[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0355767A - Manufacture of solid secondary battery - Google Patents

Manufacture of solid secondary battery

Info

Publication number
JPH0355767A
JPH0355767A JP1191010A JP19101089A JPH0355767A JP H0355767 A JPH0355767 A JP H0355767A JP 1191010 A JP1191010 A JP 1191010A JP 19101089 A JP19101089 A JP 19101089A JP H0355767 A JPH0355767 A JP H0355767A
Authority
JP
Japan
Prior art keywords
electrolyte
solid
electrode
charging
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1191010A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Yasuhiko Mifuji
靖彦 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1191010A priority Critical patent/JPH0355767A/en
Publication of JPH0355767A publication Critical patent/JPH0355767A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain contact between an electrolyte layer and an electrode layer sufficiently by integrating the electrolyte layer and the electrodes in predetermined disposition under pressure, and pressurizing them again after charging. CONSTITUTION:Electrode layers consisting of electrode material and binding agent as main materials are disposed on both surfaces of an electrolyte layer of solid electrolyte consisting of electrolyte and binding agent as main materials at the center, and they are integrated with each other under pressure. They are pressurized again after charging to obtain a sufficient contact between the electrolyte layer and the electrode layer, thereby a solid secondary battery with which performance deterioration is reduced can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は構或材料がすべて固体のいわゆる固体二次電池
の製造法に関すん 従来の技術 各種の電源として使われる電池のうち構戊材料がすべて
固体であるいわゆる固体電池は液漏れがなく、したがっ
て高信頼性が期待でき小形軽量化も可能などの理由で一
次、二次電池ともに注目されてきtも  現在のところ
各種機器のメモリーバックアップ用を中心に考えられて
いる。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing so-called solid-state secondary batteries whose structural materials are all solid. So-called solid-state batteries, which are solid-state batteries, have attracted attention as both primary and secondary batteries have attracted attention because they do not leak, are expected to be highly reliable, and can be made smaller and lighter.Currently, they are mainly used for memory backup in various devices. is considered.

この固体電池では電池内でイオンを動かすための固体電
解質が重要であり、 Ll゛イオン導電性固体電解質、
Ag”イオン導電性固体電解質、H・イオン導電性固体
電解質それにR bCu4I+.sc l3.6、Cu
I−Cu20  Mo03などのCu”イオン導電性固
体電解質などが取上げられている。
In this solid-state battery, a solid electrolyte is important for moving ions within the battery.
Ag" ion conductive solid electrolyte, H ion conductive solid electrolyte and R bCu4I+.sc l3.6, Cu
Cu'' ion-conductive solid electrolytes such as I-Cu20 Mo03 have been taken up.

また正極用材料としてはCuTiK  AgTi爪 そ
れにC uvMosss−z,FevMoeSs−zな
どのシェブレル相化合物があげられていも 一方、負極
にはC u,  A g,  L i l.sWO3そ
れに正極用と同様のシェプレル相化合物が試みられてい
もこれらのうち正極および負極用として可逆性に優れた
銅シエプレル相化合物を選び、とくにCu2Mo●S●
の組成を両極ともに用い固体電解質としてRb系イオン
導電性固体電解質を用いた固体二次電池で1i.放電時
に正極のCuが「0」から「1」へ負極のCuが「4」
から「3」へ変化する際のほぼ0.45V程度の平坦部
と、正極のCuが「1」から「2」へ負極のCuが「3
」から「2」へ変化する際の0.2 5 V程度の平坦
部の2つの平坦部を示す。
In addition, as materials for the positive electrode, CuTiK, AgTi nails, and Chevrel phase compounds such as CuvMosss-z and FevMoeSs-z are mentioned.On the other hand, for the negative electrode, Cu, Ag, Lil. Although sWO3 and other Sheprell phase compounds similar to those for positive electrodes have been tried, copper Sheprell phase compounds with excellent reversibility were chosen for positive and negative electrodes, especially Cu2Mo●S●
A solid secondary battery using a composition of 1 i. During discharge, the positive electrode Cu changes from "0" to "1" and the negative electrode Cu changes from "4".
There is a flat part of approximately 0.45V when the positive electrode Cu changes from "1" to "2" and the negative electrode Cu changes from "3" to "3".
” to “2”. Two flat portions of about 0.2 5 V are shown.

