JPH036510A - Five-element zoom lens - Google Patents
Five-element zoom lensInfo
- Publication number
- JPH036510A JPH036510A JP1141379A JP14137989A JPH036510A JP H036510 A JPH036510 A JP H036510A JP 1141379 A JP1141379 A JP 1141379A JP 14137989 A JP14137989 A JP 14137989A JP H036510 A JPH036510 A JP H036510A
- Authority
- JP
- Japan
- Prior art keywords
- lens component
- lens
- refractive power
- component
- zooming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 16
- 230000004075 alteration Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 3
- 206010010071 Coma Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/163—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
- G02B15/167—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
- G02B15/173—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/145—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
- G02B15/1451—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はズームレンズに関し、特にTTLバ・7シブタ
イプのAF(オートフォーカス)を有するビデオカメラ
等の小型カメラに応用可能な5成分ズームレンズに関す
る。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a zoom lens, and more particularly to a five-component zoom lens that can be applied to small cameras such as video cameras having TTL basiv type AF (autofocus).
従来■技玉
近年、ビデオカメラ等の小型カメラでは、電子部品のコ
ストダウン・コンパクト化が相当なスピードで達成され
ているが、これに応するレンズ系としては、電子部品は
どコストダウン・コンパクト化が進展しているとは言い
難く、コスト面2重量面、大きさ等でカメラ本体に占め
るレンズ系の割合は年々増加している。また、最近では
非常に高解像度の撮像素子が用いられるようになり、レ
ンズ系の光学性能は従来よりも高いものが要求されるよ
うになっている。このため、一部にはコンパクト化、軽
量化と逆行するズームレンズも見られる。Conventional techniques ■Technology In recent years, electronic components have been reduced in cost and made more compact in small cameras such as video cameras at a considerable speed. It is hard to say that the technology is making any progress, and the ratio of lenses to the camera body is increasing year by year due to factors such as cost, weight, and size. Furthermore, in recent years, very high-resolution imaging devices have come into use, and the optical performance of lens systems is now required to be higher than before. For this reason, there are some zoom lenses that go against the trend of becoming more compact and lightweight.
従来のレンズでは、近接物体へのフォーカシングに際し
て第ルンズ成分を繰り出す方式が多く採用されている。In conventional lenses, a method is often adopted in which the first lens component is extended when focusing on a nearby object.
この第ルンズ成分繰り出し方式では、ズーム全域で一定
距離の物体に対するレンズ繰り出し量が同一なので、フ
ォーカシング機構が簡単である等の利点があるが、反面
第ルンズ成分の有効径を大きくする必要が生じ、十分に
軽量化が達成できない。また、近接時における収差変動
が大きく、特にテレ端では球面収差がアンダー側へ、像
面がオーバー側へ倒れてしまい良好な画像を得ることが
難しく、さらに、フォーカシングレンズの電動繰り出し
機構を有するものでは、消費電力が大きくなる等の問題
がある。In this method of extending the lens component, the amount of lens extension for an object at a fixed distance is the same throughout the entire zoom range, so there are advantages such as a simple focusing mechanism, but on the other hand, it is necessary to increase the effective diameter of the lens component. Sufficient weight reduction cannot be achieved. In addition, the aberration fluctuations are large at close-up, and especially at the telephoto end, the spherical aberration falls to the under side and the image plane falls to the over side, making it difficult to obtain a good image.Furthermore, it is difficult to obtain a good image with a focusing lens that has an electric focusing lens mechanism. However, there are problems such as increased power consumption.
上記問題を解決するために、ズーミングによる像点移動
を補正するコンペンセーターでフォーカシングを行うも
のや、結像を行うマスターレンズ系の後群で、フォーカ
シングを行うものが知られている。例えば、特開昭55
−40447号公報には、コンペンセーターによりフォ
ーカシングを行うズームレンズが開示されている。しか
しながら、上記公報に示されているものは、ズーミング
中一定距離の物体に対して常に合焦しているようにフォ
ーカシング成分(コンペンセーター)を追従させる(以
下、「トラッキング」という)時の軌跡(以下、「トラ
ッキングカーブ」という)が極値を持つ。従って、この
極値の付近ではコンペンセーターの移動方向が変化する
ために、トラッキングが行きすぎてしまったり、また、
この付近でズーミングを中止して再びズーミングを行う
時には、ズーミングの方向によりコンペンセーターの移
動方向が異なる等の理由により、コンペンセーターの制
御が、かなり困難となり、APの精度を高くすることが
困難である。この様子を第11図(a) (b) (C
)に示す、同図において、バリエータ−(V)の動きは
直線的であるが、コンペンセーター(C(F))の動き
は極値を有する。そして、コンペンセーター(C(F)
)は直線部分では点線で示す正しいトラッキング軌跡に
従うが、極値のところでは実線で示す如く、行き過ぎて
しまい、正しいトラッキングカーブからずれる。In order to solve the above problem, there are known methods in which focusing is performed using a compensator that corrects image point movement due to zooming, and methods in which focusing is performed in a rear group of a master lens system that performs image formation. For example, JP-A-55
Japanese Patent No. 40447 discloses a zoom lens that performs focusing using a compensator. However, what is shown in the above publication is a trajectory (hereinafter referred to as "tracking") when the focusing component (compensator) is made to follow (hereinafter referred to as "tracking") so that an object at a certain distance is always in focus during zooming. (hereinafter referred to as a "tracking curve") has an extreme value. Therefore, near this extreme value, the direction of movement of the compensator changes, resulting in excessive tracking or
When you stop zooming and start zooming again near this point, it becomes quite difficult to control the compensator because the direction of movement of the compensator differs depending on the direction of zooming, making it difficult to increase the accuracy of AP. be. This situation is shown in Figure 11 (a) (b) (C
), in which the movement of the variator (V) is linear, but the movement of the compensator (C(F)) has an extreme value. And the compensator (C(F)
) follows the correct tracking trajectory shown by the dotted line in the straight line portion, but at the extreme value it goes too far as shown by the solid line and deviates from the correct tracking curve.
