[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0359487B2 - - Google Patents

Info

Publication number
JPH0359487B2
JPH0359487B2 JP15689085A JP15689085A JPH0359487B2 JP H0359487 B2 JPH0359487 B2 JP H0359487B2 JP 15689085 A JP15689085 A JP 15689085A JP 15689085 A JP15689085 A JP 15689085A JP H0359487 B2 JPH0359487 B2 JP H0359487B2
Authority
JP
Japan
Prior art keywords
magnetic
coating
dispersion
resins
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15689085A
Other languages
Japanese (ja)
Other versions
JPS6218619A (en
Inventor
Wataru Funakoshi
Akihiro Horiie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEIJIN MEMORII MEDEIA KK
Original Assignee
TEIJIN MEMORII MEDEIA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEIJIN MEMORII MEDEIA KK filed Critical TEIJIN MEMORII MEDEIA KK
Priority to JP15689085A priority Critical patent/JPS6218619A/en
Publication of JPS6218619A publication Critical patent/JPS6218619A/en
Publication of JPH0359487B2 publication Critical patent/JPH0359487B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は磁気蚘録媒䜓に関するもので分散性に
優れた蚘録媒䜓の提䟛を目的ずするものである。 埓来技術ず問題点 䞀般に磁気蚘録媒䜓ずしおは、磁気テヌプ磁
気シヌト磁気カヌド磁気デむスク磁気ドラ
ム等があり、各々オヌデむオ甚ビデオ甚あるい
はコンピナヌタ甚等ずしお広く䜿甚されおおり、
最近にな぀お、目ざたしい発展が芋られる。 磁気蚘録媒䜓は、䞀般的に、磁性材料ずなる匷
磁性䜓粒子をバむンダヌ組成物ずずもに混緎し、
非磁性支持䜓䞊に塗垃したものである。甚途の拡
倧ずずもに、次第に高密床磁気蚘録媒䜓の出珟が
望たれお来た。高密床蚘録を可胜にする芁件ずし
おは、䞋蚘の点が挙げられる。 (1) 匷磁性䜓粒子の保持力が高いこず (2) 匷磁性䜓粒子の飜和磁化量Isが倧きいこ
ず (3) 匷磁性䜓粒子の埄が、䟋えば長軞埄0.4Ό以
䞋、短軞埄が0.04Ό以䞋ず小埄であるこず (4) 匷磁性䜓粒子がバむンダヌ組成物䞭に、均䞀
に分散しおいるこず (5) 磁性塗膜が平滑で、磁気ヘツドずのスペヌシ
ングロスがないこず 等である。 䞊蚘のうち(1)〜(3)の芁件は、針状酞化鉄の改
良コバルトを被着させた針状酞化鉄あるいは
鉄を䞻成分ずする針状の合金磁性䜓粒子等々の開
発により満足できる可胜性が倧きい。 しかしながら、匷磁性䜓粒子をバむンダヌ組成
物䞭に均䞀に分散させるこずは極めお困難であ
り、埓来技術では、ほずんど未解決のたたあるい
は䞍十分な解決のたた残された課題である。 発明の解決課題 この発明は、このような問題を解決すべくなさ
れたもので、高保持力を有し、か぀飜和磁化が倧
きく、さらに、非垞に现かい針状の匷磁性䜓粒子
をバむンダヌ組成䞭に均䞀に分散させ、支持䜓䞊
にこれを塗垃する工皋䞭に斌おも磁性粒子の再凝
集が起りにくく、埗られた磁性塗膜局にあ぀お匷
磁性䜓粒子が均䞀に分散しおいおか぀、この塗膜
の衚面平滑性も優れおいるものを埗るこずを目的
ずする。通垞、匷磁性䜓粒子をバむンダヌ組成物
䞭に分散させる手段ずしおは、分散剀の遞択バ
むンダヌ組成物の遞択及び混緎機の遞択等が芁
件ずなるが、本発明では匷磁性䜓粒子をバむンダ
ヌ組成物䞭に均䞀分散させるための高性胜な分散
剀に関するものである。本発明では分散剀ずし
お、磁性材料組成物の塗垃前及び塗蚭過皋におけ
る均䞀性安定性を改良せしめる芳点から遞択し
たものである。 埓来から匷磁性䜓粒子に察する分散剀ずしお
は、レシチンなどの倩然の界面掻性剀をはじめ、
アルキルベンれンスルホン酞脂肪酞の塩あるい
は、脂肪酞の゚ステルリン酞゚ステル等が広く
利甚されおいるが、これら公知の分散剀には保持
力が高く、飜和磁化が倧きく、か぀粒子埄が现か
い匷磁性䜓粒子をバむンダヌ組成物䞭に分散さ
せ、しかも埗られた高分散組成物を長時間高分散
状態に保ち埗るずいう芁件を満足できるものが埗
られおいない。 埓来から䜿甚されおきた分散剀は匷磁性䜓粒子
を機械的混緎によりバむンダヌ組成物䞭に分散さ
せる堎合には有効であるものの、埗られた分散状
態を倉化させるこずなく、長時間保存状態から
塗垃工皋たで安定的に持続させるこずは困難で
あ぀お、埓぀お、混緎盎埌では高分散性であ぀た
にも拘らず、磁気蚘録媒䜓の磁性局に斌おは分散
状態が劣぀たものずな぀おした぀おいた。 そこで分散安定性の向䞊を目的ずしお鋭意研究
の結果、高分子量のポリ゚チレンオキシドを䞊蚘
分散剀ず共存せしめお䜿甚するこずにより、優れ
た分散性が発珟されるずずもに、埗られた高分散
性組成物の䞍均䞀化を惹起するこずなく、磁性局
の塗垃の也燥工皋においおも安定ずなるこずを知
芋し、本発明を達成したものである。 発明の構成 すなわち高分子量のポリ゚チレンオキシドを磁
性粒䜓分散組成物䞭に、前述した劂き分散剀ず共
存させるこずにより、機械的混緎等の分散凊理に
より高床に分散させられた、匷磁性粒子の分散性
の経時倉化が少なくなり、䞊蚘分散組成物の長時
間保管が可胜になるばかりでなく、塗垃也燥工
皋に斌おも磁性粒䜓の分散状態の䞍均䞀化がな
くなり塗膜の平滑性が向䞊する他、角型比配向
比が向䞊し、比等々の電磁倉換特性の向䞊
がもたらされる。 本発明に斌お䜿甚されるポリ゚チレンオキシド
は分子量10䞇以䞊のものであるが、本発明の目的
に䞀局ふさわしいものは分子量15䞇以䞊、特に奜
たしくは20䞇以䞊のものである。かかる高分子量
になるず分子末端の圢状の圱響は小さく、氎酞基
であ぀おも良く、又他の有機基で封鎖されおいお
も䜕らかたわないが、通垞は氎酞基あるいはアル
キル基アルコキシ基にな぀おいるものを䜿甚す
るのが原料゜ヌスずしお䟿利である。 䞀般には匷磁性粒䜓以倖のものの䜿甚量は少な
ければ少ない皋媒䜓の電気出力的には奜たしい
が、高分子量ポリ゚チレンオキシドの䜿甚量ずし
おは匷磁性粒䜓100重量郚圓り、0.01から重量
郚䜿甚する事により、本発明の目的を達する事が
できる。ポリ゚チレンオキシドの含有量が0.01重