発明が解決しようとする課題 正極および負極用材料として、たとえば可逆性に優れた
銅シエプレル相化合物を選び、とくにCu2 M o 
s S@の組或を両極ともに用(1,固体電角牟質とし
”’CR b C u a l +.sC l 3.s
などのRb系イオン導電性固体電解質を用いた固体二次
電池のとくに0.45V程度を中心に充放電を行なった
とこム 比較的少ないサイクル数で容量の低下が認めら
れる電池がでてきt4  すなわち充放電を繰返すと一
部の電池で内部抵抗が増加して性能の劣化が認められt
4 本発明者らはこの種電池について種々検討した結凰 次
の現象を見つけだしt=  C u 2M o s 3
●を両極材料に用いて、この電極材料と結着剤を主とす
る電極層を両面に中央に電解質と結着剤を主とする電解
質層を配L 三者を加圧一体化した後に充電を行なって
完全充電すると正極のCu2MoaS●のCuは理論的
には「0」になり負極は「4」になん つまりMO●S
●とCu4MoeSeである。
Problems to be Solved by the Invention As materials for the positive and negative electrodes, for example, a copper Sieprel phase compound with excellent reversibility is selected, and in particular Cu2Mo
Use the combination of s S@ for both poles (1, solid electric square and "'CR b C u a l +.sC l 3.s
When charging and discharging a solid secondary battery using an Rb-based ion conductive solid electrolyte such as Rb-based ion conductive solid electrolyte, especially at a voltage of around 0.45V, some batteries show a decrease in capacity after a relatively small number of cycles. After repeated charging and discharging, the internal resistance of some batteries increases and performance deteriorates.
4 The inventors have conducted various studies on this type of battery and found the following phenomenon: t= Cu 2M o s 3
● is used as a bipolar material, and an electrode layer mainly containing this electrode material and a binder is placed on both sides, and an electrolyte layer mainly containing an electrolyte and a binder is arranged in the center.Charging is performed after the three are integrated under pressure. When fully charged, the Cu of the positive electrode Cu2MoaS● theoretically becomes ``0'' and the negative electrode becomes ``4''. In other words, MO●S
● and Cu4MoeSe.

したがって正極ではCuが「2」から「0」になり体積
は減少し 一方の負極は「2」から「4」になり体積は
大きくなも これが同時に起こる。
Therefore, at the positive electrode, Cu changes from ``2'' to ``0'' and its volume decreases, while at the negative electrode, it changes from ``2'' to ``4'' and its volume increases, but this happens at the same time.

