウム系基板
に適合する導電性組成物に関する。 従来の技術 近年エレクトロニクス技術分野において電子部
品や電子回路の小形化、高性能化が図られてお
り、これに伴つてより多くの素子を一回路基板上
に実装するようになつてきたが、実装密度が上が
るにつれ、素子から発生する熱の放散が重要な問
題となる。 従来から回路基板として広く用いられているア
ルミナ系セラミツクスは、熱伝導率が低く、熱の
放散性があまり良くないため、最近窒化アルミニ
ウム、炭化珪素、窒化珪素などの非酸化物系セラ
ミツクスが注目されている。これらは高い熱伝導
性を有するとともに、回路基板に要求される機械
的強度や絶縁特性などの諸特性も優れており、ア
ルミナ系セラミツクスに代わる電子回路用基板と
して非常に有望である。 ところが従来導体回路を形成するために一般に
使用されている導電性粉末とガラスなどの無機結
合剤からなる導電性組成物は、主としてアルミナ
基板用に開発されたものであり、例えば窒化アル
ミニウム(Al N)を基板として用いる場合は、
焼付けしても全く接着しないか又は接着強度が非
常に弱く、実用に供し得ない。特開昭60−178687
号には酸化銅を含む導電性組成物を用いる場合、
Al N基板に対して良好な接着強度を示すことが
記載されているが、酸化銅によつてある程度は改
善できるものの、充分満足のいくものとは言えな
かつた。 発明が解決しようとする問題点 本発明は熱放散性の優れたAl N基板上に焼付
けしたとき充分な接着強度で接着し、かつ導電
性、半田付け性等の諸特性の優れた導体回路を形
成し得る導電性組成物を得ることを目的とするも
のである。 問題点を解決するための手段 本発明は、導電性粉末とガラス質フリツトを主
成分とする導電性組成物に、酸化クロムを添加し
たことを特徴とする窒化アルミニウム基板用導電
性組成物である。 作 用 本発明の特徴は導電性組成物に酸化クロムを添
加することにあり、これによつてAl N基板に対
する接着性が著しく改善される。即ち酸化クロム
を含有する導電性組成物をAl N基板上に焼付け
することにより、基板に強固に接着した導体被膜
を形成することができる。又得られる導体被膜は
高導電性で、半田濡れ性も良好である。 酸化クロムは、Cr2O3の形で添加するのが普通
であるが、CrO、CrO2、Cr2O5など他の酸化物の
形でもよい。あるいはクロムを含む多成分酸化
物、例えばクロムと銅を含む酸化物などの形で含
有させても差支えない。 酸化クロムは少量でも接着強度の向上に効果が
あり、組成や要求される電極特性に応じて配合量
を適宜決定する。添加量が多すぎると導電性粉末
の焼結が阻害されて膜強度が弱くなり、又導電性
も低下するので、導電性粉末100重量部に対して
Cr2O3換算で10重量部以下とするのが望ましい。
好適な配合量は導電成分の種類によつても異なる
が、およそ0.1〜5重量部の範囲で最もよい効果
が得られる。 導電性粉末としては銀、パラジウム、金、白
金、銅、ニツケル又はこれらの合金、混合物な
ど、従来から導電材料として用いられているもの
がいずれも使用できる。 ガラスフリツトの種類に特に制限はなく、例え
ばPbO−B2O3−SiO2系、PbO−B2O3−SiO2
ZnO系、PbO−B2O3−SiO2−CaO−Al2O3系、
PbO−B2O3−SiO2−CaO−Al2O3−ZnO系、CaO
−BaO−SiO2系など、種々のものを用いること
ができる。但し組成によつてはAl Nとの反応性
が高いためにプリスタやクラツクを引起こすこと
があるので、基板とこのような反応を起こしにく
いものを選択して用いることが望ましい。 更に本発明組成物には、半田付け性やエージン
グ強度等の改善の目的で、従来から導電性組成物
に普通に使用されている酸化ビスマス、酸化銅、
酸化カドミウムなどの金属酸化物や、焼成中に分
解して金属酸化物を生成する金属有機化合物等を
含有させてもよい。これらの金属酸化物は導電性
粉末と複合粉末の形で添加してもよく、又ガラス
の一成分として含有させることもできる。 これらの成分は適当な有機ビヒクルに分散させ
てペースト状とし、スクリーン印刷等公知の方法
で基板上に塗布し、乾燥した後、常法に従つて焼
成することにより導体を形成する。 実施例 実施例 1 Pd粉末 20重量部 Ag粉末 80重量部 ガラス質フリツト 4重量部 Bi2O3粉末 4重量部 Cr2O3粉末 2重量部 上記組成物を混合し、適当量の有機ビヒクルと
共に混練して導電性ペーストを製造した。但しガ
ラスフリツトは、PbO−SiO2−CaO−Al2O3
B2O3−ZnO系の非晶質ガラスであり、有機ビヒ
クルはエチルセルロース及びアルキツド樹脂のジ
ブチルフタレート/テルピネオール混合溶剤溶液
である。 このペーストを徳山曹達株式会社製Al N基板
上に1.5mm×1.5mmの正方形パターンでスクリーン
印刷した後150℃で10分間乾燥し、次いで、空気
中ピーク温度920℃、30分サイクルで焼成を行つ
た。 得られた導体膜に直径0.5mmの半田めつき銅リ
ード線を半田付けし、初期接着強度及び150℃で
48時間エージングした後の接着強度を測定したと
ころ、それぞれ1.63Kg、1.14Kgであつた。尚、接
着強度はリードを基板に対して垂直方向に引張つ
たときの剥離強度である。 又10mm×10mmの導体膜を形成し、直径2.5mmの
半田ボールを載せて230℃に30秒間保持した後の
半田の拡がりから半田濡れ性を求めたところ、68
%であつた。 実施例 2〜4 ガラス質フリツト、Bi2O3及びCr2O3の量を表
1のとおりとし、他は実施例1と同様にしてAl
N基板上に導体被膜を形成した。それぞれ接着強
度及び半田濡れ性を測定した結果を表1に示し
た。 比較例 1 Cr2O3粉末を配合しない以外は実施例1と同じ
組成のペーストを作り、実施例1と同様にして
Al N基板上に焼付けを行つた。得られた導体被
膜は基板に対する接着強度が非常に弱く、リード
線を半田付けする際剥離した。 比較例 2 Cr2O3粉末に代えてCu2O粉末を2重量部配合
する以外は、実施例1と同様にしてAl N基板上
に導体被膜を形成した。初期強度及びエージング
後の強度は、それぞれ0.77Kg、0.45Kgであつた。
Technical field to which the invention pertains The present invention relates to a thick film conductive composition used for forming electronic circuits on an insulating substrate or forming electrodes of electronic components, particularly a conductive composition suitable for aluminum nitride substrates. Regarding. Conventional technology In recent years, electronic components and circuits have become smaller and more sophisticated in the field of electronics technology, and as a result, more elements have been mounted on a single circuit board. As density increases, dissipation of heat generated from the device becomes an important issue. Alumina ceramics, which have traditionally been widely used as circuit boards, have low thermal conductivity and poor heat dissipation, so non-oxide ceramics such as aluminum nitride, silicon carbide, and silicon nitride have recently attracted attention. ing. These materials have high thermal conductivity and also have excellent properties such as mechanical strength and insulation properties required for circuit boards, and are very promising as substrates for electronic circuits that can replace alumina-based ceramics. However, conductive compositions made of conductive powder and inorganic binders such as glass, which have been commonly used to form conductor circuits, were developed primarily for alumina substrates, such as aluminum nitride (AlN). ) as a substrate,
Even if it is baked, it will not adhere at all or the adhesive strength will be very weak, making it impossible to put it to practical use. Japanese Patent Publication No. 178687
When using a conductive composition containing copper oxide,
