[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0359317A - Cooling structure of combustor of gas turbine - Google Patents

Cooling structure of combustor of gas turbine

Info

Publication number
JPH0359317A
JPH0359317A JP19483989A JP19483989A JPH0359317A JP H0359317 A JPH0359317 A JP H0359317A JP 19483989 A JP19483989 A JP 19483989A JP 19483989 A JP19483989 A JP 19483989A JP H0359317 A JPH0359317 A JP H0359317A
Authority
JP
Japan
Prior art keywords
air
inner cylinder
guide member
temperature
pressure air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19483989A
Other languages
Japanese (ja)
Inventor
Kazuoki Kitahara
北原 一起
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JISEDAI KOUKUUKI KIBAN GIJUTSU KENKYUSHO KK
Original Assignee
JISEDAI KOUKUUKI KIBAN GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JISEDAI KOUKUUKI KIBAN GIJUTSU KENKYUSHO KK filed Critical JISEDAI KOUKUUKI KIBAN GIJUTSU KENKYUSHO KK
Priority to JP19483989A priority Critical patent/JPH0359317A/en
Publication of JPH0359317A publication Critical patent/JPH0359317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To cool a high-temperature part efficiently and to reduce the quantity of cooling air by disposing a guide member in the vicinity of the outer periphery of a step and by directing high-pressure air in an air passage toward the high- temperature part positioned between the steps in the peripheral wall of an inner cylinder. CONSTITUTION:An annular guide member 16 is disposed in the vicinity of the outer periphery of a step 14, and the guide member 16 is welded to a number of fitting brackets 17 welded to an inner cylinder 6. The guide member 16 is formed to have a section having a stepped part in conformity with an external shape of the inner cylinder 6 and it directs a part of high-pressure air A in an air passage 8 toward a high-temperature part 6c positioned between the steps 14 in the peripheral wall of the inner cylinder 6. Accordingly, the high- pressure air A runs against the high-temperature part 6c, so as to cool the high-temperature part 6c efficiently, and thus the quantity of cooling air C can be reduced. By reducing the quantity of the cooling air C, the rate of air for combustion introduced into a fuel nozzle 9 and the rate of air for controlling the temperature of an outlet of a combustor can be increased, an output of a gas turbine is improved and the lifetime of the turbine 10 can be prolonged.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はガスタービンの燃焼器の冷却構造に関し、よ
り詳しくは、圧縮機の後方に配置されたアニユラ型の燃
焼器内筒の冷却構造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a cooling structure for a combustor of a gas turbine, and more particularly, to a cooling structure for an annular type combustor inner cylinder located at the rear of a compressor. It is something.

[従来の技術] 従来より、燃焼器内筒をリング状に形成したアニユラ型
燃焼器の冷却構造の1つとして、フィルム冷却構造が知
られている(たとえば、特開昭49−112014号公
報参照)。この種の冷却構造を有するガスタービンの一
例を第5図および第6図に示す。
[Prior Art] A film cooling structure is conventionally known as one of the cooling structures for an annular type combustor in which the combustor inner cylinder is formed into a ring shape (for example, see Japanese Patent Application Laid-Open No. 112014/1983). ). An example of a gas turbine having this type of cooling structure is shown in FIGS. 5 and 6.

第5図において、1は圧縮機で、遠心式羽根車2、ハブ
3、シュラウド4およびデイフユーザ5などから構成さ
れている。この圧縮機1の後方Bには、アニユラ型の燃
焼器内筒6が配置されている。
In FIG. 5, a compressor 1 is composed of a centrifugal impeller 2, a hub 3, a shroud 4, a differential user 5, and the like. At the rear B of the compressor 1, an annular type combustor inner cylinder 6 is arranged.

上記内筒6と、この内筒6の外方を覆うハウジング7と
の間には、空気通路8が形成されている。この空気通路
8は、圧lit機1のデイフユーザ5からの高圧空気A
を、後方Bへ向って流入させるものである。
An air passage 8 is formed between the inner cylinder 6 and a housing 7 that covers the outside of the inner cylinder 6. This air passage 8 is connected to high pressure air A from the diffuser 5 of the pressure lit machine 1.
is caused to flow toward the rear B.