また、特開昭59−28120号公報、特開昭59−2
8121号公報には、マスターレンズ系の後群を使って
フォーカシングを行うものが開示されている。これらの
例では、トラッキングカーブが極値を持たないという利
点があるが、絞りよりも像側のレンズによりフォーカシ
ングを行っているため、絞りの前方に光路分割用の分光
プリズムあるいはミラーを配置してAFを行うTTLパ
ッシブタイプのカメラには用いることが不可能であった
。Also, JP-A-59-28120, JP-A-59-2
Japanese Patent Application No. 8121 discloses a lens that performs focusing using the rear group of a master lens system. These examples have the advantage that the tracking curves do not have extreme values, but since focusing is performed by a lens on the image side of the aperture, a spectroscopic prism or mirror for optical path splitting is placed in front of the aperture. It was impossible to use it for a TTL passive type camera that performs AF.
さらに、これらの例とは別に、特開昭53−10734
7号公報には、トラッキングカーブが極値を持たないよ
うに、ズーミング時に変倍を行うバリエータ−の倍率が
一1倍を含まないズーム解を用いるものが開示されてい
る。しかしながら、このようなズーム解を有するものは
、各レンズ成分間の屈折カバランスが悪くなり、ズーム
全域にわたって諸収差を良好に補正することが困難な上
、バリエータ−の移動量が増大してズームレンズが大型
化してしまう。Furthermore, apart from these examples, Japanese Patent Application Laid-Open No. 53-10734
Publication No. 7 discloses a zoom solution in which the magnification of a variator that changes magnification during zooming does not include 11 times so that the tracking curve does not have an extreme value. However, with such a zoom solution, the refractive coverage between each lens component deteriorates, making it difficult to properly correct various aberrations over the entire zoom range, and the amount of movement of the variator increases, making it difficult to zoom. The lens becomes larger.
尚、5成分ズームレンズとしては、特公昭60−400
10号公報、特開昭60−243622号公報等に開示
されたものがある。しかしながら、前者の場合には第ル
ンズ成分でフォーカシングを行うように構成されている
ので、前述の如く第ルンズ成分の有効径が大きくなって
しまい、重量面等からみてコンパクト性を欠いている。In addition, as a 5-component zoom lens, the
There are those disclosed in Japanese Patent Application Laid-open No. 10, Japanese Patent Application Laid-Open No. 60-243622, and the like. However, in the former case, since focusing is performed using the first lens component, the effective diameter of the first lens component becomes large as described above, resulting in a lack of compactness in terms of weight and the like.
後者の場合には絞りよりも像側のレンズを使ってフォー
カシングを行っているので、やはり前述の如<TTLパ
ッシブタイプのAFを有する小型カメラには用いること
ができない。In the latter case, since focusing is performed using a lens closer to the image than the aperture, it cannot be used in a small camera having TTL passive type AF as described above.
日が”決しようとするi・跡
そこで、本発明の目的は、第2レンズ成分以外のレンズ
成分によりフォーカシングを行うズームレンズにおいて
、ズーミング時のトラッキングカーブがAFに最適な軌
跡を描くことによってズーミングの全域で高精度のAF
を実現することができるズームレンズを提供することに
ある。The purpose of the present invention is to provide a zoom lens that performs focusing using a lens component other than the second lens component, so that the tracking curve during zooming can draw an optimal trajectory for AF. High precision AF over the entire range of
Our goal is to provide a zoom lens that can achieve this goal.
特に、TTLパッシブタイプのAFを可能とするズーム
レンズを提供することにある。In particular, it is an object of the present invention to provide a zoom lens that enables TTL passive type AF.
さらに、本発明の目的は、上記した目的を達成し、かつ
、良好に収差が補正された軽量・コンパクトな高変倍率
ズームレンズを提供することにある。A further object of the present invention is to provide a lightweight, compact, high-power zoom lens that achieves the above-mentioned objects and has aberrations well corrected.
課n(”° るための
上記の目的を達成するために、本発明の5成分ズームレ
ンズは物体側より順に、正の屈折力を有しズーミング中
固定の第2レンズ成分(■)、負の屈折力を有しズーミ
ング時変倍のために光軸上を前後に可動な第2レンズ成
分(■)、負の屈折力を有しズーミング時光軸上を前後
に可動な第3レンズ成分(■)、正の屈折力を有しズー
ミング時光軸上を前後に可動な第4レンズ成分(IV)
、及び正の屈折力を有しズーミング中固定の第5レンズ
成分(V)から成り、前記第3レンズ成分(■)及び第
4レンズ成分(IV)はズーミング時において、テレ端
からワイド端にかけて単調に物体側へ繰り出され、第2
レンズ成分(■)、第3レンズ成分(I[[)及び第4
レンズ成分(IV)は互いに平行とならない移動曲線を
描く構成としている。In order to achieve the above object, the five-component zoom lens of the present invention consists of a second lens component (■) which has positive refractive power and is fixed during zooming, a negative lens component (■), and A second lens component (■) which has a refractive power and is movable back and forth on the optical axis for variable magnification during zooming, and a third lens component (■) which has negative refractive power and is movable back and forth on the optical axis during zooming. ■) The fourth lens component (IV) has positive refractive power and can move back and forth on the optical axis during zooming.
