[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0364974A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPH0364974A
JPH0364974A JP1200236A JP20023689A JPH0364974A JP H0364974 A JPH0364974 A JP H0364974A JP 1200236 A JP1200236 A JP 1200236A JP 20023689 A JP20023689 A JP 20023689A JP H0364974 A JPH0364974 A JP H0364974A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
type semiconductor
compound
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1200236A
Other languages
Japanese (ja)
Inventor
Yoshinori Ashida
芦田 芳徳
Nobuhiro Fukuda
福田 信弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1200236A priority Critical patent/JPH0364974A/en
Publication of JPH0364974A publication Critical patent/JPH0364974A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To sharply enhance an amorphous photoelectric conversion element in open end voltage and shortcircuit photocurrent by a method wherein a conductive type semiconductor thin film is formed of II-IV compound semiconductor. CONSTITUTION:At least one of a first and a second conductivity type semiconductor thin film, 3 and 5, is formed of II-IV compound semiconductor. A conductive II-IV compound semiconductor thin film is a wide gap semiconductor material, and it is preferable that its forbidden bandwidth is 1.8eV or above. To put it concretely, the wide gap semiconductor material concerned is compound such as ZnS, ZnSe, ZnTe, CdS, CdSe, or the like, and compound semiconductor such as ZnCdS2, ZnCdTe2, ZnCdSe2, MgCdTe2, or the like which is mixed compound of component elements of the compound concerned is effectively used. The control of these compounds in conductivity type is made through impurity doping or modulation in composition, whereby they are turned into a P-type or an N-type.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は非晶質太陽電池の高性能化に関し、とくに、開
放端電圧、短絡光電流を高めることにより、非晶質太陽
電池の高効率化を図る技術に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to improving the performance of amorphous solar cells, and in particular to improving the efficiency of amorphous solar cells by increasing the open circuit voltage and short-circuit photocurrent. Regarding technology.

〔背景技術〕[Background technology]

非晶質太陽電池は電卓や時計を駆動するための、出力の
小さいエネルギー供給源としてすでに実用化されている
。しかしながら、出力の大きいエネルギー供給源として
は、性能不足であり、性能向上をめざして、各種の検討
が実施されている。
Amorphous solar cells are already in practical use as low-output energy sources to power calculators and watches. However, as an energy supply source with a large output, its performance is insufficient, and various studies are being carried out with the aim of improving its performance.

太陽電池の光電変換効率は開放i1圧、短絡電流ならび
に曲線因子の積で表される。各種の検討の結果、短絡光
電流ならびに曲線因子については、飛躍的に改善・向上
されてきたが、開放端電圧は十分な向上は得られていな
い、太陽電池の信頼性向上のために、近年、光入射側に
1層を設けた、pin型非晶質太陽電池が検討されてい
る。この非晶質太陽電池において、開放端電圧を改善す
るためには、p型半導体11111の光電特性を改善せ
ねばならない、とくに、光学バンドギャップの拡大と電
気伝導率の向上を同時に行わねばならないところに、技
術の困難性があった。この理由は、光学バンドギャップ
を拡大すると、−船釣に電気伝導率が低下するからであ
った。これらを満足する材料として、微結晶薄膜が提案
されている。しかしながら、プラズマCVD法や光CV
D法のような従来技術を用いて、透明電極上にp型微結
晶薄膜の形成が試みられたが、結果的には、非晶質太陽
電池の開放端電圧は向上せず、光電変換効率の改善には
つながらなかった。この問題を解決するために、鋭意検
討をかさねて、本発明を完成するにいたった。
The photoelectric conversion efficiency of a solar cell is expressed as the product of open voltage, short circuit current, and fill factor. As a result of various studies, the short-circuit photocurrent and fill factor have been dramatically improved and improved, but the open-circuit voltage has not been sufficiently improved.In recent years, efforts have been made to improve the reliability of solar cells. , a pin-type amorphous solar cell with one layer on the light incidence side has been studied. In order to improve the open-circuit voltage of this amorphous solar cell, the photoelectric properties of the p-type semiconductor 11111 must be improved, and in particular, the optical band gap must be expanded and the electrical conductivity improved at the same time. However, there were technical difficulties. The reason for this was that when the optical bandgap was expanded, the electrical conductivity decreased significantly. A microcrystalline thin film has been proposed as a material that satisfies these requirements. However, plasma CVD method and photo CVD method
Attempts have been made to form a p-type microcrystalline thin film on a transparent electrode using conventional techniques such as the D method, but as a result, the open circuit voltage of amorphous solar cells did not improve and the photoelectric conversion efficiency decreased. did not lead to improvement. In order to solve this problem, we have completed the present invention after extensive research.