9は燃料ノズルで、上記内筒6の周方向に多数配置され
ており、多数の燃焼用空気孔21から内筒6内に取り入
れた高圧空気Aに燃料を噴射して燃焼させるものである
。内筒6内で燃焼した高温な燃焼ガスGは、矢印のよう
に前方Fから後方Bに折り返して流れ、タービン10の
動翼11に衝突することにより、回転軸12を回転させ
る。なお、13は静翼である。
Reference numeral 9 denotes fuel nozzles, which are arranged in large numbers in the circumferential direction of the inner cylinder 6 and inject fuel into the high-pressure air A taken into the inner cylinder 6 through the many combustion air holes 21 to cause combustion. The high-temperature combustion gas G burned in the inner cylinder 6 flows back from the front F to the rear B as shown by the arrow, and collides with the rotor blades 11 of the turbine 10, thereby rotating the rotating shaft 12. Note that 13 is a stationary blade.

上記内筒6における軸方向に沿った周壁には、第6図に
明示するように、径方向Rに段差を持つ複数の環状のス
テップ14が設けられている。このステップ14には、
多数の空気流入孔15が形成されており、空気通路8内
の高圧空気Aの一部が、冷却空気Cとして、上記空気流
入孔15から内筒6内へ向って前方F向きに取り入れら
れる。
As clearly shown in FIG. 6, a plurality of annular steps 14 having steps in the radial direction R are provided on the circumferential wall of the inner cylinder 6 along the axial direction. In this step 14,
A large number of air inflow holes 15 are formed, and a portion of the high pressure air A in the air passage 8 is taken in as cooling air C from the air inflow holes 15 into the inner cylinder 6 in a forward direction F direction.

このようなフィルム冷却構造は、簡単、軽量で、かつ安
価であるという利点を有する。
Such a film cooling structure has the advantage of being simple, lightweight, and inexpensive.

[発明が解決しようとする課題] ところが、上記フィルム冷却構造は、第7図に示すよう
に、内筒6が局所的に高温になるという欠点がある。つ
まり、2つのステップ14間には、冷却空気Cによって
十分に冷却されない部分が生じ、そのため、斜線を施し
た部分の内筒6の壁温が、実線で示すように、局所的に
高温になる。
[Problems to be Solved by the Invention] However, the film cooling structure described above has a drawback in that the inner cylinder 6 becomes locally hot, as shown in FIG. In other words, between the two steps 14, there is a part that is not sufficiently cooled by the cooling air C, so that the wall temperature of the inner cylinder 6 in the shaded part becomes locally high as shown by the solid line. .

これを詳しく説明すると、まず、斜線を施した部分の1
1点付近は、空気流入孔15を通る空気と、外側(上側
)の高圧空気Aとにより十分冷却されるので、温度が低
い。21点から前方Fに移るにしたがって、上記斜線を
施した部分は、内筒6の内側(下側)から燃焼ガスによ
り加熱され、22点付近で最高温度に達する。さらに前
方Fへ移ると、隣りの空気流入孔15を通る空気による
冷却効果が加わるので、13点付近での壁温は下がる。
To explain this in detail, first, the shaded part 1
The temperature near one point is low because it is sufficiently cooled by the air passing through the air inflow hole 15 and the high pressure air A on the outside (upper side). Moving from point 21 to the front F, the shaded portion is heated by the combustion gas from the inside (lower side) of the inner cylinder 6, and reaches its maximum temperature near point 22. Moving further forward F, the cooling effect of the air passing through the adjacent air inflow hole 15 is added, so the wall temperature near point 13 decreases.

ただし、この23点は、下側から燃焼ガスによる加熱を
受けるので、21点よりは壁温が高い。
However, since these 23 points are heated by the combustion gas from below, the wall temperature is higher than that of the 21 points.