, and a fifth lens component (V) that has positive refractive power and is fixed during zooming, and the third lens component (■) and fourth lens component (IV) have a positive refractive power from the telephoto end to the wide end. The second
lens component (■), third lens component (I[[) and fourth
The lens components (IV) are configured to draw movement curves that are not parallel to each other.
また、第3レンズ成分(III)及び第4レンズ成分(
rV)のうち、少なくとも1つのレンズ成分がフォーカ
シングを行うのが好ましい。In addition, the third lens component (III) and the fourth lens component (
rV), preferably at least one lens component performs focusing.
第2レンズ成分(II)は−1倍の結像倍率を含んでい
るが、第4レンズ成分(IV)を非線型に移動させるこ
とによって、第3レンズ成分(III)はテレ端からワ
イド端にかけて単調に物体側へ移動するような解をつく
ることができる。また、第3レンズ成分(III)の移
動量を適当に取ることによって第4レンズ成分(TV)
もあわせてテレ端がらワイド端にかけて単調に物体側へ
移動する解をつくることができる。そのためには、以下
に示す条件式を満足することが望ましい。The second lens component (II) includes an imaging magnification of -1x, but by moving the fourth lens component (IV) non-linearly, the third lens component (III) is shifted from the telephoto end to the wide end. It is possible to create a solution that moves monotonically toward the object. In addition, by appropriately adjusting the amount of movement of the third lens component (III), the fourth lens component (TV)
In addition, it is possible to create a solution that moves monotonically toward the object from the telephoto end to the wide end. For this purpose, it is desirable to satisfy the conditional expression shown below.
ffi工1 >0.0127 ・・・・・・■
3
但し、6m14 :f14= fT−f″十九時の第3
レンズ成分のテレ端からのくり出し量
Z:ズーム比(= fy / fw )rT =テレ端
における全系の焦点距離fい :ワイド端における全系
の焦点距離第3レンズ成分(III)の焦点距離f、4
におけるテレ端からのくり出し量が、この弐で規定され
るものよりも小さい量となると、第4レンズ成分(■)
はテレ端からワイド端にかけて像側に凸の軌跡を描いて
移動する。従って、第4レンズ成分(■)と第5レンズ
成分(V)の間隔を充分大きく取る必要がありレンズ全
長が著しく大きくなり好ましくない。又、入射瞳位置も
像面方向に後退しているので前玉径も大きくなってしま
う。この場合、バリエータ−である第2レンズ成分(■
)の結像倍率が一1倍を含まない解を用いるときとは異
なり、収差を良好に補正しろるパワーバランスを実現す
る二七が可能であり、しかもハリニークーの移動量は4
成分正負負正タイプのズームレンズとほぼ同程度である
。第7図に示すように、第3レンズ成分(1)及び第4
レンズ成分(IV)のトラッキングカーブがこのような
極値を持たない軌跡を描くことにより、フォーカシング
を第3レンズ成分(m)及び第4レンズ成分(IV)の
うちのいずれの成分で行っても、ズーミング時における
第3レンズ成分(I[[)及び第4レンズ成分(■)の
速度は常に同一方向となり、また加速度も常に同一方向
となるため、AFによるレンズ駆動系の制御が容易とな
る。これに伴ってズーミングの全域で高精度のAFを実
現することができる。また、第3レンズ成分(III)
及び第4レンズ成分(■)の両方の成分でフォーカシン
グを行なってもよくオートとマニュアル、マクロ域と通
常域等の使い分けも可能であるという利点もある。ffi engineering 1 >0.0127 ・・・・・・■
3 However, 6m14:f14=fT-f″3rd at 19:00
Amount Z of the lens component extending from the telephoto end: Zoom ratio (= fy / fw) rT = Focal length of the entire system at the telephoto end f: Focal length of the entire system at the wide end Focal length of the third lens component (III) f, 4
If the amount of protrusion from the telephoto end in is smaller than the amount specified by this second, the fourth lens component (■)
moves in a convex trajectory toward the image side from the telephoto end to the wide end. Therefore, it is necessary to provide a sufficiently large distance between the fourth lens component (■) and the fifth lens component (V), which is undesirable because the total length of the lens becomes significantly large. Furthermore, since the entrance pupil position is also set back in the image plane direction, the front lens diameter also becomes large. In this case, the second lens component (■
), unlike when using a solution that does not include an imaging magnification of 11x, it is possible to achieve a power balance that satisfactorily corrects aberrations, and moreover, the amount of movement of the hariniku is 4
This is almost the same as a component positive/negative/negative type zoom lens. As shown in FIG. 7, the third lens component (1) and the fourth lens component (1)
Since the tracking curve of the lens component (IV) draws a trajectory that does not have such an extreme value, focusing can be performed with either the third lens component (m) or the fourth lens component (IV). During zooming, the speeds of the third lens component (I [[) and the fourth lens component (■)] are always in the same direction, and the accelerations are also always in the same direction, making it easy to control the lens drive system by AF. . Accordingly, highly accurate AF can be achieved over the entire zooming range. In addition, the third lens component (III)
There is also an advantage that focusing may be performed using both the lens component (1) and the fourth lens component (■), and that it is also possible to selectively use auto and manual, macro range and normal range, etc.
さらに、良好に収差が補正された軽量・コンパクトなズ
ームレンズを得るためには、第ルンズ成分(1)乃至第
4レンズ成分(IV)が以下のように構成されているこ
とが望ましい。Furthermore, in order to obtain a lightweight and compact zoom lens with well-corrected aberrations, it is desirable that the lens component (1) to the fourth lens component (IV) be configured as follows.