〔発明の基本的着想〕[Basic idea of the invention]

現在の技術水準においては、■族系材料のみでの先覚特
性に飛躍的な向上を得るには、多大な検討が必要であり
、先に述べたように多くの困難がある。結晶性化合物半
導体は導電率、バンドギャップを任意に制御でき、■族
材料に比べると、結晶性を得やすいことに着目した。導
電型を制御した■−■族化合物半導体薄膜を導電型半導
体薄膜に適用した非晶質光電変換素子を形成することに
より、非晶質光電変換素子の開放端電圧・短絡光電流を
高くすることができた。
At the current state of the art, a great deal of study is required to obtain a dramatic improvement in the anticipatory properties using only group III materials, and as mentioned above, there are many difficulties. We focused on the fact that the conductivity and bandgap of crystalline compound semiconductors can be controlled arbitrarily, and crystallinity is easier to obtain than with group II materials. Increasing the open circuit voltage and short-circuit photocurrent of an amorphous photoelectric conversion element by forming an amorphous photoelectric conversion element in which a conductive type semiconductor thin film is applied to a ■-■ group compound semiconductor thin film with a controlled conductivity type. was completed.

〔発明の開示〕[Disclosure of the invention]

本発明は、基板、第一電極、第一の導電型半導体薄膜、
実質的に真性の非晶質半導体薄膜、第二の導電型半導体
薄膜、第二電極の順に積層して形成された非晶質光電変
換素子において、第一の導電型半導体薄膜および第二の
導電型半導体薄膜(以下、導電型半導体薄膜と略称する
)のうち、少なくとも一方がII−VII化合物半導体
薄膜であることを特徴とする非晶質光電変換素子に関す
る。
The present invention includes a substrate, a first electrode, a first conductive type semiconductor thin film,
In an amorphous photoelectric conversion element formed by laminating a substantially intrinsic amorphous semiconductor thin film, a second conductivity type semiconductor thin film, and a second electrode in this order, the first conductivity type semiconductor thin film and the second conductivity type semiconductor thin film are stacked in this order. The present invention relates to an amorphous photoelectric conversion element characterized in that at least one of type semiconductor thin films (hereinafter abbreviated as conductive type semiconductor thin film) is a II-VII compound semiconductor thin film.

本発明の光電変換素子の構成において、導電型半導体薄
膜について、具体的には、第一の導電型半導体薄膜が正
孔が多数キャリヤであるp型半導体の場合には、第二の
導電型半導体薄膜は電子が多数キャリヤであるn型半導
体である。また、第一の導電型半導体薄膜がn型半導体
の場合には、第二の導電型半導体薄膜はp型半導体を用
いる。
In the configuration of the photoelectric conversion element of the present invention, regarding the conductive type semiconductor thin film, specifically, when the first conductive type semiconductor thin film is a p-type semiconductor in which holes are majority carriers, the second conductive type semiconductor thin film is a p-type semiconductor in which holes are majority carriers. The thin film is an n-type semiconductor in which electrons are the majority carriers. Further, when the first conductive type semiconductor thin film is an n-type semiconductor, the second conductive type semiconductor thin film is a p-type semiconductor.

以下、図面を参照しつつ、本発明の光電変換素子の構成
例を説明する。
Hereinafter, an example of the configuration of the photoelectric conversion element of the present invention will be described with reference to the drawings.

第1図は本発明の光電変換素子の構成例を示したもので
ある1図中、図中1は基板、2は第一の電極、3は第一
の導電型半導体薄膜、4は実質的に真性の非晶質半導体
薄膜、5は第二の導電型半導体薄膜、6は第二の電極で
ある。
FIG. 1 shows an example of the configuration of a photoelectric conversion element of the present invention. In the figure, 1 is a substrate, 2 is a first electrode, 3 is a first conductive type semiconductor thin film, and 4 is a substantially 5 is an intrinsic amorphous semiconductor thin film, 5 is a second conductivity type semiconductor thin film, and 6 is a second electrode.