It has been reported that good adhesion strength is exhibited to Al 2 N substrates, but although it can be improved to some extent by copper oxide, it cannot be said to be fully satisfactory. Problems to be Solved by the Invention The present invention provides a conductor circuit that adheres with sufficient adhesive strength when baked on an AlN substrate with excellent heat dissipation properties, and has excellent properties such as conductivity and solderability. The purpose is to obtain a conductive composition that can be formed. Means for Solving the Problems The present invention is a conductive composition for aluminum nitride substrates, which is characterized in that chromium oxide is added to a conductive composition mainly composed of conductive powder and glassy frit. . Function The present invention is characterized by the addition of chromium oxide to the conductive composition, which significantly improves the adhesion to the Al 2 N substrate. That is, by baking a conductive composition containing chromium oxide onto an AlN substrate, a conductive film that is firmly adhered to the substrate can be formed. Further, the obtained conductive film has high conductivity and good solder wettability. Chromium oxide is usually added in the form of Cr 2 O 3 , but it may also be in the form of other oxides such as CrO, CrO 2 and Cr 2 O 5 . Alternatively, it may be contained in the form of a multicomponent oxide containing chromium, such as an oxide containing chromium and copper. Even a small amount of chromium oxide is effective in improving adhesive strength, and the amount to be added is appropriately determined depending on the composition and required electrode characteristics. If the amount added is too large, the sintering of the conductive powder will be inhibited, the film strength will be weakened, and the conductivity will also be reduced.
It is desirable that the content be 10 parts by weight or less in terms of Cr 2 O 3 .
Although the preferred amount varies depending on the type of conductive component, the best effect can be obtained within a range of about 0.1 to 5 parts by weight. As the conductive powder, any material conventionally used as a conductive material can be used, such as silver, palladium, gold, platinum, copper, nickel, or an alloy or mixture thereof. There are no particular restrictions on the type of glass frit; for example, PbO−B 2 O 3 −SiO 2 type, PbO−B 2 O 3 −SiO 2
ZnO system, PbO−B 2 O 3 −SiO 2 −CaO−Al 2 O 3 system,
PbO−B 2 O 3 −SiO 2 −CaO−Al 2 O 3 −ZnO system, CaO
Various types such as -BaO-SiO 2 can be used. However, depending on the composition, it is highly reactive with AlN, which may cause prisms and cracks, so it is desirable to select and use a material that is unlikely to cause such a reaction with the substrate. Furthermore, the composition of the present invention contains bismuth oxide, copper oxide,
It may contain metal oxides such as cadmium oxide, metal organic compounds that decompose during firing to produce metal oxides, and the like. These metal oxides may be added in the form of a conductive powder and a composite powder, or may be included as a component of the glass. These components are dispersed in a suitable organic vehicle to form a paste, coated on a substrate by a known method such as screen printing, dried, and then fired in a conventional manner to form a conductor. Examples Example 1 Pd powder 20 parts by weight Ag powder 80 parts by weight Glass frit 4 parts by weight Bi 2 O 3 powder 4 parts by weight Cr 2 O 3 powder 2 parts by weight The above composition was mixed and mixed with an appropriate amount of organic vehicle. A conductive paste was produced by kneading. However, the glass frit is PbO−SiO 2 −CaO−Al 2 O 3
It is a B 2 O 3 --ZnO-based amorphous glass, and the organic vehicle is a dibutyl phthalate/terpineol mixed solvent solution of ethyl cellulose and alkyd resin. This paste was screen-printed in a square pattern of 1.5 mm x 1.5 mm on an AlN substrate manufactured by Tokuyama Soda Co., Ltd., dried at 150°C for 10 minutes, and then fired in air at a peak temperature of 920°C for a 30-minute cycle. Ivy. A solder-plated copper lead wire with a diameter of 0.5 mm was soldered to the obtained conductor film, and the initial adhesion strength and temperature at 150℃ were
When the adhesive strengths were measured after aging for 48 hours, they were 1.63Kg and 1.14Kg, respectively. Note that the adhesive strength is the peel strength when the lead is pulled in a direction perpendicular to the substrate. In addition, we formed a 10 mm x 10 mm conductive film, placed a 2.5 mm diameter solder ball on it, and held it at 230°C for 30 seconds, and then determined the solder wettability from the spread of the solder.
It was %. Examples 2 to 4 Al
A conductive film was formed on the N substrate. Table 1 shows the results of measuring adhesive strength and solder wettability. Comparative Example 1 A paste with the same composition as in Example 1 was made except that Cr 2 O 3 powder was not mixed, and the paste was prepared in the same manner as in Example 1.
Baking was performed on an AlN substrate. The resulting conductive film had very low adhesion strength to the substrate and peeled off when the lead wires were soldered. Comparative Example 2 A conductive film was formed on an Al N substrate in the same manner as in Example 1, except that 2 parts by weight of Cu 2 O powder was added instead of Cr 2 O 3 powder. The initial strength and the strength after aging were 0.77Kg and 0.45Kg, respectively.