量郚より少ないず、本発明の目的ずする分散安定
性の向䞊は殆ど期埅できない。又重量郚以䞊䜿
甚しおも分散性の改良はもはや向䞊しないばかり
か磁気蚘録媒䜓の走行耐久性の䜎䞋等々の奜たし
くない逆効果が衚われお来る。 次に本発明の磁気蚘録媒䜓の補造に぀いお説明
する。本発明の磁性媒䜓を䜜成するための磁性塗
料は、匷磁性粒䜓結合剀塗垃溶媒及び分散
剀最滑剀研磚剀垯電防止剀及び本発明で蚀
う高分子量ポリ゚チレンオキシド等々を含有す
る。磁性塗料は䞊蚘組成のものを党お又はその䞀
郚を、同時もしくは順次有機溶媒に溶解分散し
お調補され、぀いで支持䜓䞊に塗垃されるこずに
より磁気蚘録局磁性局が圢成される。 䞀般の磁性塗料の補法は公知である。本発明で
は磁性塗料ずしお、曎に高分子量ポリ゚チレンオ
キシドを含むものであるが、この分散改良剀は、
その性質䞊分散工皋以降で添加するこずができる
が、分散工皋前あるいは分散工皋䞭に磁性塗料䞭
に添加するず分散改良効果が䞀局奏せられる。 本発明に斌お䜿甚する磁性粒䜓ずしおは、γ−
Fe2O3Co含有−γ−Fe2O3Co被着−γ−
Fe2O3Fe3O4Co含有−Fe3O4CrO2などの酞
化物系匷磁性粒䜓、Co−Ni−Fe合金Fe−Mn
−Zn合金Fe−Ni−Zn合金Fe−Co−Ni−Cr
合金Fe−Co−Ni−合金Fe−Co−Ni−Cr
合金Fe−Co−Ni−合金Ni−Co合金Fe
NiCo等々のメタル系磁性粉が挙げられる。 本発明に䜿甚される結合剀ずしおは埓来公知の
熱可塑性暹脂熱硬化性暹脂又は反応型暹脂やこ
れの混合物が䜿甚できる。 熱可塑性暹脂ずしおは、軟化枩床150℃以䞋の
分子量10000〜200000重合床が玄200〜
000皋床のもので䟋えば塩化ビニル塩ビ−酢酞
ビニル酢ビ共重合䜓塩ビ−塩化ビニリデン
共重合䜓塩ビ−アクリロニトリル共重合䜓ア
クリル酞゚ステル−アクリロニトリル共重合䜓
アクリル酞゚ステル−塩化ビニリデン共重合䜓
アクリル酞゚ステル−スチレン共重合䜓メタク
リル酞゚ステル−アクリロニトリル共重合䜓メ
タクリル酞゚ステル−塩化ビニリデン共重合䜓
メタクリル酞゚ステル−アクリロニトリル−共重
合䜓メタクリル酞゚ステル−スチレン共重合
䜓りレタン゚ラストマヌポリ北化ビニル塩
化ビニルデン−アクリロニトリル共重合䜓アク
リロニトリル−ブタゞ゚ン共重合䜓ポリアミ
ドボリビニルプチラヌルセルロヌス誘導䜓
セルロヌスアセテヌトプチレヌトセルロヌス
ダむアセテヌトセルロヌストリアセテヌトニ
トロセルロヌス等スチレン−ブタゞ゚ン共重合
䜓ポリ゚ステル暹脂アミノ暹脂各皮合成ゎ
ム系熱可塑性暹脂及びこれらの混合物が䜿甚され
る。熱硬化又は反応型暹脂ずしおは塗垃液の状態
では分子量200000以䞋であり、塗垃也燥埌
瞮合付加等の反応により分子量は無限倧のもの
ずなる。具䜓的には、䟋えばプノヌル暹脂゚
ポキシ暹脂ポリりレタン硬化型暹脂尿玠暹
脂メラミン暹脂アルキツド暹脂シリコヌン
暹脂アクリル系反応暹脂高分子量ポリ゚ステ
ル暹脂ずむ゜シアネヌトプレポリマヌの混合物
メタクリル酞塩共重合䜓ずゞむ゜シアネヌトプレ
ポリマヌの混合物ポリ゚ステルポリオヌルずポ
リむ゜シアネヌトの混合物尿玠ホルムアルデヒ
ド暹脂䜎分子量グリコヌル高分子量ゞオヌ
ルトリプニルメタントリむ゜シアネヌトの混
合物ポリアミン暹脂およびこれらの混合物であ
る。 これらの結合剀の単独又は組み合わされたもの
が䜿われるが、磁性粉末或は、必芁に応じお単独
又は組合されたものが䜿われる。匷磁性粉末ず結
合剀の混合割合は、匷磁性粉末100重量郚に察し
お結合剀10〜200重量郚、奜たしくは15〜100重量
郚の範囲で䜿甚される。結合剀が倚すぎるず磁気
蚘録媒䜓ずしたずきの蚘録密床が䜎䞋し、少なす
ぎるず磁性局の匷床が劣り、耐久性の枛少粉萜
ち等の欠陥が珟われ易い。 磁性局を圢成する磁性塗料には、前蚘の結合
剀匷磁性䜓粉末の他に添加剀ずしお、分散剀
カツプリング剀最滑剀研磚剀垯電防止剀が
加えられる。 䜿甚される分散剀ずしおは、カプリル酞カプ
リン酞ステアリン酞オレむン酞゚ラむゞン
酞リノヌル酞リノレン酞等の炭玠原子数12〜
18個の脂肪酞、及びこの脂肪酞のアルカリ金属又
はアルカリ土類金属からなる金属セツケンレシ
チンなどの倩然の界面掻性剀、アルキルベンれン
スルホン酞の塩、スルホコハク酞゚ステルの塩
等々、公知の化合物が䜿甚できる。この他にも炭
玠数12以䞊の高玚アルコヌル及びこれらの硫酞゚
ステル塩等も䜿甚される、これらの分散剀は匷磁
性䜓粉末100重量郚に察しお0.1〜10重量郚の範囲
で添加される。 カツプリング剀は所望により䜿甚しおも良く、
この堎合は公知のチタネヌト系カツプリング剀
シラン系カツプリング剀等が䜿甚されるが必ずし
も必須の成分ではない。 最滑剀ずしおは、グラフアむト二硫化モリブ
デン二硫化タングステン炭玠数12〜16個の䞀
塩基性脂肪酞ず炭玠数〜16個の䟡のアルコヌ
ル゚ヌテルアルコヌルからなる脂肪酞゚ステル
類、炭化氎玠類、シリコヌンオむルフツ玠化ポリ
゚ヌテル類等が䜿甚される。これらの最滑剀は磁
性粉䜓100重量郚圓り0.5〜15重量郚の範囲で添加
される。 研磚剀ずしおは䞀般に䜿甚されおいる材料で良
く、䟋えば溶融アルミナ炭化ケむ玠酞化クロ
ムコランダム人造ダむアモンド造コランダ
ムザクロ石シリカアルミナ二酞化鉄゚
メリヌ䞻成分コランダムず磁鉄鉱等が䜿甚
される。これらの研磚剀は平均粒埄が0.05〜5Ό
の倧きさのものが䜿甚される。特に奜たしくは
0.1〜2Όである、これらの研磚剀は匷磁性䜓粉
末100重量郚に察し0.5〜10重量郚の範囲で添加さ
れる。 垯電防止剀ずしおは、グラフアむトカヌボン
ブラツクカヌボンブラツクグラフトポリマヌな
どの導電性粉末、サポニンなどの倩然界面掻性
剀、アルキレンオキサむド系グリセリン系グ
リシドヌル系などのノニオン界面掻性剀、高玚ア
ルキルアミン類、第四玚アンモニりム塩類ピリ
ゞンその他の耇玠環類ホスホニりム又はスル
ホニりム類等のカチオン界面掻性剀、カルボン
酞スルホン酞リン酞硫酞゚ステル基リン
酞゚ステル基等の酞性基を含むアニオン界面掻性
剀、アミノ酞類アミノスルホン酞類アミノア
ルコヌルの硫酞たたは燐酞゚ステル類等の䞡性掻
性剀などが䜿甚される。これらの界面掻性剀は単
独又は混合しお添加しおもよい。 これらの剀は垯電防止剀ずしお甚いられるもの
であるが、他の目的、䟋えば分散磁気特性の改
良最滑性の向䞊塗垃助剀等ずしお適甚される
堎合もある。 磁気蚘録局の圢成は、䞊蚘の組成にお、有機溶
媒䞭に溶解し、塗垃溶液ずしお支持䜓䞊に塗垃す
る。塗垃の際に䜿甚する有機溶媒ずしおは、アセ
トンメチル゚チルケトンメチルむ゜ブチルケ
トンシクロヘキサノン等のケトン系、酢酞メチ
ル酢酞゚チル酢酞ブチルセロ゜ルブアセテ
ヌト等の゚ステル系、゚チレングリコヌルゞメチ
ル゚ヌテル゚チレングリコヌルゞ゚チル゚ヌテ
ルゞオキサン等の゚ヌテル系ベンれントル
゚ンキシレン等の芳銙族炭化氎玠メチレンク
ロラむド゚チレンクロラむド四塩化炭玠ク
ロロホルムゞクロルベンれン等のハロゲン化炭
化氎玠等のものが䜿甚できる。 支持䜓の玠材ずしおは、ポリ゚チレンテレフタ
レヌトポリ゚チレン−−ナフタレンゞカ
ルボキシレヌト等のポリ゚ステル類ポリプロピ
レン等のポリオレフむン類セルロヌストリアセ
テヌトセルロヌスゞアセテヌト等のセルロヌス
誘導䜓ポリカヌボネヌトポリプニレンスル