そして、本発明の素子は、第一の導電型半導体薄膜3お
よび第二の導電型半導体薄膜5のうち、少なくとも一方
が、II−Vl族化合物半導体薄膜であることを特徴と
するものである。
The device of the present invention is characterized in that at least one of the first conductive type semiconductor thin film 3 and the second conductive type semiconductor thin film 5 is a II-Vl group compound semiconductor thin film.

しかして、本発明における導電型I[−Vl族化合物半
導体薄膜とは、広ワイドギャップ半導体材料であり、好
ましくは禁制帯幅が1.8eV以上のものである。具体
的には、ZnS、Zn5e、ZnTe、CdS、CdS
e、等であり、またこれらの化合物の構成元素の混合化
合物であるZnCd5! 、ZnCdTet 、ZnC
dSe、、MgCdTea等の化合物半導体も有効に用
いられる。
Therefore, the conductivity type I[-Vl group compound semiconductor thin film in the present invention is a wide-gap semiconductor material, and preferably has a forbidden band width of 1.8 eV or more. Specifically, ZnS, Zn5e, ZnTe, CdS, CdS
e, etc., and ZnCd5!, which is a mixed compound of the constituent elements of these compounds. , ZnCdTet, ZnC
Compound semiconductors such as dSe, MgCdTea, etc. can also be effectively used.

これらの化合物の導電型の制御は不純物のドーピングの
他に、組成を変調することにより行われ、p型、n型と
することができる。
The conductivity type of these compounds is controlled not only by doping with impurities but also by modulating the composition, and can be made p-type or n-type.

用いる導電型半導体薄膜の厚みに関しては、限定的な制
限はないが、通常30A−1000人程度であり、とく
に光入射側に用いる導電型半導体薄膜は、30人〜50
0人程度の厚みが適している。
There is no specific restriction on the thickness of the conductive semiconductor thin film used, but it is usually about 30A-1000mm, and in particular, the thickness of the conductive semiconductor thin film used on the light incident side is 30-50mm thick.
A thickness of about 0 people is suitable.

本導電型II−VI族半導体薄膜の形成方法としては、
本発明を実施するに、とくに限定されるものではないが
、スパッタリング法、真空蒸着法、イオンブレーティン
グ法、ヨウ素を用いた化学気相拡散法等があり、実用性
の観点においては、スパッタリング法が好ましい。
The method for forming the present conductivity type II-VI group semiconductor thin film is as follows:
To carry out the present invention, there are methods such as sputtering method, vacuum evaporation method, ion blating method, chemical vapor phase diffusion method using iodine, etc., but from a practical point of view, sputtering method is not particularly limited. is preferred.

スパッタリングによる具体的な化合物半導体薄膜の形成
方法として、例えば、ZnTeの成膜について説明する
。Liを1wt%添加したZn金属とTe金属の二種の
ターゲットを用い、高周波電力を独立に制御し、膜中組
成を制御し、スパッタリングする。導入するガスは、A
 r 10105e、圧力は10mtorr s高周波
電力をZnに50W、Teに30W投入する。ドーパン
トとして、Li、Na、Cu % A g −、A u
 1P 1B s A 1等があり、Zn金属に添加す
るが、Te金属に添加することも、本発明を実施するに
何ら制限されない、また、1源スパツタリング方法を用
い、ターゲットにZnTe(Li)を用いた方法も有効
である。
As a specific method for forming a compound semiconductor thin film by sputtering, for example, the formation of a ZnTe film will be described. Using two types of targets, Zn metal and Te metal to which 1 wt% Li is added, high frequency power is independently controlled to control the composition in the film, and sputtering is performed. The gas to be introduced is A
r 10105e, pressure is 10 mtorr s High frequency power of 50 W is applied to Zn and 30 W to Te. As dopants, Li, Na, Cu % A g −, Au
1P 1B s A 1, etc., and is added to Zn metal, but adding it to Te metal is not limited to implementing the present invention.Also, using a one-source sputtering method, ZnTe(Li) is added to the target. The method used is also effective.