で正極側へ湾曲すも 放電をOvまで進めるとこの逆の
変化でもとへ戻り、 0.3Vで終了とすると正極のC
uは「0」からrlJに 負極は「4」から「3」に戻
りいずれにしても大きな体積変化が生ずa したがって電極材料と結着剤を主とする電極層と電解質
と結着剤を主とする電解質層を加圧一体化しておいても
従来例ではこのような大きな体積変化で三者の密着性が
低下して性能劣化を生ずる電池が出てくん 本発明(友 上記従来技術の分析に基づき、電解質層と
電極層の接触が十分得られる固体電解質電池の製造法を
提供することを目的とすも課題を解決するための手段 正極および負極用材料として、たとえば銅シエブレル相
化合物とくにCu2Mo6S@の組戊を遺び、固体電解
質としてR b C u a I +.sC l 3.
5などのRb系イオン導電性固体電解質を用いた固体二
次電池において、この電極材料と結着剤を主とする層を
両面に中央に電解質と結着剤を主とする層を配し両者を
加圧一体化した後に化或ともいえる充電を行なって正極
のCuaMo●S●のCuを「2」以下に負極のCuを
「2」以上にして後ふたたび加圧すも 完全充電で正極のCuを「0」に負極のそれを「4」に
してもよいが部分充電がよく、 0.45V程度を利用
する際にはCu3.5程度に 負極のCuをCus.@
程度にして後ふたたび加圧することが好ましL1 まr=0.25Vの利用では正極のCuはCu+.6程
嵐 負極はCut.s程度になるまで充電する。
The voltage curves towards the positive electrode at
u changes from "0" to rlJ, and the negative electrode returns from "4" to "3". In either case, a large volume change occurs.a Therefore, the electrode layer, which mainly consists of the electrode material and binder, the electrolyte, and the binder. Even if the main electrolyte layer is integrated under pressure, in the conventional case, such a large volume change reduces the adhesion between the three layers, resulting in batteries with performance deterioration. Based on the analysis, the purpose is to provide a method for manufacturing a solid electrolyte battery that allows sufficient contact between the electrolyte layer and the electrode layer. After leaving Cu2Mo6S@ as a solid electrolyte, R b Cu a I +.sC l 3.
In a solid secondary battery using an Rb-based ion conductive solid electrolyte such as No. After pressurizing and integrating the two, perform a charge that can be called merging to make the Cu of the positive electrode CuaMo●S● less than ``2'' and the negative electrode Cu more than ``2''. After pressurizing again, the positive electrode Cu is completely charged. may be set to "0" and that of the negative electrode to "4", but partial charging is better, and when using about 0.45V, set the Cu of the negative electrode to about 3.5. @
It is preferable to pressurize again after increasing the pressure to a certain level.When L1 or r=0.25V is used, the Cu of the positive electrode becomes Cu+. 6 Arashi Negative electrode is Cut. Charge the battery until it reaches about s.

いずれの場合でも部分充電後の再加圧{よ 両極にそれ
ぞれ金属薄板と樹脂フィルムからなる封止板を樹脂フィ
ルムが互いに接するように配し 加熱下で加圧しながら
前記樹脂フィルムを溶着する際の加圧を利用してもよI
.Xo  また この手段は積層型電池にもそのまま適
用できる。
In either case, repressurization after partial charging is required.A sealing plate made of a thin metal plate and a resin film is placed on each pole so that the resin films are in contact with each other. You can also use pressurization.
.. Xo This method can also be directly applied to stacked batteries.

作   用 電極材料と結着剤を主とする電極層を両面に中央に電解
質と結着剤を主とする電解質層を配し一者を加圧一体化
した後に充電を行なって体積変化を生ぜしめた徴 再び
加圧すれば充放電による電極材料の体積変化は小さいの
で密着性の低下を大幅に抑制できも したがって優れた放電性能や自己放電性が得られ さら
に比較的少ないサイクル数で容量が低下することがなく
なる。
Electrode layers containing working electrode materials and a binder are placed on both sides, and an electrolyte layer containing an electrolyte and a binder is arranged in the center, and after they are integrated under pressure, charging is performed to cause a change in volume. Signs of confirmation: When pressurized again, the change in volume of the electrode material due to charging and discharging is small, so the decrease in adhesion can be greatly suppressed. Therefore, excellent discharge performance and self-discharge properties can be obtained, and the capacity can be increased with a relatively small number of cycles. No more decline.