フむドポリスルホンポリ゚ヌテルスルホン等あ
るいは銅アルミニりム亜鉛などの金属セラ
ミツクスなどが䜿甚され埗る。 これらの支持䜓の厚みはフむルム・シヌト状の
堎合、玄〜200Ό皋床、奜たしくは〜100ÎŒ
であり、デむスク・カヌド状の堎合は0.5〜10
mm皋床であり、ドラム状の堎合は、円筒状ずしお
䜿甚するレコヌダヌに応じおその型が決たる。 䞊蚘支持䜓は、垯電防止転写防止等の目的で
磁性局を蚭けた偎の反察の面がいわゆるバツクコ
ヌトされおいおもよい。 曎に支持䜓の圢態は、テヌプシヌトカヌ
ドデむスクドラム等いずれでも良く圢態に応
じお皮々の材料が必芁に応じお遞択される。 磁性粉末及び前述の結合剀分散剀高分子量
ポリ゚チレンオキシド最滑剀研磚剀垯電防
止剀溶剀等々は混緎されお磁性塗料ずされる。
混緎にあた぀おは磁性粉末および前述の各成分は
党お同時にあるいは個々順次に混緎機に投入され
る。䟋えば、たず分散剀を含む結合剀の䞀郚分の
溶液䞭に、磁性粉末を加え所定の時間混緎し、し
かる埌に残りの成分を加え混緎を続けお磁性塗料
ずする方法がある。 分散混緎にあた぀おは、各皮混緎機が䜿甚され
る。䟋えば二本ロヌルミル䞉本ロヌルミルボ
ヌルミルペブルミルサンドグラむンダヌ高
速むンペラヌ分散機高速ストヌンミル高速床
衝撃ミルデむスパニヌダヌ高速ミキサヌホ
モゞナむザヌ超音波分散機などである。混緎分
散に関する技術はテむヌシヌ・パツトンT.C.
PATTON著「ポむント フロヌ アンド ピ
グメント デむスパヌゞペン」Paint Flow
and Pigment Dispersion1964幎出版瀟ゞペン
ワむリヌJohn WilleySonsに詳しく述べ
られおいる。 支持䜓䞊ぞ前蚘磁性塗料を塗垃し、磁気蚘録局
を圢成するための塗垃方法ずしおは、゚アドクタ
ヌコヌトブレヌドコヌト゚アナむフコヌト
スクむズコヌト含浞コヌトリバヌスロヌルコ
ヌトトランスフアロヌルコヌトグラビアコヌ
トキスコヌトキダストコヌトスプレむコヌ
トスピンコヌト等が利甚でき、その他の方法も
可胜であり、これらの具䜓的説明は朝倉曞店発行
の「コヌテむング工孊」253−277頁昭和46幎
月20日発行に詳现に蚘されおいる。 この様な方法により、支持䜓䞊に塗垃された磁
気蚘録局は必芁によりその甚塗により局䞭の磁性
粉粒子を配向あるいは無秩序化させる凊理を斜し
たのち圢成した磁気蚘録局を也燥させる。必芁に
応じお、衚面平滑化加工を斜したり所望の圢状に
裁断したりしお、本発明の磁気蚘録䜓を補造す
る。 以䞋に本発明を実斜䟋により曎に具䜓的に説明
する。ここに瀺す成分割合操䜜順序等は本発明
の䞻旚から逞脱しない範囲に斌お倉曎しうるもの
であるこずは云うたでもない。埓぀お本発明は䞋
蚘の実斜䟋に制限されるべきではない。 なお䞋蚘の実斜䟋に斌お「郚」はすべお「重量
郚」を瀺す。 実斜䟋  Co−被着 γ−Fe2O3 100重量郹 塩化ビニル−酢酞ビニル共重合䜓 25 UCC瀟 VAGH カヌボンブラツク 10 熱可塑性ポリりレタン・りレア暹脂 30 分散剀レシチン 1.0 最滑剀シリコヌンオむル 1.0重量郹 研磚剀Cr2O3 10 溶 媒メチル゚チレンケトン 100 メチルむ゜プチルケトン 50 トル゚ン 50 䞊蚘組成物及び分子量100䞇のポリ゚チレンオ
キシド0.5重量郚をボヌルミルにお48時間混緎し、
3Όフむルタヌで過した。該サンプルを過
埌、回埌75Όのポリ゚チレンフむル
ム䞊、也燥埌の厚みが玄2Όずなる様塗付し、
也燥埌サンプル衚面を電子顕埮鏡にお10K倍にお
芳察し分散状態をチ゚ツクした。過埌のサンプ
ルは、遠心分離機にお5000rpm、10分間凊理し分
離した溶液の䜓積分率を枬定し分散安定性の加速
詊隓のパラメヌタヌずした。 過埌及日攟眮した組成物にオキサむド100
重量郚圓りデスモゞナヌルバむ゚ル瀟補を
硬化剀ずしお10重量郚添加し、曎に30分間混合し
これを75Ό厚のポリ゚チレンテレフタレヌトフ
むルム䞊に也燥埌の厚みが玄2.0Όずなる様に塗
垃し、磁堎ランダマむズ凊理を行な぀た。これを
カレンダヌ凊理し、51むンチのフロツピヌメ
デむアを䜜成した。 比范䟋  実斜䟋−の操䜜を子量100䞇のポリ゚チレン
オキシドを添加するこずなく実斜した。 結果− 分散安定性のチ゚ツク
INDUSTRIAL APPLICATION FIELD The present invention relates to a magnetic recording medium and aims to provide a recording medium with excellent dispersibility. Prior Art and Problems In general, magnetic recording media include magnetic tape, magnetic sheet, magnetic card, magnetic disk, magnetic drum, etc., and each is widely used for audio, video, or computer purposes.
Recently, remarkable developments have been observed. Generally, magnetic recording media are made by kneading ferromagnetic particles, which serve as a magnetic material, with a binder composition.
It is coated on a non-magnetic support. With the expansion of applications, the emergence of high-density magnetic recording media has become increasingly desirable. Requirements to enable high-density recording include the following points. (1) The coercive force of the ferromagnetic particles is high; (2) The saturation magnetization (Is) of the ferromagnetic particles is large; (3) The diameter of the ferromagnetic particles is, for example, 0.4 ÎŒm or less in major axis diameter. (4) The ferromagnetic particles must be uniformly dispersed in the binder composition; (5) The magnetic coating film must be smooth and have good contact with the magnetic head. There is no spacing loss, etc. Of the above requirements (1) to (3), the requirements