実質的に真性の(以下、i型と略称する)半導体m膜は
水素化シリコン薄膜、水素化シリコンゲルマン薄膜、水
素化シリコンカーボン薄膜等であリ、非晶質太陽電池の
光活性領域を形成するものである。これら実質的に真性
の半導体薄膜は、分子内にシリコンを有する化合物、ゲ
ルマン、シリルゲルマン等の分子内にゲルマニウムを有
する化合物、炭化水素ガス等から、目的の半導体薄膜に
応じて適宜選択される原料ガスに、プラズマCVD(化
学気相堆積)法や光CVD (化学気相堆積)法を適用
することにより容易に形成される。原料ガスを水素やヘ
リウム等で希釈して用いることや原料ガスにごく微量の
ジボランを添加すること等、i型半導体薄膜形成におけ
る従来技術を併用することについては、なんら、本発明
の効果を妨げるものではない、形成条件は、形成温度は
150〜400℃、好ましくは175〜350°Cであ
り、形成圧力は0.01”−5Torr、好ましくは0
.03〜1.5 Torrで行われる。i型半導体薄膜
の膜厚は太陽電池の用途に応じて適宜決定されるもので
あり、本発明の限定条件ではない0本発明の効果を達成
するためには、1000人〜10000人程度で十分で
ある。
The substantially intrinsic (hereinafter abbreviated as i-type) semiconductor film may be a hydrogenated silicon thin film, a hydrogenated silicon germane thin film, a hydrogenated silicon carbon thin film, etc., and forms a photoactive region of an amorphous solar cell. It is something to do. These substantially intrinsic semiconductor thin films are made from raw materials that are appropriately selected depending on the desired semiconductor thin film from compounds containing silicon in the molecule, compounds containing germanium in the molecule such as germane and silylgermane, and hydrocarbon gases. It is easily formed by applying a plasma CVD (chemical vapor deposition) method or a photo CVD (chemical vapor deposition) method to a gas. The combined use of conventional techniques in forming an i-type semiconductor thin film, such as diluting the raw material gas with hydrogen, helium, etc., or adding a very small amount of diborane to the raw material gas, will not impede the effects of the present invention. The forming conditions are as follows: the forming temperature is 150 to 400°C, preferably 175 to 350°C, and the forming pressure is 0.01''-5 Torr, preferably 0.
.. Performed at 0.03 to 1.5 Torr. The thickness of the i-type semiconductor thin film is appropriately determined depending on the use of the solar cell, and is not a limiting condition of the present invention.In order to achieve the effects of the present invention, approximately 1,000 to 10,000 people is sufficient. It is.

次に、本発明の光電変換素子においては、少なくとも一
方の導電型半導体薄膜に、■−■族化合物半導体薄膜を
適用する。具体的には、その薄膜の導電型がp型である
場合には、他方の導電型半導体薄膜は、n型の性質を示
すものであり、n型の微結晶薄膜やn型のアモルファス
薄膜等が有効に用いられる。具体的に例示すると、n型
の微結晶シリコン薄膜、炭素含有微結晶シリコン薄膜、
微結晶シリコンカーバイド薄膜、アモルファスシリコン
薄膜、アモルファスシリコンカーボン薄膜、アモルファ
スシリコンゲルマン薄膜等を有効に用いることができる
。これらn型半導体薄膜は、分子内にシリコンを有する
化合物、ゲルマン、シリルゲルマン等の分子内にゲルマ
ニウムを有する化合物、炭化水素ガス等から、目的とす
る半導体薄膜に応じて適宜選択される原料に、ホスフィ
ンやアルシン等の周期律表の第V族の化合物、ならびに
水素を混合して、プラズマCVD (化学気相堆積)法
や光CVD (化学気相堆積)法を適用することにより
容易に形成される。さらに、当該原料ガスをヘリウムや
アルゴン等の不活性ガスで希釈することは、なんら、本
発明の効果を妨げるものではない、形成条件は、形成温
度は150〜400゛C1好ましくは175〜350°
Cであり、形成圧力は0.01〜5 Torr、好まし
くは0.03〜1.5 Torrで行われる。n型半導
体薄膜の膜厚は、200Å〜500人程度で十分である
Next, in the photoelectric conversion element of the present invention, a ■-■ group compound semiconductor thin film is applied to at least one conductivity type semiconductor thin film. Specifically, when the conductivity type of the thin film is p-type, the other conductivity type semiconductor thin film exhibits n-type properties, such as an n-type microcrystalline thin film or an n-type amorphous thin film. is used effectively. To give specific examples, n-type microcrystalline silicon thin film, carbon-containing microcrystalline silicon thin film,
A microcrystalline silicon carbide thin film, an amorphous silicon thin film, an amorphous silicon carbon thin film, an amorphous silicon germane thin film, etc. can be effectively used. These n-type semiconductor thin films are made using raw materials that are appropriately selected depending on the desired semiconductor thin film from compounds having silicon in the molecule, compounds having germanium in the molecule such as germane and silylgermane, and hydrocarbon gases. It is easily formed by mixing compounds from Group V of the periodic table such as phosphine and arsine, and hydrogen, and applying plasma CVD (chemical vapor deposition) or photoCVD (chemical vapor deposition). Ru. Furthermore, diluting the raw material gas with an inert gas such as helium or argon does not impede the effects of the present invention.The formation conditions include a formation temperature of 150 to 400°C, preferably 175 to 350°C.
C, and the forming pressure is 0.01 to 5 Torr, preferably 0.03 to 1.5 Torr. It is sufficient for the thickness of the n-type semiconductor thin film to be about 200 Å to 500 Å.