実施例 正極用材料として銅シエブレル(CugMoaS●)を
用し\ これに電解質としてR bC u4I+.sc
 lL6を2 0 W t %  結着剤として市販の
ポリエチレンが6Wt%になるようべ その熱ベンゼン
溶液を加え充分撹拌して眞 公知のドクターブレード法
により幅2000mm.  厚さ350μmの正極シー
トを作或す4  −X  負極にも銅シエブレル(Cu
*Mo@S●)を用い正極と同様に同じ電解質Rbc+
.zI+.scl3.5を2 0Wt%と結着剤(6W
t%)で同様の負極シートを作製すも 電解質としてRbCu4I+.sC l3.5を用しk
 やはり結着剤としてポリエチレン13Wt%になるよ
うに加え 厚さ100AJmの電解質シートを作製すも つぎに正楓 電解質、負極シートの順に重抵まずこれを
160℃に加熱したプレス機で500Kg/cm”の条
件で加圧すも ついで、このようにして得られた電池素
子の両面に市販のバインダーで或形した導電性炭素紙お
よびその外側に厚さ20μmのCu板を当てて130t
,  400Kg/cm”の条件で加圧一体化し1, 
 これを15×30mmに裁断した後1mAで充電した
 約5時間で正極のCuは「2」から「l」へ 負極は
「2」から「4」に相当する電圧ほぼ0.4vを示した
のでその後2時間計7時間充電した ポリエチレンとアルミニウムとからなる厚さ0.2mm
のラミネートシ一トを電池素子の両面に前記ポリエチレ
ンを内側にして当て、 140℃に加熱したローラプレ
ス機を電池素子敵 電池周辺ともに300Kg/cm”
になるように加熱下で加圧すん この操作で電池素子部
は再加圧され 電池周辺ではポリエチレン間が溶着し封
止が完威すもなおリード板については本実施例ではそれ
ぞれCUの薄板を外部に取出しtも  この電池をAと
す也つぎに 比較のために 封止前に本実施例の充電操
作を加えなかった電池をBとして加えた以上のAS B
電池それぞれを20セルづつ用いて、まず通常の充放電
での初期の放電電圧と容量を比較しr21.0mAで0
.5 7 Vまでの充電2.5mAで0.3Vまでの放
電を行なったとこ7)S Aの平坦電圧は0.48土o
.otv,  放電容量は4.5±0.2mAh,Bの
平坦電圧は0.47±0.01V,  放電容量は4.
5±0.2mAhで大きな差はなかっtも そこでつぎにこの充放電の条件で各電池の寿命特性を調
べtも  電池(表 同じ<20セルづつ用いtラ  
周囲温度を45℃としtも  その結凰 200サイク
ルではAは初期とほぼ同じ放電容量であったのに対して
Bでは4.1±0,0 4 mAhとなり、600サイ
クルではAが4.3±0.03mAh,Bでは3.8±
0.06mAhとなりBのばらつきはさらに拡大した゜ 発明の効果 本発明の固体二次電池(上 充放電時の体積変化が小さ
いの玄 電極層と電解質層の密着性の低下が抑制可能と
なり、放電性能のばらつきを減少させ、長寿命化が達或
できる。
EXAMPLE Copper siebrel (CugMoaS●) was used as the material for the positive electrode, and R bC u4I+. was used as the electrolyte. sc
Using 1L6 as a binder at 20 Wt%, commercially available polyethylene was added to a hot benzene solution with a concentration of 6Wt%, stirred thoroughly, and prepared with a width of 2000 mm using the well-known doctor blade method. A positive electrode sheet with a thickness of 350 μm was prepared.4-X
*Mo@S●) and the same electrolyte Rbc+ as the positive electrode.
.. zI+. 20Wt% of scl3.5 and binder (6W
A similar negative electrode sheet was prepared using RbCu4I+.t%) as the electrolyte. k using sC l3.5
Again, polyethylene was added as a binder to make it 13 wt%, and an electrolyte sheet with a thickness of 100AJm was made.Next, the positive electrolyte and the negative electrode sheet were added in that order. Next, conductive carbon paper shaped with a commercially available binder was placed on both sides of the battery element thus obtained, and a Cu plate with a thickness of 20 μm was placed on the outside of the conductive carbon paper, and a 130t
, integrated under pressure of 400Kg/cm"1,
After cutting this into 15 x 30 mm, I charged it at 1 mA. In about 5 hours, the positive electrode Cu went from "2" to "l" and the negative electrode showed a voltage of about 0.4 V, which corresponds to "2" to "4". After that, it was charged for 2 hours for a total of 7 hours to create a 0.2mm thick film made of polyethylene and aluminum.
Apply a laminated sheet to both sides of the battery element with the polyethylene on the inside, and press a roller press heated to 140°C to the battery element at a pressure of 300 kg/cm around the battery.
This operation repressurizes the battery element, and the polyethylene is welded around the battery and the sealing is complete. This battery was taken out to the outside.This battery was designated as A.Next, for comparison, a battery that was not subjected to the charging operation of this example before being sealed was added as B.
Using 20 cells of each battery, first compare the initial discharge voltage and capacity during normal charging and discharging.
.. When charging to 57 V and discharging to 0.3 V at 2.5 mA, the flat voltage of S A is 0.48 mA.
.. otv, discharge capacity is 4.5±0.2mAh, flat voltage of B is 0.47±0.01V, discharge capacity is 4.
There was no big difference at 5±0.2mAh.Therefore, we next investigated the life characteristics of each battery under these charging and discharging conditions.
The ambient temperature was set to 45°C, and the result was that at 200 cycles, A's discharge capacity was almost the same as the initial one, while B's discharge capacity was 4.1±0.04 mAh, and at 600 cycles, A's discharge capacity was 4.3 ±0.03mAh, 3.8± for B
0.06 mAh, and the variation in B further expanded. Effects of the Invention The solid secondary battery of the present invention (1) The volume change during charging and discharging is small. Decrease in the adhesion between the electrode layer and the electrolyte layer can be suppressed, and the discharge performance is improved. It is possible to reduce the variation in the temperature and achieve a longer life.