for (1) to (3) can be achieved through the development of improved acicular iron oxide, acicular iron oxide coated with cobalt, or acicular alloy magnetic particles containing iron as the main component. There is a high possibility that you will be satisfied. However, it is extremely difficult to uniformly disperse ferromagnetic particles in a binder composition, a problem that remains largely unsolved or insufficiently solved in the prior art. Problems to be Solved by the Invention This invention was made to solve these problems, and it has a high coercive force and a large saturation magnetization, and furthermore, contains very fine acicular ferromagnetic particles in the binder composition. Even during the process of uniformly dispersing the magnetic particles and coating them on the support, reaggregation of the magnetic particles is difficult to occur, and the ferromagnetic particles are uniformly dispersed in the resulting magnetic coating layer. Moreover, the object is to obtain a coating film with excellent surface smoothness. Normally, the means for dispersing ferromagnetic particles in a binder composition requires selection of a dispersant, selection of a binder composition, selection of a kneading machine, etc., but in the present invention, ferromagnetic particles are dispersed in a binder composition. The present invention relates to a high-performance dispersant for uniformly dispersing the composition. In the present invention, the dispersant is selected from the viewpoint of improving the uniformity and stability of the magnetic material composition before and during the coating process. Traditionally, dispersants for ferromagnetic particles include natural surfactants such as lecithin,
Alkylbenzene sulfonic acids, fatty acid salts, fatty acid esters, phosphoric acid esters, etc. are widely used, but these known dispersants have high coercivity, large saturation magnetization, and ferromagnetic materials with fine particle diameters. There has been no one that can satisfy the requirements of dispersing particles in a binder composition and maintaining the resulting highly dispersed composition in a highly dispersed state for a long period of time. Although conventionally used dispersants are effective when dispersing ferromagnetic particles in a binder composition by mechanical kneading, they do not change the obtained dispersion state for a long time (from storage state to It is difficult to sustain the dispersion stably (up to the coating process), and therefore, although it was highly dispersible immediately after kneading, it was found that the dispersion state was poor in the magnetic layer of the magnetic recording medium. I was getting used to it. Therefore, as a result of intensive research aimed at improving dispersion stability, by using high molecular weight polyethylene oxide in combination with the above dispersant, excellent dispersibility was expressed, and the resulting highly dispersible composition The present invention was achieved based on the finding that the magnetic layer is stable even during the drying process of coating the magnetic layer without causing non-uniformity. Components