【表】 ×印は接着強度が弱く、リード線の半田
付け時に剥離したことを表わす。
実施例 5 Pd粉末 3重量部 Ag粉末 97重量部 ガラス質フリツト 3重量部 Bi2O3粉末 4重量部 Cr2O3粉末 0.5重量部 上記組成物を混合し、適当量の有機ビヒクルと
共に混練して導電性ペーストを得た。但しガラス
フリツトはCaO−BaO−SiO2系の非晶質ガラス
であり、有機ビヒクルはエチルセルロース及びア
ルキツド樹脂のジブチルフタレート/テルピネオ
ール混合溶剤溶液である。 このペーストを徳山曹達株式会社製Al N基板
上に1.5mm×1.5mmの正方形パターンでスクリーン
印刷した後150℃で10分間乾燥し、次いで、空気
中ピーク温度850℃、30分サイクルで焼成を行つ
た。 得られた導体膜に直径0.5mmの半田めつき銅リ
ード線を半田付けし、初期接着強度及び150℃で
48時間エージングした後の接着強度を測定し、結
果を表2に示した。 又実施例1と同様にして半田濡れ性を調べ、表
2に併せて示した。 実施例 6〜8 ガラス質フリツト、Bi2O3及びCr2O3の量を表
2のとおりとし、他は実施例5と同様にしてAl
N基板上に導体被膜を形成した。それぞれ接着強
度と半田濡れ性を測定し、結果を表2に示した。 比較例 3 Cr2O3粉末を配合しない以外は実施例5と同じ
組成のペーストを作り、実施例5と同様にして
Al N基板上に焼付けを行つた。得られた導体被
膜は基板に対する接着強度が非常に弱く、リード
線を半田付けする際剥離した。 比較例 4 Cr2O3粉末に代えてCu2O粉末を2重量部配合
する以外は実施例1と同様にしてAl N基板上に
導体被膜を形成し、強度と半田濡れ性を表2に示
した。
[Table] An x mark indicates that the adhesive strength is weak and the lead wire peeled off during soldering.
Example 5 Pd powder 3 parts by weight Ag powder 97 parts by weight Glass frit 3 parts by weight Bi 2 O 3 powder 4 parts by weight Cr 2 O 3 powder 0.5 parts by weight The above composition was mixed and kneaded with an appropriate amount of organic vehicle. A conductive paste was obtained. However, the glass frit is a CaO--BaO--SiO 2 -based amorphous glass, and the organic vehicle is a dibutyl phthalate/terpineol mixed solvent solution of ethyl cellulose and alkyd resin. This paste was screen printed in a square pattern of 1.5 mm x 1.5 mm on an Al N substrate manufactured by Tokuyama Soda Co., Ltd., dried at 150 °C for 10 minutes, and then baked in air at a peak temperature of 850 °C for 30 minutes. Ivy. A solder-plated copper lead wire with a diameter of 0.5 mm was soldered to the obtained conductor film, and the initial adhesion strength and temperature at 150℃ were
The adhesive strength was measured after aging for 48 hours, and the results are shown in Table 2. Furthermore, the solder wettability was examined in the same manner as in Example 1, and is also shown in Table 2. Examples 6 to 8 Al
A conductive film was formed on the N substrate. The adhesive strength and solder wettability of each were measured, and the results are shown in Table 2. Comparative Example 3 A paste with the same composition as in Example 5 was made except that Cr 2 O 3 powder was not mixed, and the paste was prepared in the same manner as in Example 5.
Baking was performed on an AlN substrate. The resulting conductive film had very low adhesion strength to the substrate and peeled off when the lead wires were soldered. Comparative Example 4 A conductive film was formed on an AlN substrate in the same manner as in Example 1 except that 2 parts by weight of Cu 2 O powder was added instead of Cr 2 O 3 powder, and the strength and solder wettability were shown in Table 2. Indicated.