本発明の非晶質先覚変換素子を形成するに、用いるに好
ましい原料ガスについてさらに具体的な示例をあげて説
明する0分子内にシリコンを有する化合物については、
モノシラン、ジシラン、トリシラン等の水素化シリコン
;モノメチルシラン、ジメチルシラン、トリメチルシラ
ン、テトラメチルシラン、エチルシラン、ジエチルシラ
ン等のアルキル基置換の水素化シリコン;ビニルシラン
、ジビニルシラン、トリビニルシラン、ビニルジシラン
、ジビニルジシラン、プロペニルシラン、エチニルシラ
ン等のラジカル重合可能の不飽和炭化水素基を分子内に
有する水素化シリコン;これら水素化シリコンの水素が
一部またはすべてフッ素で置換されたフッ化シリコンを
有効に用いることができる。
For forming the amorphous pre-conversion element of the present invention, the preferred raw material gases to be used will be explained with further specific examples.For compounds having silicon in the molecule,
Hydrogenated silicones such as monosilane, disilane, trisilane; hydrogenated silicones substituted with alkyl groups such as monomethylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, ethylsilane, diethylsilane; vinylsilane, divinylsilane, trivinylsilane, vinyldisilane, divinyl Hydrogenated silicones that have radically polymerizable unsaturated hydrocarbon groups in their molecules such as disilane, propenylsilane, and ethynylsilane; effective use of fluorinated silicones in which some or all of the hydrogen in these silicon hydrides has been replaced with fluorine. be able to.

炭化水素ガスの具体的示例として、メタン、エタン、プ
ロパン、エチレン、プロピレン、アセチレン等の炭化水
素ガスが有用である。これら炭化水素ガスは、炭素含有
微結晶シリコン薄膜、微結晶シリコンカーバイド薄膜等
の形成において、光学的バンドギャップを変更するとき
に用いると便利である。また、この目的においては、ア
ルキル基置換の水素化シリコン、ラジカル重合可能の不
飽和炭化水素基を分子内に有する水素化シリコン、これ
ら水素化シリコンの水素が一部またはすべてフッ素で置
換されたフッ化シリコン等の材料も有用である。
As specific examples of hydrocarbon gases, hydrocarbon gases such as methane, ethane, propane, ethylene, propylene, and acetylene are useful. These hydrocarbon gases are conveniently used to change the optical bandgap in forming carbon-containing microcrystalline silicon thin films, microcrystalline silicon carbide thin films, and the like. For this purpose, silicon hydrides substituted with alkyl groups, silicon hydrides having a radically polymerizable unsaturated hydrocarbon group in the molecule, and silicon hydrides in which some or all of the hydrogens in these silicon hydrides are substituted with fluorine are used. Materials such as silicon oxide are also useful.