例えばレンズ構成として、第ルンズ成分(I)は1枚の
負レンズ及び2枚の正レンズの合計3枚、第2レンズ成
分(n)は2枚の負レンズ及び1枚の正レンズの合計3
枚、第3レンズ、成分(■)は1つの負レンズ成分、並
びに第4レンズ成分(IV)は1つ又は2つの正レンズ
成分から構成されるのが望ましい。このような簡単なレ
ンズ構成にすることにより、コンパクトで、かつ高性能
なズームレンズが得られる。For example, as a lens configuration, the first lens component (I) has a total of three lenses, one negative lens and two positive lenses, and the second lens component (n) has two negative lenses and one positive lens, a total of three lenses.
Preferably, the third lens component (■) is composed of one negative lens component, and the fourth lens component (IV) is composed of one or two positive lens components. By adopting such a simple lens configuration, a compact and high-performance zoom lens can be obtained.
またさらに第ルンズ成分(夏)乃至第4レンズ成分(r
V)は、以下の条件を満足することが望ましい。Furthermore, the fourth lens component (summer) to the fourth lens component (r
V) desirably satisfies the following conditions.
2.10< l汽l / ’/’r <6.00.
乞く0 ・・・・・・■1.60<9’、/へ<4
.80 ・・・・・・■0.80<
幅/乞<2.00 ・・・・・・■
但し、ψII:第ルンズ成分(1)の屈折力ψII:第
2レンズ成分(II)の屈折力ψIII:第3レンズ成
分(I[[)の屈折力光:第4レンズ成分(IV)の屈
折力
である。2.10<l/'/'r<6.00.
Beg 0 ・・・・・・■1.60<9', /to<4
.. 80 ・・・・・・■0.80<
Width/width<2.00 ・・・・・・■
However, ψII: refractive power of the second lens component (1) ψII: refractive power of the second lens component (II) ψIII: refractive power of the third lens component (I[[) Light: refraction of the fourth lens component (IV) It is power.
■の条件は、第2レンズ成分CI)と第2レンズ成分(
II)との屈折力の比に関するものである。The condition (2) is the second lens component CI) and the second lens component (CI).
II).
条件■の上限を越えて第2レンズ成分(II)の屈折力
が強くなるとペッツバール和が大きな負の値となり、特
にワイド端で像面が大きくアンダー側に倒れてしまい、
一方テレ端ではコマ収差が発生してしまうので、高性能
な画質を全画面にわたって得ることができない。また、
条件■の下限を越えて第2レンズ成分(II)の屈折力
が弱くなると、第2レンズ成分(It)が変倍のために
必要とする移動量が増大し、レンズ全長が著しく長くな
ってしまい、コンパクトなズームレンズを得ることが困
難になる。更に、テレ端とワイド端における球面収差の
差が大きくなり、ズーム全域で高性能な画質を得ること
ができなくなる。If the refractive power of the second lens component (II) becomes strong beyond the upper limit of condition (2), the Petzval sum will become a large negative value, and the image plane will be greatly tilted to the underside, especially at the wide end.
On the other hand, coma aberration occurs at the telephoto end, making it impossible to obtain high-performance image quality over the entire screen. Also,
When the refractive power of the second lens component (II) becomes weaker than the lower limit of condition (2), the amount of movement of the second lens component (It) required for zooming increases, and the total length of the lens becomes significantly longer. This makes it difficult to obtain a compact zoom lens. Furthermore, the difference in spherical aberration between the telephoto end and the wide end becomes large, making it impossible to obtain high-performance image quality over the entire zoom range.
■の条件は、第2レンズ成分(ff)と第3レンズ成分
(I[[)との屈折力の比に関するものである。Condition (2) relates to the ratio of refractive powers between the second lens component (ff) and the third lens component (I[[).
条件■の上限を越えて第3レンズ成分(III)の屈折
力が弱くなるとズーミングの際にコンペンセーターとし
て像面移動を補正するために移動する量が増大し、テレ
端からワイド端にかけての収差変動量が大きくなり、ズ
ーム全域で高性能な画質を得ることができない。また、
条件■の下限を越えて第3レンズ成分(III)の屈折
力が強くなると、テレ端における像面が大きくアンダー
側に倒れてしまい、全画面にわたって高性能な画質を得
ることができない。If the refractive power of the third lens component (III) becomes weaker by exceeding the upper limit of condition (2), the amount of movement as a compensator to correct image plane movement during zooming will increase, resulting in aberrations from the telephoto end to the wide end. The amount of variation becomes large, making it impossible to obtain high-performance image quality over the entire zoom range. Also,
If the refractive power of the third lens component (III) becomes strong beyond the lower limit of condition (2), the image plane at the telephoto end will be significantly tilted to the underside, making it impossible to obtain high-performance image quality over the entire screen.
■の条件は、第ルンズ成分(1)と第4レンズ成分(I
V)との屈折力の比に関するものである。Condition (2) is the fourth lens component (1) and the fourth lens component (I
V) and the refractive power ratio.
