[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH035566B2 - - Google Patents

Info

Publication number
JPH035566B2
JPH035566B2 JP55133203A JP13320380A JPH035566B2 JP H035566 B2 JPH035566 B2 JP H035566B2 JP 55133203 A JP55133203 A JP 55133203A JP 13320380 A JP13320380 A JP 13320380A JP H035566 B2 JPH035566 B2 JP H035566B2
Authority
JP
Japan
Prior art keywords
waveguide
thin film
head
recording medium
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55133203A
Other languages
Japanese (ja)
Other versions
JPS5756807A (en
Inventor
Hideki Hosoya
Kazuya Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP55133203A priority Critical patent/JPS5756807A/en
Publication of JPS5756807A publication Critical patent/JPS5756807A/en
Publication of JPH035566B2 publication Critical patent/JPH035566B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/003Recording, reproducing or erasing systems characterised by the shape or form of the carrier with webs, filaments or wires, e.g. belts, spooled tapes or films of quasi-infinite extent
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • G11B7/124Integrated head arrangements, e.g. with source and detectors mounted on the same substrate the integrated head arrangements including waveguides
    • G11B7/1245Integrated head arrangements, e.g. with source and detectors mounted on the same substrate the integrated head arrangements including waveguides the waveguides including means for electro-optical or acousto-optical deflection

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Optical Integrated Circuits (AREA)
  • Facsimile Heads (AREA)
  • Fax Reproducing Arrangements (AREA)

Description

【発明の詳細な説明】 本発明は、薄膜導波路を利用して記録体に対す
る記録又は再生用のヘツドとして用いる薄膜導波
路型ヘツドに関す。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film waveguide type head that utilizes a thin film waveguide and is used as a recording or reproducing head for a recording medium.

従来、輝点走査装置としては、レーザービーム
を利用したものがあり、それらはレーザービーム
を偏向する為のポリゴン回転境や偏向光束を集光
し線形な輝点運動に変換する為のf−θレンズ等
から構成されている。しかしながらこれら従来の
装置は、各作用部が個々独立してかつ相互に一定
光路間隔を必要とする為装置の組立及び精密な調
整が非常に複雑であり、また組み立てた装置は大
型になる等の欠点を有していた。
Conventionally, there are bright spot scanning devices that use laser beams, and they use polygon rotation boundaries to deflect the laser beam and f-θ to condense the deflected light flux and convert it into linear bright spot motion. It consists of lenses, etc. However, in these conventional devices, the assembly and precise adjustment of the device is very complicated because each operating part requires a certain distance between the optical paths and each other, and the assembled device becomes large. It had drawbacks.

それに対し、本出願人より上記欠点を解決した
新規な輝点走査素子が、特願昭55−12939号とし
て出願されており、その内容は、最近開発されつ
つある光集積回路技術を利用して基盤上に形成さ
れた薄膜導波路に薄膜レンズやA/O偏向器、
E/O変調器等を一体的に形成して輝点走査素子
を作成し従来の大型で精密調整を必要とする輝点
走査装置にとつてかわつたコンパクトで組立調整
の不要な装置を得るものである。このような薄膜
導波路を利用した光学素子は、従来にない特性を
もつており、特に上述の輝点走査素子は、小型で
ある上に高速走査が可能である。
On the other hand, the present applicant has filed an application for a new bright spot scanning device that solves the above-mentioned drawbacks as Japanese Patent Application No. 12939/1983, and the contents of the application are as follows: Thin film lenses and A/O deflectors are attached to the thin film waveguide formed on the substrate.
A bright spot scanning element is created by integrally forming an E/O modulator, etc., and a compact device that does not require assembly and adjustment is obtained, replacing the conventional large bright spot scanning device that requires precise adjustment. It is. Optical elements using such thin film waveguides have characteristics that have not been seen in the past, and in particular, the above-mentioned bright spot scanning element is compact and capable of high-speed scanning.

従つて薄膜導波路を用いた光学素子は種々の応
用が期待されており、その応用例の1つとしてビ
デオ信号等の光熱磁気記録あるいは再生用のヘツ
ドへの適用が考えられる。
Therefore, optical elements using thin film waveguides are expected to have a variety of applications, and one example of such applications is application to heads for photothermal magnetic recording or reproduction of video signals and the like.

