JPH0357978A - Fault prediction for cv cable - Google Patents
Fault prediction for cv cableInfo
- Publication number
- JPH0357978A JPH0357978A JP19523789A JP19523789A JPH0357978A JP H0357978 A JPH0357978 A JP H0357978A JP 19523789 A JP19523789 A JP 19523789A JP 19523789 A JP19523789 A JP 19523789A JP H0357978 A JPH0357978 A JP H0357978A
- Authority
- JP
- Japan
- Prior art keywords
- cable
- insulator
- gas
- electric tree
- electric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012212 insulator Substances 0.000 claims abstract description 20
- 238000009413 insulation Methods 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000000354 decomposition reaction Methods 0.000 abstract description 5
- 239000004698 Polyethylene Substances 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 abstract description 3
- -1 polyethylene Polymers 0.000 abstract description 3
- 229920000573 polyethylene Polymers 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 230000003014 reinforcing effect Effects 0.000 abstract description 2
- YJLIKUSWRSEPSM-WGQQHEPDSA-N (2r,3r,4s,5r)-2-[6-amino-8-[(4-phenylphenyl)methylamino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound C=1C=C(C=2C=CC=CC=2)C=CC=1CNC1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O YJLIKUSWRSEPSM-WGQQHEPDSA-N 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- MPDDTAJMJCESGV-CTUHWIOQSA-M (3r,5r)-7-[2-(4-fluorophenyl)-5-[methyl-[(1r)-1-phenylethyl]carbamoyl]-4-propan-2-ylpyrazol-3-yl]-3,5-dihydroxyheptanoate Chemical compound C1([C@@H](C)N(C)C(=O)C2=NN(C(CC[C@@H](O)C[C@@H](O)CC([O-])=O)=C2C(C)C)C=2C=CC(F)=CC=2)=CC=CC=C1 MPDDTAJMJCESGV-CTUHWIOQSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1263—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
- G01R31/1272—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Relating To Insulation (AREA)
- Locating Faults (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は,CVケーブルの故障予知方法に関するもの
で、特に電気トリーに伴って発生する放電を検知し、そ
れから故障を予知する方法に閲するものである.
[従来の技術]
部分放電パルスの測定回路として、第3図に示すものが
知られている.
同図で、
lOは被測定ケーブル,
12は試験電源、
l4は検出インピーダンス、
l6は平衡型コロナ検出器、
18は部分放電測定器、
20は論理制御雑音弁別器、
22はオシロスコープ、
24はデジタルメモリ,
26はプロツタ,
である.
[発明が解決しようとする課題]
しかし,上記の回路により放電パルスを検出する場合、
次の点が問題になる.
(1)あらかじめ部分放電校正器28により、出力電圧
と放電パルスとの関係を求めておく必要がある.
(2)被測定ケーブルlOが長尺の場合には,静電容量
(C)が大きくなって、わずかな放電パルス(Q)では
出力電圧(V=Q/C)が小さく、測定が非常に難しい
.
(3)外来ノイズ(自動車のスパーク、モーターラジオ
波など)も放電パルスとして測定するため、誤動作を起
す可能性がある.
[課題を解決するための手段]
ケーブル絶縁体内における電気トリーに伴って当該絶縁
体の分解ガスが発生する.そのガスはケーブル絶縁体内
を拡散して、ケーブル絶縁体外に出て来る.
そこで、ケーブル絶縁体外に出てきた分解ガスを検知す
ることにより、′i′lt%トリーの発生を検知する.
[原 理]
第l図において、
30はケーブルの全体、
32はケーブル導体,
34はケーブル絶縁体、
36はケーブル遮蔽層、
38はケープルシース、
である.
ケーブル絶縁体34内で電気トリ−40が生じると、そ
れに伴う放電によってケーブル絶縁体34(ポリエチレ
ン)が分解しガスが発生する.第1表に、ポリエチレン
の電気トリーによる分解ガスの分圧(%)を示す.
第1表
これらのガスは、ケーブル絶縁体34内を拡散し、その
外に抜ける.
したがって、この分解ガスを検知することにより,電気
トリーの発生を検知することができる.[実施例]
[1]構成
第1図において,拡散によってケーブル絶縁体34を抜
け出た分解ガスは、ケーブル絶縁体34〜ケープルシー
ス38間の隙間(ケーブル遮蔽層36)を通ってケーブ
ル長手方向に広がり、接続部42内に到達する.
そこで,この按続部42にガスセンサ50をとりつける
.
なお、
44は補強絶縁層、
46は接続管、
4Bは絶縁フンパウンド,
であり、ガスセンサ50は接続管46内側の、たとえば
両側上部に設ける.
ガスセンサ50については、水素および炭化水素検出用
のものが市販されているので,それを利用することがで
きる.
ガスセンサ50を、第2図のように,各接続部42人,
接続部42B,接続部42C.−−一−にそれぞれとり
つけ,監視所52で一括監視する.