【表】 実施例 9 Cu粉末 100重量部 ガラス質フリツト 4重量部 Cr2O3粉末 4重量部 上記組成物を混合し、有機ビヒクルと共に混練
して導電性ペーストを製造した。但しガラスフリ
ツトは、PbO−B2O3−ZnO−SnO2−SiO2系の結
晶性ガラスであり、有機ビヒクルはエチルセルロ
ースの2,2,4−トリメチル1,3−ペンタン
ジオールモノイソブチレート溶液である。 このペーストを徳山曹達株式会社製Al N基板
上に1.5mm×1.5mmの正方形パターンでスクリーン
印刷した後120℃で5分間乾燥し、次いで窒素雰
囲気中ピーク温度900℃、60分サイクルで焼成を
行つた。 得られた導体膜に直径0.5mmの半田めつき銅リ
ード線を半田付けし、初期接着強度及び150℃で
48時間エージングした後の接着強度を測定したと
ころ、それぞれ2.28Kg、2.21Kgであつた。 比較例 5 Cr2O3粉末を配合しない以外は実施例9と同じ
組成のペーストを作り、実施例9と同様にして
Al N基板上に焼付けを行つた。得られた導体被
膜の初期及びエージング強度はそれぞれ1.26Kg、
0.73Kgであつた。 効 果 実施例からも明らかなように、従来の導電性組
成物に酸化クロムを添加することによりAl N基
板と強固に接着した、優れた導体被膜を形成する
ことができる。従つて熱放散性の良好なAl N系
セラミツクスを回路基板として実用化することが
でき、これによつて一層実装密度を上げることが
可能になり、産業上極めて有利である。
[Table] Example 9 Cu powder 100 parts by weight Glass frit 4 parts by weight Cr 2 O 3 powder 4 parts by weight The above compositions were mixed and kneaded with an organic vehicle to produce a conductive paste. However, the glass frit is a PbO-B 2 O 3 -ZnO-SnO 2 -SiO 2 -based crystalline glass, and the organic vehicle is a solution of ethyl cellulose in 2,2,4-trimethyl 1,3-pentanediol monoisobutyrate. be. This paste was screen-printed in a square pattern of 1.5 mm x 1.5 mm on an AlN substrate manufactured by Tokuyama Soda Co., Ltd., dried at 120°C for 5 minutes, and then baked in a nitrogen atmosphere at a peak temperature of 900°C for 60 minutes. Ivy. A solder-plated copper lead wire with a diameter of 0.5 mm was soldered to the obtained conductor film, and the initial adhesion strength and temperature at 150℃ were
When the adhesive strengths were measured after aging for 48 hours, they were 2.28 Kg and 2.21 Kg, respectively. Comparative Example 5 A paste with the same composition as in Example 9 was made except that Cr 2 O 3 powder was not mixed, and the paste was prepared in the same manner as in Example 9.
Baking was performed on an AlN substrate. The initial and aging strengths of the obtained conductor coating were 1.26Kg and 1.26Kg, respectively.
It weighed 0.73Kg. Effects As is clear from the examples, by adding chromium oxide to a conventional conductive composition, it is possible to form an excellent conductive film that firmly adheres to the AlN substrate. Therefore, Al 2 N ceramics with good heat dissipation properties can be put to practical use as circuit boards, which makes it possible to further increase the packaging density, which is extremely advantageous industrially.