このように、内筒6に高温部分6c(22点付近)が生
じると、この高温部分6Cの壁温を許容温度以下にする
ように冷却空気Cを流す必要があることから、その分だ
け燃焼用空気の割合が減少することになる。その結果、
たとえば、燃料量が制限され、エンジンの出力を上げら
れなくなる。
In this way, when a high-temperature portion 6c (near point 22) occurs in the inner cylinder 6, it is necessary to flow cooling air C to bring the wall temperature of this high-temperature portion 6C below the allowable temperature. The proportion of air used will decrease. the result,
For example, the amount of fuel is limited, making it impossible to increase the engine's output.

この発明は上記課題に鑑みてなされたもので、フィルム
冷却構造を採用したガスタービンの燃焼器の冷却構造に
おいて、高温部分を効率良く冷却して、冷却空気の量を
減らすことを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to efficiently cool high temperature parts and reduce the amount of cooling air in a cooling structure for a combustor of a gas turbine employing a film cooling structure.

[課題を解決するための手段] 上記目的を遠戚するために、この発明は、ステップの外
周近傍に案内部材を配置して、この案内部材により、空
気通路内の高圧空気を内筒周壁におけるステップ間に位
置する高温部分に向かわせている。
[Means for Solving the Problem] In order to achieve the above object, the present invention arranges a guide member near the outer periphery of the step, and uses the guide member to direct high pressure air in the air passage to the inner cylinder peripheral wall. It is directed to the high temperature area located between the steps.

[作用] この発明によれば、案内部材が高圧空気を周壁の高温部
分に向かわせるので、この高温部分が効率良く冷却され
る。
[Function] According to the present invention, the guide member directs high-pressure air toward the high-temperature portion of the peripheral wall, so that the high-temperature portion is efficiently cooled.

[実施例] 以下、この発明の実施例を図面にしたがって説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第3図はこの発明の第1の実施例を示す。1 to 3 show a first embodiment of the invention.

第1図において、ステップ14の外周近傍には、環状の
案内部材16が配置されている。
In FIG. 1, an annular guide member 16 is arranged near the outer periphery of the step 14. As shown in FIG.

この案内部材16は、第2図に示すように、内筒6に溶
着された多数の取付ブラケット17に溶着されている。
This guide member 16 is welded to a number of mounting brackets 17 that are welded to the inner cylinder 6, as shown in FIG.

上記案内部材16は、第3図に明示するように、たとえ
ばJ内筒6の外形に沿った段差を持つ断面形状とされて
おり、空気通路8内の高圧空気Aの一部を、内筒6の周
壁におけるステップ14間に位置する高温部分6Cに向
かわせるものである。
As clearly shown in FIG. 3, the guide member 16 has a cross-sectional shape with a step along the outer shape of the J inner cylinder 6, for example. 6 to a high-temperature portion 6C located between steps 14 on the peripheral wall of No. 6.

なお、この実施例の場合、ステップ14は内筒6を形成
する薄板6dにステップ部材18が溶着されて形成され
ている。その他の構成は、第5図の従来例と同様であり
、同一部分または相当部分に同一符合を付して、その詳
しい説明を省略する。
In the case of this embodiment, the step 14 is formed by welding a step member 18 to a thin plate 6d forming the inner cylinder 6. The rest of the structure is the same as that of the conventional example shown in FIG. 5, and the same or corresponding parts are given the same reference numerals and detailed explanation thereof will be omitted.

上記構成において、この発明は、第3図の案内部材16
が高圧空気Aを周壁の高温部分6Cに向かわせるので、
高温部分6Cに高圧空気Aが衝突して、この高温部分6
Cが、第7図の破線で示すように、効率良く冷却される
。したがって、tで示す温度差に相当する分だけ、第3
図の冷却空気C0)量を、従来よりも少なくすることが
できる。
In the above configuration, the present invention provides the guide member 16 in FIG.
directs the high-pressure air A to the high-temperature part 6C of the surrounding wall, so
High-pressure air A collides with the high-temperature portion 6C, and this high-temperature portion 6
C is efficiently cooled, as shown by the broken line in FIG. Therefore, the third
The amount of cooling air C0) shown in the figure can be made smaller than before.