しかしながら薄膜導波路の端面で輝点を形成す
る素子をヘツドとして用いて、その端面を記録体
に接触又は近接させて相対的に移動させ、輝点の
強度を記録用信号で変調して信号の記録を行なう
場合、又、一方では再生をする場合には以下のよ
うな不都合を生じる。
However, an element that forms a bright spot on the end face of a thin film waveguide is used as a head, and the end face is brought into contact with or close to the recording medium and moved relatively, and the intensity of the bright spot is modulated with the recording signal to generate the signal. When recording or, on the other hand, reproducing, the following inconveniences occur.

即ち、これらのヘツドの導波路の出射端面は高
出射効率を得る為にシヤープカツトの光学研摩が
なされており、その綾は非常に鋭くなつている。
このままの形状の端面をテープ状等の形態の記録
体に接触させ、走査の為相対移動させる場合に端
面の鋭い綾辺で記録体表面を損傷させる危険性あ
る。また、一方、フロツピーデイスク等のデイス
ク状の記録体に対してヘツドをわずかに浮上させ
て走査する場合は、ヘツドの浮上中は記録体損傷
の恐れはないが、その前後の降下時に損傷を招く
可能性があり、更に、導波路端面の上述の如き形
状は、空気抵抗を考慮した場合にヘツドの浮上を
妨げる形状と言える。
That is, in order to obtain high output efficiency, the output end faces of the waveguides of these heads are optically polished with sharp cuts, and the edges are extremely sharp.
When the end face of the same shape is brought into contact with a recording medium in the form of a tape or the like and moved relative to the recording medium for scanning, there is a risk that the sharp edges of the end face may damage the surface of the recording medium. On the other hand, when scanning a disc-shaped recording medium such as a floppy disk with the head slightly floating, there is no risk of damage to the recording body while the head is floating, but damage may occur when it descends before and after that. Furthermore, the shape of the waveguide end face as described above can be said to be a shape that hinders the floating of the head when air resistance is taken into account.

本発明の目的は、上記欠点を解消し、記録体に
損傷を与える事なく、また、浮上ヘツドとして用
いる際に浮上を妨げる空気抵抗を緩和する事が可
能な形状の記録又は再生用ヘツドとして良好な薄
膜導波路を利用した新規なヘツドを提供する事で
ある。
An object of the present invention is to solve the above-mentioned drawbacks and to provide a recording or reproducing head having a shape that does not damage the recording medium and can alleviate the air resistance that prevents the head from flying when used as a flying head. The objective is to provide a new head that utilizes a thin film waveguide.

以下図面を用いて本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

最初に第1,2図を用いて薄報導波路を利用し
た輝点走査素子について説明する。
First, a bright spot scanning element using a thin waveguide will be explained using FIGS. 1 and 2.

この輝点走査素子では、基盤1上に形成された
導波路2に半導体レーザー2を接合し導波路表面
に歯状電極7及び薄膜レンズ5,6が設けられて
いる。今レーザー平行光束4が導波路2中に導か
れる。そして導波路が伝わる光束4は薄膜レンズ
5によつて平行光束5となり、導波路2の1部に
設けられた櫛の歯状電極7によつて励起される所
の超音波表面弾性波8により回折作用をおこし偏
向される。更にこの偏向光束15は薄膜レンズ9
により薄膜導波路の端面10に輝点11を形成す
るように集光される。即ち端面10は、x−y面
(図示)内でパワーを有する薄膜レンズ9の焦点
面とほぼ一致した位置に形成されており、集光光
束は端面10又はその近傍にx方向において集光
し、射出する。またx−y面と垂直なz方向には
導波路の厚みd(通常数μm)で限定されている。
このような構成において、本実施例の輝点走査素
子では前記櫛の歯状電極7に印加する高周波電圧
の周波数を変化させて、導波路上の超音波表面弾
性波の波長を変える事により偏向角を制御し、射
出端面上で輝点走査を行なう。
In this bright spot scanning element, a semiconductor laser 2 is bonded to a waveguide 2 formed on a substrate 1, and a toothed electrode 7 and thin film lenses 5, 6 are provided on the surface of the waveguide. A collimated laser beam 4 is now guided into the waveguide 2. The light beam 4 transmitted through the waveguide becomes a parallel light beam 5 by a thin film lens 5, and is generated by an ultrasonic surface acoustic wave 8 excited by a comb tooth-shaped electrode 7 provided in a part of the waveguide 2. It causes a diffraction effect and is deflected. Furthermore, this deflected light beam 15 passes through a thin film lens 9.
The light is focused to form a bright spot 11 on the end face 10 of the thin film waveguide. That is, the end surface 10 is formed at a position that substantially coincides with the focal plane of the thin film lens 9 having power in the x-y plane (shown in the figure), and the condensed light beam is focused at or near the end surface 10 in the x direction. , eject. Further, the z direction perpendicular to the xy plane is limited by the thickness d (usually several μm) of the waveguide.
In such a configuration, the bright spot scanning element of this embodiment changes the frequency of the high-frequency voltage applied to the comb tooth-shaped electrode 7 to change the wavelength of the ultrasonic surface acoustic wave on the waveguide, thereby deflecting the ultrasonic surface acoustic wave. The angle is controlled to scan the bright spot on the exit end face.