Claims (1)

【特許請求の範囲】 1 導電性粉末とガラス質フリツトを主成分とす
る導電性組成物に、酸化クロムを添加したことを
特徴とする窒化アルミニウム基板用導電性組成
物。 2 酸化クロムの添加量が、導電性粉末100重量
部に対してCr2O3換算で10重量部以下(但し0を
含まない)である特許請求の範囲第1項記載の導
電性組成物。 3 導電性粉末が銀、パラジウム、金、白金、銅
及びニツケルからなる群より選ばれる1種又は2
種以上である特許請求の範囲第1項又は第2項記
載の導電性組成物。
[Scope of Claims] 1. A conductive composition for an aluminum nitride substrate, characterized in that chromium oxide is added to a conductive composition containing conductive powder and glassy frit as main components. 2. The conductive composition according to claim 1, wherein the amount of chromium oxide added is 10 parts by weight or less (excluding 0) in terms of Cr 2 O 3 based on 100 parts by weight of the conductive powder. 3 The conductive powder is one or two selected from the group consisting of silver, palladium, gold, platinum, copper, and nickel.
3. The conductive composition according to claim 1 or 2, which is a type or more.
JP2771586A 1986-02-10 1986-02-10 Conductive compound Granted JPS62186407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2771586A JPS62186407A (en) 1986-02-10 1986-02-10 Conductive compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2771586A JPS62186407A (en) 1986-02-10 1986-02-10 Conductive compound