Claims (4)

【特許請求の範囲】[Claims] (1)電解質と結着剤を主とする電解質層を中央にその
両面に電極材料と結着剤を主とする電極層を配し、三者
を加圧一体化した後に充電を行なった後、再加圧するこ
とを特徴とする固体二次電池の製造法。
(1) After placing an electrolyte layer mainly consisting of an electrolyte and a binder in the center and electrode layers mainly consisting of an electrode material and a binder arranged on both sides of the electrolyte layer and integrating the three under pressure, charging is performed. , a method for producing a solid-state secondary battery characterized by repressurization.
(2)正極および負極用材料としてCu_2Mo_6S
_3などの銅シェブレル相化合物を選び、固体電解質と
してRbCu_4I_1_._5Cl_3_._5など
のRb系イオン導電性固体電解質を用いた固体二次電池
において、前記電解質と結着剤を主とする電解質層を中
央にその両面に前記電極材料と結着剤を主とする電極層
を配し、三者を加圧一体化した後に充電を行なった後、
再加圧することを特徴とする固体二次電池の製造法。
(2) Cu_2Mo_6S as material for positive and negative electrodes
Select a copper Chevrel phase compound such as RbCu_4I_1_. as a solid electrolyte. _5Cl_3_. In a solid secondary battery using an Rb-based ion conductive solid electrolyte such as _5, an electrolyte layer mainly containing the electrolyte and a binder is in the center, and electrode layers mainly containing the above electrode material and a binder on both sides thereof. After charging after the three parts are integrated and pressurized,
A method for manufacturing a solid-state secondary battery characterized by repressurization.
(3)充電により正極のCuをCu_■_._5程度に
、負極のCuをCu_3_._5程度にした後、再加圧
することを特徴とする請求項2記載の固体二次電池の製
造法。
(3) By charging, the Cu of the positive electrode becomes Cu_■_. The negative electrode Cu is Cu_3_. 3. The method for manufacturing a solid-state secondary battery according to claim 2, wherein the pressure is applied again after the pressure is reduced to about _5.
(4)電極層と電解質層を加圧一体化後に充電を行ない
その後にそれぞれ金属薄板と樹脂フィルムからなる封止
板を樹脂フィルムが互いに接するように配し、加熱しな
がら前記樹脂フィルムを溶着することにより電池を形成
することを特徴とする請求項1記載の固体二次電池の製
造法。
(4) After integrating the electrode layer and the electrolyte layer under pressure, charging is performed, and then a sealing plate made of a thin metal plate and a resin film is arranged so that the resin films are in contact with each other, and the resin films are welded while heating. 2. The method for manufacturing a solid-state secondary battery according to claim 1, wherein a battery is formed by:
JP1191010A 1989-07-24 1989-07-24 Manufacture of solid secondary battery Pending JPH0355767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191010A JPH0355767A (en) 1989-07-24 1989-07-24 Manufacture of solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191010A JPH0355767A (en) 1989-07-24 1989-07-24 Manufacture of solid secondary battery