このように第1図示の輝点走査素子は、光偏向
器及び集光レンズを同一基盤上に設け、その導波
路の射出端面又はその近傍に輝点を形成し走査す
る為、非常にコンパクトであるとともに精密な調
整が不要である等の利点を有している。
In this way, the bright spot scanning element shown in the first diagram is very compact because it has an optical deflector and a condenser lens on the same substrate, and scans by forming a bright spot at or near the exit end face of the waveguide. It also has the advantage of not requiring precise adjustment.

上記輝点走査素子の各構成部分について更に詳
しく説明すると、 基盤1は圧電効果を有し、高周波の超音波が能
率良く伝播される材料が適しており、LiNbO3
LiTaO3、ZnO等が望ましい。また導波路2は、
LiNbO3基盤の場合はTiを高温(約1000℃)下で
in−diffuseして基盤上に数μmの厚さで形成す
る。また、LiTaO3基盤の場合は、Nb又はTiをin
−diffuseして得られる。導波路は高屈折率でか
つ基盤との屈折率差が大きく導波路を薄くしても
光が伝播される材料で形成される事が望ましい。
また導波路の屈折率が高い為、集光レンズで形成
される端面上の輝点は非常にスポツト径の小さ
い、つまりシヤープなものを得る事ができる。
To explain each component of the bright spot scanning element in more detail, the substrate 1 is suitably made of a material that has a piezoelectric effect and allows high-frequency ultrasonic waves to propagate efficiently, such as LiNbO 3 , LiNbO 3 ,
LiTaO 3 , ZnO, etc. are preferable. Moreover, the waveguide 2 is
In the case of LiNbO 3 substrate, Ti is heated at high temperature (approximately 1000℃).
It is formed in-diffuse on the substrate to a thickness of several micrometers. In addition, in the case of LiTaO 3 substrate, Nb or Ti is injected.
- Obtained by diffusing. It is desirable that the waveguide be formed of a material that has a high refractive index and a large refractive index difference with the substrate, allowing light to propagate even if the waveguide is made thin.
Furthermore, since the refractive index of the waveguide is high, the bright spot formed by the condenser lens on the end face can have a very small diameter, that is, a sharp spot.

偏向器は、超音波表面弾性波を利用するものが
望ましく、第2図に示した如く、圧電性の導波路
面上に形成された櫛の歯状電極(以下SAW電極
と称す。)7により超音波を励起する。SAW電極
のピツチaは励起する超音波の中心波長の1/2に
設定する。例えばLiNbO3基頒で電極ピツチa=
16.5μmに設定すれば200MHzの高周波電圧を印加
した時、波長33μmの超音波が励起可能である。
(超音波の速度は約6.6×106mm/secである。)こ
の一つの電極で得られる偏向器の帯域は、励起さ
れた超音波が作るブラツグ型回折格子の角度選択
幅と、この圧電材と電極からなるトランデユーサ
ー自身がもつ帯域により制限される。
The deflector is preferably one that utilizes ultrasonic surface acoustic waves, and as shown in FIG. Excite ultrasound. The pitch a of the SAW electrode is set to 1/2 of the center wavelength of the ultrasonic wave to be excited. For example, if three LiNbO units are distributed, the electrode pitch a=
If set to 16.5 μm, ultrasonic waves with a wavelength of 33 μm can be excited when a 200 MHz high frequency voltage is applied.
(The speed of ultrasonic waves is approximately 6.6 x 10 6 mm/sec.) The band of the deflector obtained with this one electrode is determined by the angular selection width of the Bragg-type diffraction grating created by the excited ultrasonic waves and the piezoelectric It is limited by the band of the transducer itself, which consists of material and electrodes.