条件■の上限を越えて第4レンズ成分(IV)の屈折力
が強くなると全体の球面収差がアンダー側に大きく倒れ
てしまい、良好な軸上性能が得られない。また条件■の
下限を越えて第4レンズ成分(■)の屈折力が弱くなる
と像点補正のための移動量が大きくなり、中間焦点距離
(ミドル)付近の収差が大きくくずれてズーム全域で高
性能な画質を得ることができな(なる、また第4レンズ
成分でフォーカシングを行なう場合には、フォーカシン
グのための移動量も大きくなり、近接時の性能も低下し
てしまう。If the refractive power of the fourth lens component (IV) becomes strong beyond the upper limit of condition (2), the overall spherical aberration will be significantly tilted to the underside, making it impossible to obtain good axial performance. In addition, when the lower limit of condition (■) is exceeded and the refractive power of the fourth lens component (■) becomes weak, the amount of movement for image point correction becomes large, and aberrations near the intermediate focal length (middle) are greatly degraded and become high throughout the entire zoom range. In addition, when focusing is performed using the fourth lens component, the amount of movement for focusing becomes large, and the performance at close range also deteriorates.
また、さらに諸収差を良好に補正するためには第5レン
ズ成分(V)は物体側より順に正レンズ。Furthermore, in order to better correct various aberrations, the fifth lens component (V) is a positive lens in order from the object side.
負レンズ、大きな空気間隔をあけて1枚または2枚の正
レンズ、負レンズ、及び1枚または2枚の正レンズで構
成され、以下の条件を満足することが望ましい。It is desirable that the lens be composed of a negative lens, one or two positive lenses separated by a large air gap, a negative lens, and one or two positive lenses, and that the following conditions be satisfied.
−0,150<ψsA/ψs+<0.320 ・
旧・・■但し、ψsA:第5レンズ成分(V)の物体側
より2枚のレンズの合
底屈折力
?58:第5レンズ成分(V)の物
体側より3枚目以降のレン
ズの合成屈折力
である。−0,150<ψsA/ψs+<0.320 ・
Old... ■However, ψsA: The combined refractive power of the two lenses from the object side of the fifth lens component (V)? 58: Combined refractive power of the third and subsequent lenses from the object side of the fifth lens component (V).
■の条件は第5レンズ成分(V)の前群と後群との屈折
力の比に関するものである0条件■の上限を越えて前群
の屈折力の方が強くなると、全体の球面収差が大きくア
ンダー側へ倒れてしまう。Condition (2) concerns the ratio of the refractive power between the front group and the rear group of the fifth lens component (V).If the upper limit of the 0 condition (■) is exceeded and the refractive power of the front group becomes stronger, the overall spherical aberration falls to the under side.
一方条件■の下限を越えて前群の屈折力の方が弱くなる
と、球面収差がオーバー側へ倒れてしまう。On the other hand, if the lower limit of condition (2) is exceeded and the refractive power of the front group becomes weaker, the spherical aberration will shift to the over side.
いずれの場合にも高性能のズームレンズを実現するのは
困難となる。In either case, it is difficult to realize a high-performance zoom lens.
また、本発明のズームレンズに第5レンズ成分(V)の
物体側末端に光路分割用のプリズム又はミラーが挿入さ
れているのが好ましい。更にプリズム又はミラーと共に
絞りが設けられていてもよく、この場合フォーカシング
レンズ群である第3レンズ成分(Ill)及び第4レン
ズ成分(IV)のうち、少なくとも1つの成分は、絞り
よりも物体側に配置されることとなり、また絞りの物体
側に光路分割用のプリズムが配置されると、分割された
光束を用いて焦点検出を行うTTLパッシブタイプのA
Fを行うカメラに最適なズームレンズを実現することが
可能となる。Further, it is preferable that a prism or a mirror for splitting the optical path is inserted into the object-side end of the fifth lens component (V) in the zoom lens of the present invention. Furthermore, an aperture may be provided together with the prism or mirror, and in this case, at least one component of the third lens component (Ill) and the fourth lens component (IV), which are the focusing lens group, is located closer to the object than the aperture. In addition, if a prism for optical path splitting is placed on the object side of the diaphragm, a TTL passive type A that performs focus detection using the split light beam.
It becomes possible to realize a zoom lens that is optimal for a camera that performs F.
また、本発明では主レンズの途中に設けた光路分割手段
により得られた光束によって自動焦点検出を行ってもよ
く、この場合これらによって得られた測距信号又はフォ
ーカス信号に従って第3レンズ成分(I[I)又は第4
レンズ成分(■)を移動させるシステムを有しているの
が好ましい。第10図はこのシステムの1つの例を示し
ている。プリズム(又はミラー)(1)により分割され
た光束を用いて焦点検出装置(4)が焦点検出を行い、
検出された信号によって演算及び制御回路(5)がデフ
ォーカス量に応じた第3レンズ成分(II[)又は第4
レンズ成分(■)(第10図については第3レンズ成分
(■)、以下同様)の移動量を算出して、フォーカス群
駆動モーター(3)を駆動させる。第3レンズ成分([
[)又は第4レンズ成分(IV)の玉砕(7)の一部は
、ネジ山を刻んだシャフト(8)と連結しており、ギヤ
を通じて伝達されたモーター(3)の回転に応じて光軸
上を前後に移動する。Further, in the present invention, automatic focus detection may be performed using the light beam obtained by the optical path splitting means provided in the middle of the main lens, and in this case, the third lens component (I [I) or the fourth
Preferably, it has a system for moving the lens component (■). FIG. 10 shows one example of this system. A focus detection device (4) performs focus detection using the light beam split by the prism (or mirror) (1),
Based on the detected signal, the calculation and control circuit (5) selects the third lens component (II[) or the fourth lens component according to the defocus amount.