Publications (2)

Publication Number Publication Date
JPS62186407A JPS62186407A (en) 1987-08-14
JPH0368485B2 true JPH0368485B2 (en) 1991-10-28

Family

ID=12228698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2771586A Granted JPS62186407A (en) 1986-02-10 1986-02-10 Conductive compound

Country Status (1)

Country Link
JP (1) JPS62186407A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992958B2 (en) * 1989-04-17 1999-12-20 太平洋セメント株式会社 Conductive paste for low-temperature fired multilayer wiring boards
JPH04269403A (en) * 1991-02-25 1992-09-25 Nec Kagoshima Ltd Conductive paste
JP5265256B2 (en) * 2008-06-26 2013-08-14 日本特殊陶業株式会社 Ceramic wiring board

Also Published As

Publication number Publication date
JPS62186407A (en) 1987-08-14

Similar Documents

Publication Publication Date Title
US6436316B2 (en) Conductive paste and printed wiring board using the same
JPH07500450A (en) Silver-rich conductor composition with high thermal cycle adhesion and aging adhesion
GB2182048A (en) Copper conductive paint for porcelainized metal substrates
JP2001307547A (en) Conductive composition and printed circuit board using the same
JPH05235497A (en) Copper conductive paste
JP2800176B2 (en) Glass ceramic composition
JPH01179741A (en) Glass-ceramic composition
KR100585909B1 (en) Thick Film Conductor Compositions for Use on Aluminum Nitride Substrates
JPS6253031B2 (en)
JPH0368485B2 (en)
JP2917457B2 (en) Conductor paste
JPH0945130A (en) Conductor paste composite
JPS626284B2 (en)
JP2559238B2 (en) Electric circuit board
JP2941002B2 (en) Conductor composition
JPH06342965A (en) Ceramic circuit board and manufacture thereof
JP2813447B2 (en) Conductor paste for aluminum nitride sintered substrate
JP2632325B2 (en) Electric circuit board
JP2992958B2 (en) Conductive paste for low-temperature fired multilayer wiring boards
JP2733613B2 (en) Conductive paste and circuit board
JPH0548225A (en) Conductive paste
JP2695602B2 (en) Glass ceramic multilayer substrate
JP2892220B2 (en) Manufacturing method of ceramic wiring board
JPH0558201B2 (en)
JPH04124077A (en) Electroconductive paste for aluminum nitride base plate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term