SAW電極7は第2図に示す如く、平行光束6
の進行方向に対してθoだけ傾けて設けられてお
り、SAW電極7に周波数fの高周波電圧が印加
されると、超音波弾性表面波8が励起され、それ
により回折格子構造が形成される事により平行光
束6はブラツク回折を受け回折光束15と零次回
折光束16になる。この時回折光束15と零次回
折光束16とのなす回折角2θは、次式で与えられ
る。
As shown in FIG. 2, the SAW electrode 7 has a parallel light beam 6
When a high frequency voltage of frequency f is applied to the SAW electrode 7, an ultrasonic surface acoustic wave 8 is excited, thereby forming a diffraction grating structure. As a result, the parallel light beam 6 undergoes black diffraction and becomes a diffracted light beam 15 and a zero-order diffracted light beam 16. At this time, the diffraction angle 2θ between the diffracted light beam 15 and the zero-order diffraction light beam 16 is given by the following equation.

2θ=2sin-1(λf/2vn) (1) ここで、vは媒質中での超音波の速度、fは
SAW電極7への印加周波数、λは入射光束の真
空中での波長nは媒質の屈折率である。SAW電
圧7への印加周波数fを変化する事により、前記
2θを変化する事ができるが、この偏向角2θの最大
振り角はブラツグ回折の角度選択幅で決まり、あ
る周波数範囲外では、回折格子構造の結合条件よ
りはずれてしまい、回折効率は低下する。前記角
度θ0は、前記周波数範囲の中心周波数f0に対応す
るブラツグ角と等しく取るのが一般的で、θ0は、 θ0=sin-1(λf0/2vn) (2) で与えられる。第1図で前記回折光束15及び零
次回積光束16は、結像レンズ9の作用で導波路
2の端面10にそれぞれ点像11及び14として
集光する。この時零次の点像14の付近には遮光
材17が設けられている。
2θ=2sin -1 (λf/2vn) (1) Here, v is the speed of the ultrasonic wave in the medium, and f is
The frequency applied to the SAW electrode 7, λ, is the wavelength of the incident light beam in vacuum, n is the refractive index of the medium. By changing the frequency f applied to the SAW voltage 7, the above
2θ can be changed, but the maximum deflection angle of this deflection angle 2θ is determined by the angle selection range of Bragg diffraction, and outside a certain frequency range, the coupling conditions of the diffraction grating structure are deviated from, and the diffraction efficiency decreases. The angle θ 0 is generally taken to be equal to the Bragg angle corresponding to the center frequency f 0 of the frequency range, and θ 0 is given by θ 0 = sin -1 (λf 0 /2vn) (2) . In FIG. 1, the diffracted light beam 15 and the zero-order product light beam 16 are focused on the end surface 10 of the waveguide 2 as point images 11 and 14, respectively, by the action of the imaging lens 9. At this time, a light shielding material 17 is provided near the zero-order point image 14.

この場合にレンズ9は導波路と垂直なz方向に
は結像作用を持たないので、点像のz方向のスポ
ツトサイズは導波路の厚みにほぼ等しくなる。こ
の例ではこの厚みは2μm程度にしてある。平行
光束6を通過した超音波弾性表面波12は、超音
波吸収体13により吸収される。
In this case, since the lens 9 has no imaging effect in the z-direction perpendicular to the waveguide, the spot size of the point image in the z-direction becomes approximately equal to the thickness of the waveguide. In this example, this thickness is approximately 2 μm. The ultrasonic surface acoustic wave 12 that has passed through the parallel light beam 6 is absorbed by the ultrasonic absorber 13 .

SAW電極7に印加する高周波信号として、前
記高周波数f0を中心とするチヤープト信号を用い
る事により、点線11を移動させ輝点走査が行わ
れる。
By using the chirp signal centered at the high frequency f 0 as the high frequency signal applied to the SAW electrode 7, the dotted line 11 is moved and bright spot scanning is performed.