[2]作用
たとえば,接続部42Aと42B内のガスセンサ50が
分解ガスを検知したとすれば,電気トリーは接続部42
Aと42Bとの間で発生していることが分る.
[発明の効果】
ケーブル絶縁体内に生ずる電気トリーに伴って発生し,
かつ前記ケーブル絶縁体内を拡散して当該ケーブル絶縁
体外に出て来る,前記ケーブル絶縁体の分解ガスを検知
することにより、電気トリーの発生を検知するので,
(1)従来の電気パルス法のようにあらかじめ校正する
必要がなく、測定時間を短縮できる.(2)ケーブル長
に左右されることなく測定が可能である.
(3)外来ノイズの影響を受けない.
などの効果を奏する.[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for predicting failure of a CV cable, and particularly relates to a method for detecting discharge that occurs due to an electric tree and predicting a failure from it. It is something. [Prior Art] The circuit shown in Fig. 3 is known as a partial discharge pulse measuring circuit. In the same figure, lO is the cable under test, 12 is the test power supply, l4 is the detection impedance, l6 is the balanced corona detector, 18 is the partial discharge measuring device, 20 is the logic control noise discriminator, 22 is the oscilloscope, and 24 is the digital Memory, 26 is a plotter. [Problem to be solved by the invention] However, when detecting a discharge pulse using the above circuit,
The following points are problematic. (1) It is necessary to determine the relationship between the output voltage and the discharge pulse in advance using the partial discharge calibrator 28. (2) If the cable under test lO is long, the capacitance (C) will be large, and a small discharge pulse (Q) will result in a small output voltage (V=Q/C), making the measurement very difficult. difficult. (3) External noise (car sparks, motor radio waves, etc.) is also measured as discharge pulses, which may cause malfunctions. [Means for solving the problem] Decomposition gas from the cable insulation is generated as the electrical tree is formed inside the cable insulation. The gas diffuses within the cable insulation and comes out of the cable insulation. Therefore, the occurrence of 'i'lt% trees is detected by detecting the decomposed gas that has come out of the cable insulation. [Principle] In Figure 1, 30 is the entire cable, 32 is the cable conductor, 34 is the cable insulator, 36 is the cable shielding layer, and 38 is the cable sheath. When an electrical tree 40 is generated within the cable insulator 34, the accompanying discharge causes the cable insulator 34 (polyethylene) to decompose and gas to be generated. Table 1 shows the partial pressure (%) of gas decomposed by electrical treeing of polyethylene. Table 1 These gases diffuse within the cable insulation 34 and escape out of it. Therefore, by detecting this decomposed gas, it is possible to detect the occurrence of electrical trees. [Example] [1] Configuration In FIG. 1, the decomposed gas that has escaped the cable insulator 34 due to diffusion passes through the gap (cable shielding layer 36) between the cable insulator 34 and the cable sheath 38 in the longitudinal direction of the cable. It spreads and reaches inside the connecting part 42. Therefore, a gas sensor 50 is attached to this connecting part 42. Note that 44 is a reinforcing insulating layer, 46 is a connecting pipe, and 4B is an insulating pad, and the gas sensor 50 is provided inside the connecting pipe 46, for example, at the top of both sides. As for the gas sensor 50, one for detecting hydrogen and hydrocarbons is commercially available and can be used. The gas sensor 50 is connected to each connection part by 42 people as shown in FIG.
Connection portion 42B, connection portion 42C. They are attached to each station and monitored all at once at the monitoring station 52. [2] Effect For example, if the gas sensors 50 in the connections 42A and 42B detect decomposition gas, the electrical tree
It can be seen that this occurs between A and 42B. [Effects of the invention] This occurs due to electrical trees generated within the cable insulation.
The occurrence of an electric tree is detected by detecting the decomposed gas of the cable insulator that diffuses within the cable insulator and comes out of the cable insulator. (1) Unlike the conventional electric pulse method, There is no need to calibrate in advance, which reduces measurement time. (2) Measurement is possible regardless of cable length. (3) Not affected by external noise. It has the following effects.
第1図と第2図は本発明の実施例にかかるもので、
第1図は原理ならびにガスセンサ50のとりつけ位置の
説明図、
第2図は本発明を適用したケーブル線路の説明図、
第3図は従来技術の説明図.