The amount of movement of the lens component (■) (the third lens component (■) in FIG. 10, the same applies hereinafter) is calculated, and the focus group drive motor (3) is driven. Third lens component ([
[) or a part of the ball crusher (7) of the fourth lens component (IV) is connected to a threaded shaft (8), and the light is emitted according to the rotation of the motor (3) transmitted through the gear. Move back and forth on the axis.
尚モーター(3)の回転はギヤのみによって第3レンズ
成分(Iff)又は第4レンズ成分(IV)に伝達され
てもよい。Note that the rotation of the motor (3) may be transmitted to the third lens component (Iff) or the fourth lens component (IV) only by gears.
叉」L貫
以下、本発明に基づく5成分ズームレンズの実施例を示
す。Embodiments of the five-component zoom lens according to the present invention will be shown below.
但し、各実施例において、r1〜r3□は曲率半径、d
+−d3+ は軸上面間隔を示し、N1〜N18.ν1
〜ν、6はd線に対する屈折率、アツベ数を示す。尚、
各実施例とも第5レンズ成分(V)の物体側に配置され
ている平板は、焦点検出光学系へ光束を導く光路分割用
のプリズムであり、第5レンズ成分(V)の像側に配置
されている平板は、ダイクロイックプリズム、ローパス
フィルタ等に相当する平板である。However, in each example, r1 to r3□ are the radius of curvature, d
+-d3+ indicates the distance between the upper surfaces of the shaft, N1 to N18. ν1
~ν, 6 indicates the refractive index and Abbe number for the d-line. still,
In each example, the flat plate placed on the object side of the fifth lens component (V) is a prism for splitting the optical path that guides the light beam to the focus detection optical system, and is placed on the image side of the fifth lens component (V). The flat plate shown is a flat plate equivalent to a dichroic prism, a low-pass filter, etc.
〈実施例1〉
F、、=1.865〜1.483〜1.481〜1.4
80F =66.3〜32.0〜19.0〜8.75d
ze 1.000
t9
22.00O
N盲5
■。80500
ν
40.97
7
1Z、’14U
Σd =124.365〜124.365〜124.3
65〈実施例2〉
FNO=1.820〜1.452〜1.448〜1.4
40F=66.3〜32.0〜19.0〜8.75Σd
=119.214〜119.214〜119.214
〈実施例3〉
Fso=1.870〜1.455〜1.449〜1.4
60F =66.3〜32.0〜19.0〜8.75d
。<Example 1> F,, = 1.865-1.483-1.481-1.4
80F = 66.3~32.0~19.0~8.75d
ze 1.000 t9 22.00O N blind 5 ■. 80500 ν 40.97 7 1Z, '14U Σd = 124.365 ~ 124.365 ~ 124.3
65 <Example 2> FNO=1.820-1.452-1.448-1.4
40F=66.3~32.0~19.0~8.75Σd
=119.214~119.214~119.214
<Example 3> Fso=1.870-1.455-1.449-1.4
60F = 66.3~32.0~19.0~8.75d
.
1.80O
1
1,84666
シ1
23.82
Σd =117.194〜117.194〜117.1
94次に第1図〜第3図は前記実施例1〜3のテレ端に
おける概略構成を示している。第5レンズ成分(V)の
物体側にはプリズム(又はミラー)(1)及び絞り(1
0)が示されており、像側にはグイクロイックプリズム
、ローパスフィルタ等に相当する平板(11)が示され
ている。1.80O 1 1,84666 S1 23.82 Σd =117.194~117.194~117.1
94 Next, FIGS. 1 to 3 show schematic configurations at the telephoto end of Examples 1 to 3. On the object side of the fifth lens component (V), there is a prism (or mirror) (1) and an aperture (1).
0) is shown, and a flat plate (11) corresponding to a guichroic prism, a low-pass filter, etc. is shown on the image side.
第4図〜第6図は各実施例1〜3に対応する収差図で、
それぞれ<L>はテレ端、<旧〉及び〈M2>は中間焦
点距離(ミドル)、<S>はワイド端での収差を表わす
。また、実線(d)はd線に対する収差、1点鎖線(g
)はg線に対する収差、2点鎖線(c)はC線に対する
収差を表わし、点線(SC)は正弦条件を表わす。更に
点線(DM)と実線(DS)はメリジオナル面とサジタ
ル面での非点収差をそれぞれ表わしている。4 to 6 are aberration diagrams corresponding to each of Examples 1 to 3,
<L> represents the aberration at the telephoto end, <old> and <M2> represent the intermediate focal length (middle), and <S> represents the aberration at the wide end. In addition, the solid line (d) is the aberration for the d-line, and the dashed line (g
) represents the aberration for the g-line, the two-dot chain line (c) represents the aberration for the C-line, and the dotted line (SC) represents the sine condition. Further, the dotted line (DM) and the solid line (DS) represent astigmatism on the meridional plane and the sagittal plane, respectively.
第7図は第2〜4レンズ成分(II) ([[)
(IV)のテレ端<T>からワイド端<W>にかけての
移動を模式的に示しており、第8図及び第9図はそれぞ
れ第3レンズ成分(I[[)及び第4レンズ成分(IV
)の無限遠物体フォーカシング状態及び最近接物体(S
L=1.5m)フォーカシング状態におけるテレ端<T
>からワイド端<W>にかけての移動を模式的に示して
いる。尚、第3レンズ成分(■)及び第4レンズ成分(
IV)は、近接時には矢印で示すように物体側及び像側
へそれぞれ移動し、第3レンズ成分(III)でフォー
カシングする場合には第4レンズ成分(rV)が51=
ωの軌跡(第9図)に沿って移動し、第4レンズ成分(
TV)でフォーカシングする場合には第3レンズ成分(
1)が51=ωの軌跡の軌跡(第8図)に沿って移動す
る。Figure 7 shows the second to fourth lens components (II) ([[)
(IV) schematically shows the movement from the telephoto end <T> to the wide end <W>, and FIGS. 8 and 9 show the third lens component (I[[) and the fourth lens component ( IV
) and the closest object (S
L=1.5m) Tele end <T in focusing state
> to the wide end <W> is schematically shown. In addition, the third lens component (■) and the fourth lens component (
IV) moves toward the object side and the image side as shown by the arrows when approaching, and when focusing with the third lens component (III), the fourth lens component (rV) becomes 51=
The fourth lens component (
When focusing on TV), the third lens component (
1) moves along the trajectory of 51=ω (Fig. 8).