一方半導体レーザー3へ印加する電流を記録用
信号に対応して変化させる事で点像11の輝度を
変調する事が可能である。従つて、この輝点走査
素子は、そのままで一次元的走査ヘツドとして記
録再生に適用できる。例えば、磁気記録ヘツドと
して適用する場合は、この輝点走査素子の導波路
射出端面10にテープ状に光熱磁気記録媒体18
を端面に接触させながら矢印方向に移動させ、そ
れと同期して半導体レーザー3の印加電流をビデ
オ信号等で変調する事により高速走査記録ができ
る。
On the other hand, by changing the current applied to the semiconductor laser 3 in accordance with the recording signal, it is possible to modulate the brightness of the point image 11. Therefore, this bright spot scanning element can be used as it is as a one-dimensional scanning head for recording and reproduction. For example, when applied as a magnetic recording head, a photothermal magnetic recording medium 18 is attached to the waveguide exit end face 10 of this bright spot scanning element in the form of a tape.
High-speed scanning recording can be performed by moving the semiconductor laser 3 in the direction of the arrow while contacting the end face, and in synchronization with this, modulating the applied current of the semiconductor laser 3 with a video signal or the like.

しかしながら、この場合最初に述べたように出
射端面に接触している記録媒体が導波路面端面の
鋭い綾辺で損傷する恐れが十分にある。
However, in this case, as mentioned above, there is a good chance that the recording medium in contact with the output end face will be damaged by the sharp edges of the waveguide surface end face.

また以上の説明では輝点走査型の素子を説明し
たが複数の導波路をモノリシツクに形成してマル
チヤンネルヘツドとして用いる素子についても同
様である。
Furthermore, although the above description has been made regarding a bright spot scanning type element, the same applies to an element formed monolithically with a plurality of waveguides and used as a multichannel head.

また、記録媒体がテープ状のものの場合につい
て説明したが、記録媒体としてデイスク状のもの
を用いた場合は、1トラツクごとにヘツドを次の
トラツクに移動する事により同様に高速走査記録
が行える。なお、ヘツドはデイスク表面よりわず
かに浮上させて用いるのが一般的である。そして
この場合においても前述の特に導波路端面10の
綾辺によりヘツドの浮上の前後でデイスクを傷つ
ける恐れがあり、更に綾による大きな空気抵抗の
為、ヘツドの浮上特性を損う可能性がある。
Furthermore, although the case where the recording medium is tape-shaped has been described, if a disk-shaped recording medium is used, high-speed scanning recording can be similarly performed by moving the head from track to track to the next track. Note that the head is generally used slightly raised above the disk surface. In this case as well, there is a risk that the disk may be damaged before and after the head floats, especially by the traverse of the waveguide end face 10, as described above, and furthermore, the high air resistance caused by the traverse may impair the flying characteristics of the head.

以上の不都合を解消した本発明の第1実施例を
第3図に示す。この実施例は、テープ状の記録媒
体に対する記録ヘツドに適用したものである。
A first embodiment of the present invention that eliminates the above-mentioned disadvantages is shown in FIG. This embodiment is applied to a recording head for a tape-shaped recording medium.

輝点走査素子としての原理は、前述の第1図に
示した例と同様であるので、重複する部分の説明
は省略する。
The principle of the bright spot scanning element is the same as the example shown in FIG.

第3図において、19は薄膜導波路2の表面
に、スペーサー20を介して設けられたカバー部
材で磨耗強度が基板1とほぼ等しい強度を持つ材
料により形成されたものが望ましい。スペーサー
20は、カバー層19が超音波弾性表面8及び薄
膜導波路2を伝搬する光束に影響を与えない為に
薄膜導波路2とカバー部材19との間にある間隙
を得る為に用いており、その厚みは、薄膜レンズ
5及び9にジオデジツクレンズを用いた場合は、
SAW電極7の表面より、また、ルネブルクレン
ズを用いた場合は、ルネブルクレンズの最上面よ
り、それぞれ数μm程度の位置に、カバー層19
の裏面がくるように配置出来る厚さで十分であ
る。
In FIG. 3, a cover member 19 is provided on the surface of the thin film waveguide 2 via a spacer 20, and is preferably made of a material having approximately the same abrasion strength as the substrate 1. The spacer 20 is used to obtain a gap between the thin film waveguide 2 and the cover member 19 so that the cover layer 19 does not affect the light beam propagating through the ultrasonic elastic surface 8 and the thin film waveguide 2. , the thickness is, when geodigital lenses are used for the thin film lenses 5 and 9.
A cover layer 19 is placed at a position of several μm from the surface of the SAW electrode 7 or, if a Luneburg lens is used, from the top surface of the Luneburg lens.
The thickness is sufficient so that the back side of the