10:ケーブル 12:試験電源
l4:検出インピーダンス
l6:平衡型コロナ検出器
l8:部分放電測定器
20:論理制御雑音弁別器
22:オシロスコープ
24:デジタルメモリ 26:プロツタ28二部分放電
校正器 30:ケーブル32:ケーブル導体 34:
ケーブル絶縁体36:ケーブル遮蔽層 38:ケープル
シース40:電気トリ− 42:接続部
44:補強絶縁層 46:接続管
48:絶縁コンパウンド
50:ガスセンサ 52:監視所1 and 2 show examples of the present invention; FIG. 1 is an explanatory diagram of the principle and the mounting position of the gas sensor 50; FIG. 2 is an explanatory diagram of a cable line to which the present invention is applied; The figure is an explanatory diagram of the conventional technology. 10: Cable 12: Test power source 14: Detection impedance 16: Balanced corona detector 18: Partial discharge measuring device 20: Logic control noise discriminator 22: Oscilloscope 24: Digital memory 26: Protsuta 28 two-partial discharge calibrator 30: Cable 32: Cable conductor 34:
Cable insulator 36: Cable shielding layer 38: Cable sheath 40: Electric tree 42: Connection section 44: Reinforcement insulation layer 46: Connection pipe 48: Insulation compound 50: Gas sensor 52: Monitoring station
Claims (1)
かつ前記ケーブル絶縁体内を拡散して当該ケーブル絶縁
体外に出て来る、前記ケーブル絶縁体の分解ガスを検知
する、CVケーブルの故障予知方法。Occurs due to electrical tree formation within the cable insulation,
and detecting a decomposed gas of the cable insulator that diffuses within the cable insulator and comes out of the cable insulator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19523789A JPH0357978A (en) | 1989-07-27 | 1989-07-27 | Fault prediction for cv cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19523789A JPH0357978A (en) | 1989-07-27 | 1989-07-27 | Fault prediction for cv cable |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0357978A true JPH0357978A (en) | 1991-03-13 |
Family
ID=16337767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19523789A Pending JPH0357978A (en) | 1989-07-27 | 1989-07-27 | Fault prediction for cv cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0357978A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0682504A (en) * | 1991-11-13 | 1994-03-22 | Tohoku Electric Power Co Inc | Abnormality detecting method for insulated wire |
WO2000014557A1 (en) * | 1998-09-08 | 2000-03-16 | Ea Technology Limited | Locating underground power cable faults |
US6108202A (en) * | 1996-07-03 | 2000-08-22 | Sumitomo Wiring Systems, Ltd. | Electric connection box |
CN112880860A (en) * | 2021-01-19 | 2021-06-01 | 国网宁夏电力有限公司培训中心 | Cable overheating fault detection system based on insulation material decomposition gas component analysis |
-
1989
- 1989-07-27 JP JP19523789A patent/JPH0357978A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0682504A (en) * | 1991-11-13 | 1994-03-22 | Tohoku Electric Power Co Inc | Abnormality detecting method for insulated wire |
US6108202A (en) * | 1996-07-03 | 2000-08-22 | Sumitomo Wiring Systems, Ltd. | Electric connection box |
WO2000014557A1 (en) * | 1998-09-08 | 2000-03-16 | Ea Technology Limited | Locating underground power cable faults |
CN112880860A (en) * | 2021-01-19 | 2021-06-01 | 国网宁夏电力有限公司培训中心 | Cable overheating fault detection system based on insulation material decomposition gas component analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3243752B2 (en) | Partial discharge detection device for gas insulated equipment and its calibration method | |
CA2291939C (en) | Method for diagnosing degradation in aircraft wiring | |
JPH0830728B2 (en) | Withstand voltage inspection method and device | |
JPH0357978A (en) | Fault prediction for cv cable | |
CN115453292A (en) | Cable partial discharge online monitoring device and method with discharge amount self-calibration function | |
JPH0580112A (en) | Failure diagnostic device for power cable | |
KR910021592A (en) | Monitoring device of electrical cable | |
JPH08262097A (en) | Partial discharge measuring method | |
JPH0382316A (en) | Partial discharge detector of gas-insulated apparatus | |
JPH02165072A (en) | Detection of partial discharge at connection for of cable | |
JPH085700A (en) | Partial discharge measuring method at common joint of power cable | |
JP3774603B2 (en) | Gas insulated electrical equipment | |
EP0437940A1 (en) | Defect position locator for cable insulation monitoring | |
JP2608925B2 (en) | Partial discharge detection method for power cables | |
JP2003185697A (en) | Electric apparatus and its interior diagnosing apparatus | |
JPH07260870A (en) | Method for measuring dc leak current of power cable | |
JPS59105540A (en) | Measuring method for position of partial discharge in power cable system | |
JPH06186278A (en) | Apparatus and method for diagnosis of deterioration of prefabricated joint | |
JPH032574A (en) | Testing method for partial discharge of cable | |
JP2860002B2 (en) | High frequency partial discharge sensor | |
JPH05164808A (en) | Detecting method for partial discharge from phase-segragated, sealed bus-bar | |
JPH06148261A (en) | Diagnosing method for insulation characteristic of equipment | |
JPS58216968A (en) | Method for detecting quality of insulation coating of reference electrode cable in electrolyte | |
JPH085701A (en) | Ordinary connecting section for power cable | |
JPH0743411A (en) | Partial discharge measuring method |