このように、冷却空気Cの量を減らすことによって、第
1図の燃料ノズル9に導入される燃焼用空気の割合や、
燃焼器出口温度を制御する空気の割合を多くすることが
できるので、ガスタービンの出力が向上するとともに、
タービン10の長寿命化を図れるなどの種々の利点が得
られる。
In this way, by reducing the amount of cooling air C, the proportion of combustion air introduced into the fuel nozzle 9 in FIG.
Since the proportion of air that controls the combustor outlet temperature can be increased, the output of the gas turbine increases, and
Various advantages such as the ability to extend the life of the turbine 10 can be obtained.

第4図は、この発明の第2の実施例を示す。この実施例
の場合、内筒6を形成する薄板6dの後端部近傍が曲成
されて、ステップ14が形成されており、各薄板6dの
端部同士が互いに溶着されて、内筒6が形成されている
。その他の構成は上記第1の実施例と同様であり、同一
部分または相当部分に同一符合を付して、その説明を省
略する。
FIG. 4 shows a second embodiment of the invention. In this embodiment, the vicinity of the rear end of the thin plate 6d forming the inner cylinder 6 is bent to form a step 14, and the ends of each thin plate 6d are welded to each other to form the inner cylinder 6. It is formed. The rest of the structure is the same as that of the first embodiment, and the same or equivalent parts are given the same reference numerals and the explanation thereof will be omitted.

[発明の効果] 以上説明したように、この発明によれば、案内部材が高
圧空気を内筒周壁の高温部分に向かわせるので、この高
温部分が効率良く冷却されるから、冷却空気の量を減ら
すことができる。
[Effects of the Invention] As explained above, according to the present invention, the guide member directs high-pressure air to the high-temperature portion of the inner cylinder peripheral wall, and this high-temperature portion is efficiently cooled, so that the amount of cooling air can be reduced. can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例を示すガスタービンの
縦断面図、第2図は要部を示す斜視図、第3図は同断面
図、第4図は第2の実施例の要部を示す断面図、第52
:士i2来のガスタービンの縦断面図、第6図はステッ
プの断面図、第7図は内筒の壁温を示す特性図である。 1・・・圧縮機、6・・・内筒、7・・・ハウジング、
8・・・空気通路、14・・・ステップ、15・・・空
気流入孔、16・・・案内部材、A・・・高圧空気、B
・・・後方、F・・・前方、R・・・径方向。
FIG. 1 is a longitudinal sectional view of a gas turbine showing a first embodiment of the present invention, FIG. 2 is a perspective view showing the main parts, FIG. 3 is a sectional view of the same, and FIG. Cross-sectional view showing main parts, No. 52
6 is a sectional view of the step, and FIG. 7 is a characteristic diagram showing the wall temperature of the inner cylinder. 1... Compressor, 6... Inner cylinder, 7... Housing,
8... Air passage, 14... Step, 15... Air inflow hole, 16... Guide member, A... High pressure air, B
...Backward, F...Front, R...Radial direction.

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機の後方にアニユラ型の燃焼器内筒が配置さ
れ、この内筒とその外方を覆うハウジングとの間に、上
記圧縮機からの高圧空気を後方へ向って流入させる空気
通路が形成され、上記内筒における軸方向に沿つた周壁
に、径方向に段差を持つ複数の環状のステップが設けら
れ、上記空気通路内の高圧空気を上記内筒内へ向つて前
方向きに取り入れる空気流入孔が上記ステップに形成さ
れ、上記空気通路内の高圧空気を上記周壁における上記
ステップ間に位置する高温部分に向わせる案内部材が上
記ステップの外周近傍に配置されてなるガスタービンの
燃焼器の冷却構造。
(1) An annular-type combustor inner cylinder is arranged at the rear of the compressor, and between this inner cylinder and a housing that covers the outside, an air passage through which high-pressure air from the compressor flows rearward. is formed, and a plurality of annular steps having steps in the radial direction are provided on the circumferential wall of the inner cylinder along the axial direction, and the high pressure air in the air passage is taken forward into the inner cylinder. An air inflow hole is formed in the step, and a guide member is disposed near the outer periphery of the step to direct the high-pressure air in the air passage to a high-temperature portion located between the steps on the peripheral wall. Cooling structure of the vessel.
JP19483989A 1989-07-26 1989-07-26 Cooling structure of combustor of gas turbine Pending JPH0359317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19483989A JPH0359317A (en) 1989-07-26 1989-07-26 Cooling structure of combustor of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19483989A JPH0359317A (en) 1989-07-26 1989-07-26 Cooling structure of combustor of gas turbine