このような厚さのスペーサー20は、金属又は
誘電体等の蒸着により、あるいはマイラーフイル
ムりんせい銅又はアルミ箔等の非常に薄いシート
状の物体を薄膜導波路2上に接着する事により形
成する。
The spacer 20 having such a thickness is formed by vapor deposition of metal or dielectric material, or by adhering a very thin sheet-like object such as Mylar film, copper foil, or aluminum foil onto the thin film waveguide 2. .

カバー部材19は薄膜導波路の表面を、全て覆
つているとともにその1つの端面が導波路2の出
射端面と略同一平面内にあり、共に記録ヘツドの
ヘツド面を形成している。これによつて導波路2
の鋭い綾辺は露出しない。
The cover member 19 covers the entire surface of the thin film waveguide, and one end face thereof is substantially in the same plane as the output end face of the waveguide 2, and both form the head face of the recording head. This allows the waveguide 2
The sharp edges are not exposed.

このヘツド面の綾辺の少なくとも一部、即ち基
板1及びカバー部材19の記録媒体18に対向す
る綾が面取りあるいは第4図に示す如く丸めがな
されている。
At least a portion of the traverse of this head surface, that is, the traverse of the substrate 1 and the cover member 19 facing the recording medium 18 is chamfered or rounded as shown in FIG.

以上示したような構成により、本実施例の輝点
走査型ヘツドは、記録媒体18に損傷を与える事
なく、また薄膜導波路2の表面上にゴム、ホコ
リ、よごれ等による輝点走査性能の劣化を防ぐ事
ができる。
With the configuration described above, the bright spot scanning head of this embodiment can prevent damage to the recording medium 18 and prevent the bright spot scanning performance from being affected by rubber, dust, dirt, etc. on the surface of the thin film waveguide 2. Deterioration can be prevented.

以上は、テープ状記録媒体用の固定ヘツドに適
用した場合であるが、デイスク状記録媒体用の浮
動ヘツドに適用した場合は、面取りあるいは丸め
を行う事により、綾による浮上時の空気抵抗を軽
減でき、良好な浮上特性を得る事が可能となる。
The above is a case where it is applied to a fixed head for a tape-shaped recording medium, but when applied to a floating head for a disk-shaped recording medium, the air resistance when floating due to the twill is reduced by chamfering or rounding. This makes it possible to obtain good flying characteristics.

尚、ゴミ、ホコリ等より導波路全面を保護する
必要のない場合は第5図に示す如く、導波路の1
部を覆い記録媒体に対向する面を導波路の出射端
面と一致させ、綾を丸めにカバー部材19′を設
けても本発明の目的は達成できる。
If it is not necessary to protect the entire waveguide from dirt, dust, etc., as shown in Figure 5,
The object of the present invention can also be achieved by providing a cover member 19' with a rounded twill, with the surface facing the recording medium coinciding with the output end surface of the waveguide.

第6図は、同一基板上に構成したテープ状記録
媒体用の薄膜導波路型4チヤンネル記録マルチヘ
ツドに本発明を適用した実施例である。
FIG. 6 shows an embodiment in which the present invention is applied to a thin film waveguide type four-channel recording multihead for tape-shaped recording media constructed on the same substrate.

第6図において21に半導体基板であり、その
上に4個の半導体レーザー22〜25が構成され
ている。26〜29はそれぞれ、半導体レーザー
22〜25からの光束を伝搬する薄膜導波路であ
り、これ等は、モノリシツクな構成となつてい
る。
In FIG. 6, reference numeral 21 denotes a semiconductor substrate, on which four semiconductor lasers 22 to 25 are constructed. Reference numerals 26 to 29 are thin film waveguides through which the light beams from the semiconductor lasers 22 to 25 propagate, respectively, and these have a monolithic structure.