of the Invention Namely, by coexisting high molecular weight polyethylene oxide with a dispersant as described above in a magnetic particle dispersion composition, ferromagnetic particles are highly dispersed by a dispersion treatment such as mechanical kneading. This not only reduces the change in properties over time, making it possible to store the above-mentioned dispersion composition for a long time, but also eliminates non-uniform dispersion of the magnetic particles during the coating and drying process, resulting in smoother coatings. In addition to improving the squareness ratio and orientation ratio, electromagnetic conversion characteristics such as the S/N ratio are improved. The polyethylene oxide used in the present invention has a molecular weight of 100,000 or more, but those that are more suitable for the purpose of the present invention have a molecular weight of 150,000 or more, particularly preferably 200,000 or more. At such a high molecular weight, the shape of the molecular terminal has little effect; it may be a hydroxyl group or may be blocked by another organic group, but it is usually a hydroxyl group, an alkyl group, or an alkoxy group. It is convenient to use this as a raw material source. In general, the smaller the amount of materials other than ferromagnetic particles used, the better for the electrical output of the medium, but the amount of high molecular weight polyethylene oxide used is 0.01 to 5 parts by weight per 100 parts by weight of ferromagnetic particles. By doing so, the object of the present invention can be achieved. If the content of polyethylene oxide is less than 0.01 part by weight, the improvement in dispersion stability that is the objective of the present invention can hardly be expected. Further, even if 5 parts by weight or more is used, not only the dispersibility is no longer improved, but also undesirable adverse effects such as a decrease in running durability of the magnetic recording medium occur. Next, manufacturing of the magnetic recording medium of the present invention will be explained. The magnetic paint for producing the magnetic medium of the present invention contains ferromagnetic particles, a binder, a coating solvent and a dispersant, a lubricant, an abrasive, an antistatic agent, and the high molecular weight polyethylene oxide referred to in the present invention. . A magnetic coating is prepared by dissolving or dispersing all or part of the above composition in an organic solvent, either simultaneously or sequentially, and then coated on a support to form a magnetic recording layer (magnetic layer). . The manufacturing method of general magnetic paints is well known. In the present invention, the magnetic paint further contains high molecular weight polyethylene oxide, and this dispersion improver is
Due to its nature, it can be added after the dispersion process, but if it is added to the magnetic paint before or during the dispersion process, the effect of improving dispersion will be even greater. The magnetic particles used in the present invention include γ-
Fe 2 O 3 , Co containing - γ - Fe 2 O 3 , Co deposited - γ -