S板、第一電極、第二電極等については、とくに、限定
される条件はない、基板としては青板ガラス、ホウケイ
酸ガラス、石英ガラス等従来用いられているガラス基板
材料が有用であるが、さらに、金属やプラスチックスも
基板材料として用いることができる。プラスチックス材
料においては、■00℃以上の温度に耐える材料をさら
に有効に用いることができる。第一および第二電極とし
ては、太陽光入射のために、一方あるいは両方が透光性
を有することが必要であるが、それ以外はなんら制約を
受けない、具体的には、酸化スズ、酸化インジウム、酸
化亜鉛等の金属酸化物や透光性の金属等を有効に用いる
ことができる。また、金属電極として、アルミニウム、
クロム、ニッケルークロム、銀、金、白金等のや酸化ス
ズ、酸化インジウム、酸化亜鉛等の金属酸化物の中から
適宜、選択して用いることができる。
Regarding the S plate, the first electrode, the second electrode, etc., there are no particular limitations.As the substrate, conventionally used glass substrate materials such as blue plate glass, borosilicate glass, and quartz glass are useful; Furthermore, metals and plastics can also be used as substrate materials. As for plastic materials, materials that can withstand temperatures of 100° C. or higher can be used more effectively. For the first and second electrodes, one or both must be translucent for sunlight to enter, but there are no other restrictions.Specifically, tin oxide, oxide Metal oxides such as indium and zinc oxide, translucent metals, and the like can be effectively used. In addition, aluminum,
An appropriate material can be selected from metal oxides such as chromium, nickel-chromium, silver, gold, and platinum, and metal oxides such as tin oxide, indium oxide, and zinc oxide.

以下、実施例により、本発明の実施の!!様を説明する
Hereinafter, the present invention will be explained with reference to examples! ! Explain the situation.

〔実施例1〕 光電変換素子の形成装置としては、プラズマCVD法、
スパッタリング法並びに光CVD法を適用できる成膜装
置を用いた。素子構成は第2図に示したとおりである。
[Example 1] As a forming apparatus for a photoelectric conversion element, a plasma CVD method,
A film forming apparatus to which sputtering method and photo-CVD method can be applied was used. The element configuration is as shown in FIG.

酸化スズ膜7が厚み1μ被覆されたガラス基板13を成
膜装置内に設置した。
A glass substrate 13 coated with a tin oxide film 7 having a thickness of 1 μm was placed in a film forming apparatus.

第一の導電型半導体薄膜8として、P型のZnTeを先
ず形成した。 Liを1wt%添加したZn金属とTe
金属ををスパッタリング用ターゲットとし、スパッタリ
ング条件として、圧力10mtorr 、 Arガス流
ii10sccm、各高周波型カフ0W、40W、基板
温度300°C1を用いた。成膜時間300秒にて、1
50人を形成した後、水素ガス雰囲気にて400 ’C
加熱処理を行った1次に実質的に真性の半導体薄膜形成
室に当該基板を移送し、モノシランを導入して、圧力0
.05Torr、形成温度200℃の条件でプラズマC
VD法により、アモルファスシリコン薄膜9を6000
人の膜厚に形成した。プラズマCVD法は13.56 
M)Izの高周波放電を利用した。このときの、RF電
力は15匈であった。実質的に真性の半導体EiM9を
形成後、n型半導体薄膜形成室に当該基板を移送した。
First, P-type ZnTe was formed as the first conductive type semiconductor thin film 8 . Zn metal with 1wt% Li added and Te
A metal was used as a sputtering target, and the sputtering conditions were a pressure of 10 mtorr, an Ar gas flow of 10 sccm, high frequency cuffs of 0 W and 40 W, and a substrate temperature of 300° C. At a film formation time of 300 seconds, 1
After forming 50 people, heat at 400'C in hydrogen gas atmosphere.
After the heat treatment, the substrate is transferred to a substantially intrinsic semiconductor thin film formation chamber, monosilane is introduced, and the pressure is reduced to 0.
.. Plasma C under the conditions of 0.5 Torr and formation temperature of 200°C.
By VD method, amorphous silicon thin film 9 was
Formed to the thickness of a human. Plasma CVD method is 13.56
M) Utilized high frequency discharge of Iz. At this time, the RF power was 15 tons. After forming the substantially intrinsic semiconductor EiM9, the substrate was transferred to an n-type semiconductor thin film forming chamber.

モノシラン/ホスフィン/水素からなる原料ガスをそれ
ぞれの流量が1010.2/100の割合になるように
導入した。圧力0.2 Torrs形戒温度形成0°C
の条件でプラズマCVD法によりn型半導体i膜10を
500人の膜厚に形成した。プラズマCVD法は13.
56 MHzのRF放電を利用した。
Raw material gases consisting of monosilane/phosphine/hydrogen were introduced so that their flow rates were 1010.2/100. Pressure 0.2 Torrs Temperature formation 0°C
An n-type semiconductor i film 10 was formed to a thickness of 500 nm by plasma CVD under the following conditions. Plasma CVD method is 13.
A 56 MHz RF discharge was utilized.