第10図は本発明のズームレンズを適用したシステムの
一実施例を示す模式図である。FIG. 10 is a schematic diagram showing an embodiment of a system to which the zoom lens of the present invention is applied.
第11図は従来例のバリエータ−(V)及びフォーカシ
ングを行うコンペンセーター(C(F))のテレ端<T
>からワイド端<W>にかけての移動を示しており、実
線は実際のトラッキングを示しており、点線は正しいト
ラッキングを示している。Figure 11 shows a conventional variator (V) and a compensator (C (F)) that performs focusing at the telephoto end <T.
> to the wide end <W>, the solid line shows actual tracking, and the dotted line shows correct tracking.
生匪互塾来
本発明によれば、ズーミングの全域で高精度で制御の容
易なAFを実現することができ、特にTTLパッシブタ
イプのAFを可能とする。更に、良好に収差が補正され
ており、高解像力、高画質であり、軽量・コンパクトな
高変倍率ズームレンズを実現することができる。According to the present invention, highly accurate and easily controllable AF can be realized over the entire zooming range, and in particular, TTL passive type AF can be achieved. Furthermore, aberrations are well corrected, high resolution, high image quality, and a lightweight and compact high-power zoom lens can be realized.
第1図、第2図及び第3図は本発明の各実施例に対応す
るレンズ構成図、第4図、第5図及び第6図はその収差
図であり、第7図は本発明における第2〜4レンズ成分
(I[) (III) (TV)のテレ端からワイド
端にかけての移動を示す模式図、第8図及び第9図はそ
れぞれ本発明における第3レンズ成分(III)及び第
4レンズ成分(TV)のテレ端からワイド端にかけての
移動を示す模式図であり、第10図は本発明のズームレ
ンズを適用したシステムの一実施例を示す模式図であり
、第11図は従来例のバリエータ−及びコンペンセータ
ーのテレ端からワイド端にかけての移動を示す模式図で
ある。FIGS. 1, 2, and 3 are lens configuration diagrams corresponding to each embodiment of the present invention, FIGS. 4, 5, and 6 are aberration diagrams thereof, and FIG. 7 is a lens configuration diagram corresponding to each embodiment of the present invention. A schematic diagram showing the movement of the second to fourth lens components (I[) (III) (TV) from the telephoto end to the wide end, and FIGS. 8 and 9 are respectively the third lens component (III) and FIG. 10 is a schematic diagram showing the movement of the fourth lens component (TV) from the telephoto end to the wide end; FIG. 10 is a schematic diagram showing an embodiment of a system to which the zoom lens of the present invention is applied; FIG. 1 is a schematic diagram showing the movement of a conventional variator and compensator from a telephoto end to a wide end.
Claims (1)
固定の第1レンズ成分、負の屈折力を有しズーミング時
変倍のために光軸上を前後に可動な第2レンズ成分、負
の屈折力を有しズーミング時光軸上を前後に可動な第3
レンズ成分、正の屈折力を有しズーミング時光軸上を前
後に可動な第4レンズ成分、及び正の屈折力を有しズー
ミング中固定の第5レンズ成分から成り、前記第3レン
ズ成分及び第4レンズ成分はズーミング時において、テ
レ端からワイド端にかけて単調に物体側へ繰り出され、
第2レンズ成分、第3レンズ成分及び第4レンズ成分は
互いに平行とならない移動曲線を描くことを特徴とする
ズームレンズ。 (2)前記第3レンズ成分及び第4レンズ成分のうち、
少なくとも1つのレンズ成分がフォーカシングを行うこ
とを特徴とする第1請求項に記載のズームレンズ。 (3)前記第1レンズ成分乃至第4レンズ成分は以下の
条件を満足することを特徴とする第1請求項又は第2請
求項に記載のズームレンズ; 2.10<|ψ_II|/ψ_ I <ψ_II<6.00、
ψ_II<01.60<ψ_II/ψ_III<4.80 0.80<ψ_IV/ψ_ I <2.00 但し、ψ_ I :第1レンズ成分の屈折力 ψ_II:第2レンズ成分の屈折力 ψ_III:第3レンズ成分の屈折力 ψ_IV:第4レンズ成分の屈折力 である。[Claims] (1) In order from the object side, the first lens component has a positive refractive power and is fixed during zooming, and the first lens component has a negative refractive power and moves back and forth on the optical axis for variable magnification during zooming. A movable second lens component, a third lens component that has negative refractive power and is movable back and forth on the optical axis during zooming.
a fourth lens component that has a positive refractive power and is movable back and forth on the optical axis during zooming; and a fifth lens component that has a positive refractive power and is fixed during zooming; During zooming, the four lens components move monotonically toward the object side from the telephoto end to the wide end.