Oxide-based ferromagnetic particles such as Fe 2 O 3 , Fe 3 O 4 , Co-containing -Fe 3 O 4 , CrO 2 , Co-Ni-Fe alloy, Fe-Mn
-Zn alloy, Fe-Ni-Zn alloy, Fe-Co-Ni-Cr
Alloy, Fe-Co-Ni-P alloy, Fe-Co-Ni-Cr
alloy, Fe-Co-Ni-P alloy, Ni-Co alloy, Fe,
Examples include metal-based magnetic powders such as Ni and Co. As the binder used in the present invention, conventionally known thermoplastic resins, thermosetting resins, reactive resins, and mixtures thereof can be used. As a thermoplastic resin, a softening temperature of 150℃ or less, a molecular weight of 10,000 to 200,000, a degree of polymerization of about 200 to 2,
000, such as vinyl chloride (vinyl chloride)-vinyl acetate (vinyl acetate) copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylic ester-acrylonitrile copolymer,
Acrylic acid ester-vinylidene chloride copolymer,
Acrylic ester-styrene copolymer, methacrylic ester-acrylonitrile copolymer, methacrylic ester-vinylidene chloride copolymer,
Methacrylic acid ester-acrylonitrile copolymer, methacrylic acid ester-styrene copolymer, urethane elastomer, polyvinyl fluoride, vinyldene chloride-acrylonitrile copolymer, acrylonitrile-butadiene copolymer, polyamide, borivinyl petyral, cellulose Derivatives (cellulose acetate ptylate, cellulose diacetate, cellulose triacetate, nitrocellulose, etc.), styrene-butadiene copolymers, polyester resins, amino resins, various synthetic rubber thermoplastic resins, and mixtures thereof are used. As a thermosetting or reactive resin, it has a molecular weight of 200,000 or less in the coating liquid state, and after coating and drying,
The molecular weight becomes infinite due to reactions such as condensation and addition. Specifically, for example, phenolic resins, epoxy resins, polyurethane curable resins, urea resins, melamine resins, alkyd resins, silicone resins, acrylic reaction resins, mixtures of high molecular weight polyester resins and isocyanate prepolymers,
These include mixtures of methacrylate copolymers and diisocyanate prepolymers, mixtures of polyester polyols and polyisocyanates, urea formaldehyde resins, mixtures of low molecular weight glycols/high molecular weight diols/triphenylmethane triisocyanate, polyamine resins, and mixtures thereof. These binders may be used alone or in combination, and magnetic powder may be used alone or in combination as required. The mixing ratio of the ferromagnetic powder and the binder is 10 to 200 parts by weight, preferably 15 to 100 parts by weight, per 100 parts by weight of the ferromagnetic powder. If the amount of binder is too large, the recording density of the magnetic recording medium will be lowered, and if it is too small, the strength of the magnetic layer will be poor, and defects such as reduced durability and powder falling will easily appear. In addition to the above-mentioned binder and ferromagnetic powder, the magnetic paint forming the magnetic layer contains additives such as a dispersant,
Coupling agents, lubricants, abrasives, and antistatic agents are added. Dispersants used include those having 12 or more carbon atoms, such as caprylic acid, capric acid, stearic acid, oleic acid, elaidic acid, linoleic acid, and linolenic acid.