Publications (1)

Publication Number Publication Date
JPH0355767A true JPH0355767A (en) 1991-03-11

Family

ID=16267375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191010A Pending JPH0355767A (en) 1989-07-24 1989-07-24 Manufacture of solid secondary battery

Country Status (1)

Country Link
JP (1) JPH0355767A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205449A (en) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd Electrolyte layer for all-solid secondary battery, laminate for all-solid secondary battery, and all-solid secondary battery
JP2010238484A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Method of manufacturing all solid lithium secondary battery
JP2014072135A (en) * 2012-10-01 2014-04-21 Toyota Motor Corp Solid-state battery and manufacturing method therefor
JP2014107163A (en) * 2012-11-28 2014-06-09 Toyota Motor Corp Metho for manufacturing all-solid-state lithium secondary battery
JP2018073629A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Method for manufacturing all-solid lithium battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205449A (en) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd Electrolyte layer for all-solid secondary battery, laminate for all-solid secondary battery, and all-solid secondary battery
JP2010238484A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Method of manufacturing all solid lithium secondary battery
JP2014072135A (en) * 2012-10-01 2014-04-21 Toyota Motor Corp Solid-state battery and manufacturing method therefor
JP2014107163A (en) * 2012-11-28 2014-06-09 Toyota Motor Corp Metho for manufacturing all-solid-state lithium secondary battery
JP2018073629A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Method for manufacturing all-solid lithium battery

Similar Documents

Publication Publication Date Title
US5240790A (en) Lithium-based polymer electrolyte electrochemical cell
JP3198828B2 (en) Manufacturing method of all solid lithium secondary battery
JP4352475B2 (en) Solid electrolyte secondary battery
JP2000311710A (en) Solid electrolyte battery and its manufacture
JP6694133B2 (en) All solid state battery
JP3499916B2 (en) Polymer solid electrolyte battery and manufacturing method thereof
JPH0355767A (en) Manufacture of solid secondary battery
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JPH0513099A (en) Manufacture of solid secondary battery
JP2001093535A (en) Solid electrolyte cell
JPH02253569A (en) Manufacture of solid state secondary battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JP2759992B2 (en) Manufacturing method of solid state secondary battery
JPH02174077A (en) Solid secondary battery and manufacture thereof
JP3211308B2 (en) Manufacturing method of solid state secondary battery
JPH056775A (en) Manufacture of solid secondary battery
JPH02114460A (en) Manufacture of solid secondary battery
JPH0384869A (en) Manufacture of solid secondary cell
JP2732442B2 (en) Manufacturing method of solid state secondary battery
JP2658396B2 (en) Method for manufacturing solid secondary battery
JPH02253570A (en) Solid state secondary battery
JPH02114462A (en) Solid secondary battery
JPH053050A (en) Operation method for solid secondary battery and power supply
JPH02247980A (en) Manufacture of all-solid secondary battery
JPH0513101A (en) Manufacture of solid secondary battery