この様に同一基板上の複数個の半導体レーザー
及び薄膜導波路をモノリシツクに構成した例は、
文献IEEE Journal of Quntum Electronics vol.
QE−13、No.4、pp220「A Freguency−
Multiplexing Light Source With
Monolithically Integrated Distributed−
Feedback Diode Laser」byK.AiKi etal.に述べ
られている。
An example of monolithically configuring multiple semiconductor lasers and thin film waveguides on the same substrate in this way is
Literature IEEE Journal of Quantum Electronics vol.
QE-13, No. 4, pp220 “A Freguency-
Multiplexing Light Source With
Monolithically Integrated Distributed−
Feedback Diode Laser” by K. AiKi et al.

半導体レーザー22〜25からの出射光はそれ
ぞれ薄膜導波路26〜29を伝搬し、出射端面3
0に導かれるが、この時、半導体レーザー22〜
25の駆動電流を記録用信号により変調し、素子
端面30に接してテープ状の記録媒体31を第6
図の矢印の方向に移動する事により、信号の記録
媒体31への記録が可能である。
The emitted light from the semiconductor lasers 22 to 25 propagates through thin film waveguides 26 to 29, respectively, and reaches the output end face 3.
0, but at this time, the semiconductor laser 22~
The drive current of 25 is modulated by the recording signal, and the tape-shaped recording medium 31 is placed in contact with the element end face 30.
Signals can be recorded on the recording medium 31 by moving in the direction of the arrow in the figure.

32は薄膜導波路26〜29より低屈折率の接
着材層であり、カバー部材33を薄膜導波路26
〜29の表面に固定するとともに、薄膜導波路2
6〜29のカバー層として役目もはたしている。
基板21及びカバー部材33の記録媒体31に接
触あるいは近接する面の綾は、面取りあるいは丸
めがなされている。
32 is an adhesive layer having a lower refractive index than the thin film waveguides 26 to 29, and the cover member 33 is attached to the thin film waveguide 26.
~ 29, and the thin film waveguide 2
It also serves as a cover layer for layers 6 to 29.
The twills of the surfaces of the substrate 21 and cover member 33 that contact or are close to the recording medium 31 are chamfered or rounded.

このような構成により導波路の綾による記録媒
体の損傷を防ぐ事が可能である。また、本実施例
の薄膜導波路型ヘツドは、ほぼ完全密封に近い状
態である為、導波路表面上に付着した、ゴミ、ホ
コリ、よごれ等による特性劣下に対する防止効果
は第3図示の実施例に比べて高くなる。
With such a configuration, it is possible to prevent damage to the recording medium due to the twisting of the waveguide. In addition, since the thin film waveguide type head of this example is in a nearly completely sealed state, the effect of preventing property deterioration due to dirt, dust, dirt, etc. adhering to the waveguide surface is as shown in the third figure. It will be higher than the example.

以上、記録ヘツドに対する実施例を用いて説明
したが、本発明は、ヘツドの形状に関するもので
あり、記録ヘツドに限らず、再生ヘツドにもその
まま適用できる事は言うまでもない。
Although the embodiments of the present invention have been described above with reference to the recording head, the present invention relates to the shape of the head, and it goes without saying that it is applicable not only to recording heads but also to reproducing heads.

以上説明したように、本発明は薄膜導波路型の
記録あるいは再生ヘツドにおいて薄膜導波路の表
面に直接又は近接させてカバー部材を設けた事に
より以下の様な利点を有するものである。
As explained above, the present invention has the following advantages by providing a cover member directly or close to the surface of the thin film waveguide in a thin film waveguide type recording or reproducing head.

(1) テープ状又はデイスク状の記録媒体用の固定
ヘツドの場合、媒体に対向するる薄膜導波路の
綾による記録媒体の損傷を防ぐ事が出きる。
(1) In the case of a fixed head for a tape-shaped or disk-shaped recording medium, it is possible to prevent damage to the recording medium due to the twisting of the thin film waveguide facing the medium.

(2) デイスク状の記録媒体用の浮動ヘツドの場
合、浮上及び降下時において(1)の利点を有する
とともに、空気抵抗をおさえる事により、浮上
時の浮上特性を良好なものとする事ができる。
(2) In the case of a floating head for a disk-shaped recording medium, it has the advantages mentioned in (1) during ascent and descent, and by suppressing air resistance, it can provide good flying characteristics during ascent. .