このときの、RF′を力は100−であった、ついで、
薄膜形成装置から取り出し、第二の電極であるアルミニ
ウム金属電極11を形成し、光電変換素子を作製した。
At this time, the force of RF' was 100-, then,
It was taken out from the thin film forming apparatus, and an aluminum metal electrode 11 as a second electrode was formed to produce a photoelectric conversion element.

〔比較例1〕 実施例1において、第一の導電型半導体薄膜として、I
I−VI族化合物半導体薄膜の替わりに、p型機結晶シ
リコン薄膜を形成した。素子の層構成を第3図に示す、
零層以外は実施例1と全く同じ工程で非晶質光電変換素
子を形成した。P型機結晶薄膜の形成は、110.03
/200の割合のモノシラン/ジボラン/水素の混合ガ
スを成膜室に導入し、RFt力50W1圧力0.1to
rr 、基板温度250℃で放電時間200秒により行
い、150人形成した。
[Comparative Example 1] In Example 1, I
A p-type mechanocrystalline silicon thin film was formed instead of the I-VI group compound semiconductor thin film. The layer structure of the device is shown in Figure 3.
An amorphous photoelectric conversion element was formed using the same steps as in Example 1 except for the zero layer. Formation of P-type machine crystal thin film is 110.03
A mixed gas of monosilane/diborane/hydrogen at a ratio of
rr, the substrate temperature was 250° C., the discharge time was 200 seconds, and 150 people were formed.

以上により作製した非晶質光!変換素子の性能を評価し
た。評価として、AM 1.5.100 taltl/
c4の光をソーラーシミュレータにより、照射して当該
非晶質光電変換素子の光電特性を測定した0本発明によ
り実施した光電変換素子と比較例で示した光起電力素子
の性能を比較した結果、開放端電圧において10%、短
絡光を流においても20%の向上が認めらた。結果とし
て、光1f変換効率は30%ものの改善が得られた。
Amorphous light created as above! The performance of the conversion element was evaluated. As an evaluation, AM 1.5.100 taltl/
The photoelectric characteristics of the amorphous photoelectric conversion element were measured by irradiating it with c4 light using a solar simulator.The results of comparing the performance of the photoelectric conversion element implemented according to the present invention and the photovoltaic element shown in the comparative example, A 10% improvement in open circuit voltage and a 20% improvement in short circuit light current was observed. As a result, the optical 1f conversion efficiency was improved by 30%.

〔発明の効果〕〔Effect of the invention〕

以上の実施例ならびに比較例から明らかなように、導電
型半導体薄膜に■−■族化合物半導体を用いることによ
り、従来技術で実用化されている非晶質光電変換素子の
性能とくに、開放端電圧、短絡光電流を著しく向上させ
るものである。すなわち、本発明は実用レベルにおいて
、非晶質光電変換素子の光を変換効率の改善に大きく貢
献するものである。このように、本発明は電力用太陽電
池に要求される高変換効率を可能にする技術を提供でき
るものであり、エネルギー産業にとって、きわめて有用
な発明であると云わざるを得ない。
As is clear from the above Examples and Comparative Examples, by using a ■-■ group compound semiconductor for the conductive semiconductor thin film, the performance of the amorphous photoelectric conversion element that has been put into practical use with the prior art can be improved, especially the open circuit voltage. , which significantly improves the short-circuit photocurrent. That is, the present invention greatly contributes to improving the light conversion efficiency of an amorphous photoelectric conversion element at a practical level. As described above, the present invention can provide a technology that enables high conversion efficiency required for power solar cells, and it cannot be said that it is an extremely useful invention for the energy industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光電変換素子の構成例を示す模式図で
ある。第2図は本発明の実施例の素子の構成例を示す模
式図である。第3図は従来技術による非晶質光電変換素
子の例を示す模式図である。 図中1−・−・・−・−・基板、2   第一の電極、
3・−・−・・−第一の導電型半導体薄膜、4   実
質的に真性の非晶質半導体薄膜、5   第二の導電型
半導体薄膜、6−・・・・・−・−・・第二の電極、7
・−・・−・−・−・−酸化スズ、8   p型ZnT
e、9    i型アモルファスシリコン薄膜、10・
−・−・−・・・−n型微結晶シリコン薄膜、11  
  アルミニウム金属電極、12−・・・・・−・・−
・・p型機結晶シリコン薄膜、13・・・・・・・・・
−・ガラス基板を示す。
FIG. 1 is a schematic diagram showing a configuration example of a photoelectric conversion element of the present invention. FIG. 2 is a schematic diagram showing an example of the structure of an element according to an embodiment of the present invention. FIG. 3 is a schematic diagram showing an example of an amorphous photoelectric conversion element according to the prior art. In the figure, 1-・--・--・Substrate, 2 First electrode,
3.----.--first conductivity type semiconductor thin film, 4. substantially intrinsic amorphous semiconductor thin film, 5. second conductivity type semiconductor thin film, 6--..--.--th. Second electrode, 7
・−・・−・−・−・−Stin oxide, 8 p-type ZnT
e, 9 i-type amorphous silicon thin film, 10.
−・−・−・・n type microcrystalline silicon thin film, 11
Aluminum metal electrode, 12-...--
・・P-type mechanical crystalline silicon thin film, 13・・・・・・・・・
−・Indicates a glass substrate.