Publications (1)

Publication Number Publication Date
JPH0359317A true JPH0359317A (en) 1991-03-14

Family

ID=16331130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19483989A Pending JPH0359317A (en) 1989-07-26 1989-07-26 Cooling structure of combustor of gas turbine

Country Status (1)

Country Link
JP (1) JPH0359317A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010526A (en) * 2013-06-28 2015-01-19 三菱日立パワーシステムズ株式会社 Combustor for gas turbine
US9045275B2 (en) 2013-10-30 2015-06-02 Le Papillon Bioplan Container for dispensing a combination product
JP2019156552A (en) * 2018-03-12 2019-09-19 オムロン株式会社 Conveying device, conveyance method and conveying program
CN112484077A (en) * 2020-11-25 2021-03-12 中国科学院工程热物理研究所 Efficient cooling structure for head of flame tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010526A (en) * 2013-06-28 2015-01-19 三菱日立パワーシステムズ株式会社 Combustor for gas turbine
US9045275B2 (en) 2013-10-30 2015-06-02 Le Papillon Bioplan Container for dispensing a combination product
JP2019156552A (en) * 2018-03-12 2019-09-19 オムロン株式会社 Conveying device, conveyance method and conveying program
CN112484077A (en) * 2020-11-25 2021-03-12 中国科学院工程热物理研究所 Efficient cooling structure for head of flame tube
CN112484077B (en) * 2020-11-25 2022-04-01 中国科学院工程热物理研究所 Efficient cooling structure for head of flame tube

Similar Documents

Publication Publication Date Title
US6412268B1 (en) Cooling air recycling for gas turbine transition duct end frame and related method
JPH0421054B2 (en)
US4311431A (en) Turbine engine with shroud cooling means
JP5080159B2 (en) Shroud hanger assembly and gas turbine engine
US5503528A (en) Rim seal for turbine wheel
EP1010944B1 (en) Cooling and connecting device for a liner of a gas turbine engine combustor
JPH07166801A (en) Gas-turbine engine and manufacture of cooling device thereof
US8414255B2 (en) Impingement cooling arrangement for a gas turbine engine
US4702670A (en) Gas turbine engines
JP5002121B2 (en) Method and apparatus for cooling a combustor of a gas turbine engine
US3978664A (en) Gas turbine engine diffuser
US6536201B2 (en) Combustor turbine successive dual cooling
US5280703A (en) Turbine nozzle cooling
US5628193A (en) Combustor-to-turbine transition assembly
US4944152A (en) Augmented turbine combustor cooling
KR20030035961A (en) Turbine shroud cooling hole diffusers and related method
JPH0639908B2 (en) Gas turbine jet propulsion device with high-pressure compressor
US11098602B2 (en) Turbine vane equipped with insert support
US5085039A (en) Coanda phenomena combustor for a turbine engine
US5129224A (en) Cooling of turbine nozzle containment ring
JPH10176547A (en) Method and device for preventing high temperature gas from entering turbine disk
JPH0359317A (en) Cooling structure of combustor of gas turbine
CA2992684A1 (en) Turbine housing assembly
US5101620A (en) Annular combustor for a turbine engine without film cooling
EP1609950A2 (en) Airfoil insert with castellated end