Known compounds such as 18 fatty acids, metal compounds made of alkali metals or alkaline earth metals of these fatty acids, natural surfactants such as lecithin, salts of alkylbenzene sulfonic acids, salts of sulfosuccinates, etc. can be used. In addition, higher alcohols having 12 or more carbon atoms and sulfuric acid ester salts thereof are also used, and these dispersants are added in an amount of 0.1 to 10 parts by weight per 100 parts by weight of the ferromagnetic powder. Coupling agents may be used as desired,
In this case, a known titanate coupling agent,
A silane coupling agent or the like is used, but is not necessarily an essential component. Lubricants include graphite, molybdenum disulfide, tungsten disulfide, fatty acid esters consisting of monobasic fatty acids with 12 to 16 carbon atoms, monohydric alcohols with 3 to 16 carbon atoms, ether alcohols, and hydrocarbons. silicone oil, fluorinated polyethers, etc. are used. These lubricants are added in an amount of 0.5 to 15 parts by weight per 100 parts by weight of the magnetic powder. As the abrasive, commonly used materials may be used, such as fused alumina, silicon carbide, chromium oxide, corundum, artificial diamond, artificial corundum, garnet, silica/alumina, iron dioxide, and emery (main components: corundum and magnetite). etc. are used. These abrasives have an average particle size of 0.05-5ÎŒm
size is used. Especially preferably
These abrasives having a diameter of 0.1 to 2 ÎŒm are added in an amount of 0.5 to 10 parts by weight per 100 parts by weight of the ferromagnetic powder. Antistatic agents include conductive powders such as graphite, carbon black, and carbon black graft polymers, natural surfactants such as saponin, nonionic surfactants such as alkylene oxide, glycerin, and glycidol, and higher alkyl amines. , quaternary ammonium salts, pyridine, other heterocycles, cationic surfactants such as phosphonium or sulfonium, anions containing acidic groups such as carboxylic acid, sulfonic acid, phosphoric acid, sulfate ester group, phosphoric ester group, etc. Ampholytic surfactants such as surfactants, amino acids, aminosulfonic acids, sulfuric acid or phosphoric acid esters of amino alcohols, and the like are used. These surfactants may be added alone or in combination. Although these agents are used as antistatic agents, they may also be used for other purposes, such as dispersion, improving magnetic properties, improving lubricity, and as coating aids. To form the magnetic recording layer, the above-mentioned composition is dissolved in an organic solvent and applied as a coating solution onto a support. Organic solvents used during coating include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, esters such as methyl acetate, ethyl acetate, butyl acetate, and cellosolve acetate, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, Ethers such as dioxane; aromatic hydrocarbons such as benzene, toluene, and xylene; and halogenated hydrocarbons such as methylene chloride, ethylene chloride, carbon tetrachloride, chloroform, and dichlorobenzene can be used. Support materials include polyesters such as polyethylene terephthalate and polyethylene-2,6-naphthalene dicarboxylate; polyolefins such as polypropylene; cellulose derivatives such as cellulose triacetate and cellulose diacetate; polycarbonate and polyphenylene sulfide polysulfone. , polyether sulfone, etc., metals such as copper, aluminum, zinc, ceramics, etc. may be used. The thickness of these supports is about 3 to 200 ÎŒm, preferably 5 to 100 ÎŒm when they are in the form of a film or sheet.
m, and 0.5 to 10 in case of disk/card type.
mm, and in the case of a drum shape, the shape is determined by the recorder used as it is cylindrical. The support may be coated with a so-called back coat on the side opposite to the side on which the magnetic layer is provided for the purpose of preventing static electricity, preventing transfer, and the like. Further, the form of the support may be tape, sheet, card, disk, drum, etc., and various materials may be selected as necessary depending on the form. The magnetic powder, the above-mentioned binder, dispersant, high molecular weight polyethylene oxide, lubricant, abrasive, antistatic agent, solvent, etc. are kneaded to form a magnetic paint.