A zoom lens characterized in that the second lens component, the third lens component, and the fourth lens component draw movement curves that are not parallel to each other. (2) Of the third lens component and the fourth lens component,
Zoom lens according to claim 1, characterized in that at least one lens component performs focusing. (3) The zoom lens according to claim 1 or claim 2, wherein the first to fourth lens components satisfy the following conditions; 2.10<|ψ_II|/ψ_I <ψ_II<6.00,
ψ_II<01.60<ψ_II/ψ_III<4.80 0.80<ψ_IV/ψ_ I <2.00 However, ψ_ I: Refractive power of the first lens component ψ_II: Refractive power of the second lens component ψ_III: Third lens component Refractive power ψ_IV of lens component: This is the refractive power of the fourth lens component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1141379A JPH036510A (en) | 1989-06-02 | 1989-06-02 | Five-element zoom lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1141379A JPH036510A (en) | 1989-06-02 | 1989-06-02 | Five-element zoom lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH036510A true JPH036510A (en) | 1991-01-14 |
Family
ID=15290628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1141379A Pending JPH036510A (en) | 1989-06-02 | 1989-06-02 | Five-element zoom lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH036510A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009251118A (en) * | 2008-04-02 | 2009-10-29 | Panasonic Corp | Zoom lens system, interchangeable lens device and camera system |
JP2009251117A (en) * | 2008-04-02 | 2009-10-29 | Panasonic Corp | Zoom lens system, interchangeable lens device and camera system |
JP2012194288A (en) * | 2011-03-15 | 2012-10-11 | Ricoh Co Ltd | Zoom lens and camera, and information apparatus |
JP2012225988A (en) * | 2011-04-15 | 2012-11-15 | Canon Inc | Zoom lens and imaging device having the same |
US8416506B2 (en) | 2009-02-20 | 2013-04-09 | Nikon Corporation | Zoom lens, optical apparatus equipped therewith and method for manufacturing the zoom lens |
JP2013160997A (en) * | 2012-02-07 | 2013-08-19 | Tamron Co Ltd | Inner focus type telephotographic zoom lens of large aperture ratio |
US8730584B2 (en) | 2008-07-15 | 2014-05-20 | Nikon Corporation | Variable magnification optical system, optical apparatus provided with same and method for variable magnification using variable magnification optical system |
JP2016024350A (en) * | 2014-07-22 | 2016-02-08 | キヤノン株式会社 | Zoom lens and image capturing device having the same |
-
1989
- 1989-06-02 JP JP1141379A patent/JPH036510A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009251118A (en) * | 2008-04-02 | 2009-10-29 | Panasonic Corp | Zoom lens system, interchangeable lens device and camera system |
JP2009251117A (en) * | 2008-04-02 | 2009-10-29 | Panasonic Corp | Zoom lens system, interchangeable lens device and camera system |
US8472123B2 (en) | 2008-04-02 | 2013-06-25 | Panasonic Corporation | Zoom lens system, interchangeable lens apparatus and camera system |
US8730584B2 (en) | 2008-07-15 | 2014-05-20 | Nikon Corporation | Variable magnification optical system, optical apparatus provided with same and method for variable magnification using variable magnification optical system |
US8416506B2 (en) | 2009-02-20 | 2013-04-09 | Nikon Corporation | Zoom lens, optical apparatus equipped therewith and method for manufacturing the zoom lens |
JP2012194288A (en) * | 2011-03-15 | 2012-10-11 | Ricoh Co Ltd | Zoom lens and camera, and information apparatus |
JP2012225988A (en) * | 2011-04-15 | 2012-11-15 | Canon Inc | Zoom lens and imaging device having the same |
JP2013160997A (en) * | 2012-02-07 | 2013-08-19 | Tamron Co Ltd | Inner focus type telephotographic zoom lens of large aperture ratio |
CN105068226A (en) * | 2012-02-07 | 2015-11-18 | 株式会社腾龙 | Inner focusing telephotographing zoom lens |
JP2016024350A (en) * | 2014-07-22 | 2016-02-08 | キヤノン株式会社 | Zoom lens and image capturing device having the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9684155B2 (en) | Optical system and image pickup apparatus including the same | |
JP4604303B2 (en) | Variable focal length lens system and imaging apparatus including the lens system | |
JP3606548B2 (en) | 3 group zoom lens | |
JP5056184B2 (en) | Zoom lens, imaging device, zoom lens zooming method | |
JP3927866B2 (en) | Zoom lens and photographing apparatus | |
JP3962481B2 (en) | Zoom lens and optical apparatus using the same | |
US5828490A (en) | Image position correcting optical system | |
JP2001033703A (en) | Rear focus type zoom lens | |
JP2017040874A (en) | Zoom lens and imaging apparatus | |
JP3619117B2 (en) | Zoom lens and optical apparatus using the same | |
JP2002311330A (en) | Zoom lens and optical apparatus using the same | |
JP6304969B2 (en) | Attachment optical system and imaging apparatus having the same | |
JP4401469B2 (en) | Zoom lens | |
JP2015034903A5 (en) | ||
JP3352264B2 (en) | Retrofocus type lens and camera having the same | |
JP3184581B2 (en) | Zoom lens | |
JP3236037B2 (en) | High zoom lens | |
JP3619153B2 (en) | Zoom lens and optical apparatus using the same | |
JPH0419605A (en) | Camera system | |
JPH036510A (en) | Five-element zoom lens | |
JPH09218346A (en) | Optical system | |
JPH05273466A (en) | Zoom lens of rear focusing system | |
JPH0250120A (en) | Zoom lens | |
JP2503510B2 (en) | Telephoto zoom lens | |
JP6707987B2 (en) | Large-diameter anti-vibration zoom lens |