Claims (1)

【特許請求の範囲】[Claims] (1)基板、第一電極、第一の導電型半導体薄膜、実質
的に真性の非晶質半導体薄膜、第二の導電型半導体薄膜
、第二電極の順に積層して形成された非晶質光電変換素
子において、第一の導電型半導体薄膜および第二の導電
型半導体薄膜のうち、少なくとも一方が、II−VI族化合
物半導体薄膜であることを特徴とする非晶質光電変換素
子。
(1) An amorphous material formed by laminating a substrate, a first electrode, a first conductivity type semiconductor thin film, a substantially intrinsic amorphous semiconductor thin film, a second conductivity type semiconductor thin film, and a second electrode in this order. 1. An amorphous photoelectric conversion element, wherein at least one of a first conductive type semiconductor thin film and a second conductive type semiconductor thin film is a II-VI group compound semiconductor thin film.
JP1200236A 1989-08-03 1989-08-03 Photoelectric conversion element Pending JPH0364974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1200236A JPH0364974A (en) 1989-08-03 1989-08-03 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1200236A JPH0364974A (en) 1989-08-03 1989-08-03 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH0364974A true JPH0364974A (en) 1991-03-20

Family

ID=16421076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1200236A Pending JPH0364974A (en) 1989-08-03 1989-08-03 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH0364974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138571A (en) * 2005-11-18 2007-06-07 Fuji Electric Retail Systems Co Ltd Joint structure of sill member and joist member of prefabricated building, and support leg mounting structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138571A (en) * 2005-11-18 2007-06-07 Fuji Electric Retail Systems Co Ltd Joint structure of sill member and joist member of prefabricated building, and support leg mounting structure
JP4682817B2 (en) * 2005-11-18 2011-05-11 富士電機システムズ株式会社 Bonding structure of base and joist members of assembly type building

Similar Documents

Publication Publication Date Title
US4598164A (en) Solar cell made from amorphous superlattice material
EP0206585B1 (en) Thin film photovoltaic device
KR860001163B1 (en) Thin solar cell
US5248621A (en) Method for producing solar cell devices of crystalline material
US4251289A (en) Gradient doping in amorphous silicon
US5948176A (en) Cadmium-free junction fabrication process for CuInSe2 thin film solar cells
US4113531A (en) Process for fabricating polycrystalline inp-cds solar cells
US4451691A (en) Three-terminal ternary III-V multicolor solar cells and process of fabrication
JPS6239550B2 (en)
AU610231B2 (en) Pin junction photovoltaic element having I-type semiconductor layer comprising non-single crystal material containing at least Zn, Se and H in an amount of 1 to 40 atomic per cent
JPH04267568A (en) Photovoltaic element
JPS61287176A (en) Substrate and photovoltaic device having the same
EP0139505A1 (en) Proximity doping of multilayered amorphous semiconductors
US5151255A (en) Method for forming window material for solar cells and method for producing amorphous silicon solar cell
JPH0364973A (en) Photovoltaic element
JPH0364974A (en) Photoelectric conversion element
JPH0376166A (en) Photoelectric converter
JPH0276266A (en) Photoelectric conversion element
JPH0393279A (en) Optoelectric transducer
JP2688220B2 (en) Amorphous solar cell
JPH04192373A (en) Photovoltaic element
JPH0653532A (en) Photoelectric conversion element
JPH02109376A (en) Amorphous solar cell
JPH03235373A (en) Photovoltaic element
JP2966908B2 (en) Photoelectric conversion element