During kneading, the magnetic powder and each of the above-mentioned components are fed into a kneader either simultaneously or individually one after another. For example, there is a method in which magnetic powder is first added to a solution of a portion of a binder containing a dispersant and kneaded for a predetermined period of time, and then the remaining components are added and kneaded continuously to obtain a magnetic paint. Various kneaders are used for dispersion kneading. Examples include two-roll mills, three-roll mills, ball mills, pebble mills, sand grinders, high-speed impeller dispersers, high-speed stone mills, high-speed impact mills, dispensing kneaders, high-speed mixers, homogenizers, and ultrasonic dispersers. The technology related to kneading and dispersion was developed by TC Patton (TC
PATTON) ``Point Flow and Pigment Dispersion'' (Paint Flow
and Pigment Dispersion) published in 1964 by John Willey & Sons. Coating methods for coating the magnetic coating onto the support to form a magnetic recording layer include air doctor coating, blade coating, air knife coating,
Squeeze coat, impregnation coat, reverse roll coat, transfer roll coat, gravure coat, kiss coat, cast coat, spray coat, spin coat, etc. can be used, and other methods are also possible. "Coating Engineering" pp. 253-277 (March 1972)
(published on the 20th of May). By such a method, the magnetic recording layer coated on the support is optionally treated to orient or disorder the magnetic powder particles in the layer by coating, and then the formed magnetic recording layer is dried. The magnetic recording body of the present invention is manufactured by subjecting it to surface smoothing or cutting it into a desired shape, if necessary. The present invention will be explained in more detail below using Examples. It goes without saying that the component ratios, order of operations, etc. shown here may be changed without departing from the spirit of the present invention. Therefore, the invention should not be limited to the following examples. In the following examples, all "parts" indicate "parts by weight." Example 1 Co-adhesion γ-Fe 2 O 3 100 parts by weight Vinyl chloride-vinyl acetate copolymer 25 (UCC VAGH) Carbon black 10 Thermoplastic polyurethane/urea resin 30 Dispersant: Lecithin 1.0 Lubricant: Silicone oil 1.0 parts by weight Abrasive: Cr 2 O 3 10 Solvent: methyl ethylene ketone 100 methyl isobutyl ketone 50 Toluene 50 The above composition and 0.5 parts by weight of polyethylene oxide with a molecular weight of 1 million were kneaded in a ball mill for 48 hours.
Passed through a 3 ÎŒm filter. After applying the sample 1, 3, and 5 times, it was applied on a 75 ÎŒm polyethylene film so that the thickness after drying was approximately 2 ÎŒm.
After drying, the surface of the sample was observed under an electron microscope at a magnification of 10K to check the dispersion state. The sample after evaporation was processed in a centrifuge at 5000 rpm for 10 minutes, and the volume fraction of the separated solution was measured and used as a parameter for an accelerated test of dispersion stability. Add Oxide 100 to the composition that has been left for 3 days.
Add 10 parts by weight of Desmodyur L (manufactured by Bayer) as a hardening agent, mix for another 30 minutes, and apply this onto a 75 ÎŒm thick polyethylene terephthalate film so that the thickness after drying is approximately 2.0 ÎŒm. Magnetic field randomization processing was performed. This was calendered to create a 51/4 inch floppy medium. Comparative Example 1 The operation of Example 1 was carried out without adding polyethylene oxide having a molecular weight of 1 million. Result-1 Check of dispersion stability

【衚】 結果− 分散安定性の加速テスト 実斜䟋−  溶媒分離が少ない 比范䟋− 15 〃 倚い  実斜䟋に斌おはピグメントが安定しお分散
しおいる事が理解される。 比を枬定した所次の結果を埗た。 比差の結果dB単䜍
[Table] Results - 2 Dispersion stability accelerated test example - 1 5% Comparative example with little solvent separation - 1 15% 〃 A lot...In the examples, it is understood that the pigment is stably dispersed. Ru. The N/S ratio was measured and the following results were obtained. S/N ratio difference result (in dB)

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  非磁性支持䜓ず該支持䜓䞊に塗蚭された磁性
局ずからなる積局䜓であ぀お、該磁性局は磁気材
料ず分子量100000以䞊のポリ゚チレンオキシドず
を含むこずを特城ずする磁気蚘録媒䜓。
1. A magnetic recording medium that is a laminate consisting of a non-magnetic support and a magnetic layer coated on the support, the magnetic layer containing a magnetic material and polyethylene oxide having a molecular weight of 100,000 or more. .
JP15689085A 1985-07-18 1985-07-18 Magnetic recording medium Granted JPS6218619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15689085A JPS6218619A (en) 1985-07-18 1985-07-18 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15689085A JPS6218619A (en) 1985-07-18 1985-07-18 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6218619A JPS6218619A (en) 1987-01-27
JPH0359487B2 true JPH0359487B2 (en) 1991-09-10

Family

ID=15637628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15689085A Granted JPS6218619A (en) 1985-07-18 1985-07-18 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6218619A (en)

Also Published As

Publication number Publication date
JPS6218619A (en) 1987-01-27

Similar Documents

Publication Publication Date Title
JPS58100B2 (en) Jikiki Rokutai
JPH0243253B2 (en)
JPH0474777B2 (en)
US4513054A (en) Magnetic recording medium
EP0107984B1 (en) Magnetic recording medium
JPH0654532B2 (en) Magnetic recording medium
US4572867A (en) Magnetic recording medium
JPH0740353B2 (en) Magnetic recording medium
JPH0630142B2 (en) Disk-shaped magnetic recording medium
JPS60201527A (en) Magnetic recording medium
JPH0359487B2 (en)
JPH03219417A (en) Magnetic recording medium
JPH0467427A (en) Magnetic recording medium and its manufacture
JPH02260124A (en) Magnetic recording medium
JP3154126B2 (en) Magnetic recording media
JPS58203627A (en) Magnetic recording medium
JPS5811085B2 (en) Jikiki Rokutai
JPS6114705A (en) Manufacture of surface-treated ferromagnetic metal powder and magnetic recording medium
JPS6224855B2 (en)
JPH01106317A (en) Magnetic recording medium
JPH0263255B2 (en)
JPS5891523A (en) Magnetic recording medium
JPH03696B2 (en)
JPH0546614B2 (en)
JPS5911534A (en) Magnetic recording medium