またカバー部材を導波路の全面に設けた場合
は、薄膜導波路上に付着した、ゴミ、ホコリ、よ
ごれ等により生ずる素子特性の劣化を防止する事
ができるといつた利点も有する。
Further, when the cover member is provided over the entire surface of the waveguide, there is an advantage that deterioration of device characteristics caused by dust, dirt, etc. adhering to the thin film waveguide can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1、2図は薄膜導波路型A/O偏向器を用い
た輝点走査素子を用いた記録ヘツドを示す図。第
3、4図は、本発明を薄膜導波路型A/O偏向器
を用いた、テープ状記録媒体用の固定記録ヘツド
に適用した第1実施例を示す図。第5図は、第2
実施例のヘツドの断面図。第6図は、本発明を同
一基板上に薄膜導波路をモノリシツクに構成した
記録ヘツドに適用した第3実施例を示す図であ
る。 図中、2,26,27,28,29……薄膜導
波路、3,22,23,24,25……半導体レ
ーザー、5,9……薄膜レンズ、7……SAW電
極、15……回折光束、16……零次回折光束、
18……テープ状記録媒体、19……カバー部
材。
1 and 2 are diagrams showing a recording head using a bright spot scanning element using a thin film waveguide type A/O deflector. 3 and 4 are diagrams showing a first embodiment in which the present invention is applied to a fixed recording head for a tape-shaped recording medium using a thin film waveguide type A/O deflector. Figure 5 shows the second
FIG. 3 is a sectional view of the head of the embodiment. FIG. 6 is a diagram showing a third embodiment in which the present invention is applied to a recording head in which thin film waveguides are monolithically constructed on the same substrate. In the figure, 2, 26, 27, 28, 29... thin film waveguide, 3, 22, 23, 24, 25... semiconductor laser, 5, 9... thin film lens, 7... SAW electrode, 15... diffraction Luminous flux, 16...0th order diffracted luminous flux,
18... Tape-shaped recording medium, 19... Cover member.

Claims (1)

【特許請求の範囲】 1 薄膜導波路と、該導波路の表面に弾性波を発
生させる手段とから成り、前記導波路を伝搬する
光束を前記表面弾性波によつて偏向し、偏向され
た光束を記録体に対向して配された導波路端面よ
り出射させて、記録又は再生を行なう薄膜導波路
型ヘツドにおいて、 前記導波路上に、スペーサーを介して、前記光
束の出射端面と略同一平面内に端面を有するカバ
ー部材を形成し、前記導波路とカバー部材との間
に間〓を設けたことを特徴とする薄膜導波路型ヘ
ツド。
[Scope of Claims] 1. Consisting of a thin film waveguide and a means for generating an elastic wave on the surface of the waveguide, the light beam propagating through the waveguide is deflected by the surface acoustic wave, and the deflected light beam is In a thin film waveguide type head that performs recording or reproduction by emitting light from an end face of a waveguide disposed opposite to a recording medium, a spacer is provided on the waveguide, and a spacer is provided on the waveguide so that the light beam is emitted from the end face of the waveguide disposed opposite to the recording medium. 1. A thin film waveguide type head, characterized in that a cover member having an end face is formed therein, and a gap is provided between the waveguide and the cover member.
JP55133203A 1980-09-24 1980-09-24 Thin film waveguide type head Granted JPS5756807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55133203A JPS5756807A (en) 1980-09-24 1980-09-24 Thin film waveguide type head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55133203A JPS5756807A (en) 1980-09-24 1980-09-24 Thin film waveguide type head

Publications (2)

Publication Number Publication Date
JPS5756807A JPS5756807A (en) 1982-04-05
JPH035566B2 true JPH035566B2 (en) 1991-01-25

Family

ID=15099134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55133203A Granted JPS5756807A (en) 1980-09-24 1980-09-24 Thin film waveguide type head

Country Status (1)

Country Link
JP (1) JPS5756807A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658744B2 (en) * 1984-09-14 1994-08-03 オムロン株式会社 Optical information processing device
JPH0619847B2 (en) * 1984-09-14 1994-03-16 オムロン株式会社 Optical information processing device
JPS6277761A (en) * 1985-09-30 1987-04-09 Fuji Photo Film Co Ltd Optical scanning reader
JPS6331033A (en) * 1986-07-25 1988-02-09 Asahi Glass Co Ltd Optical pick-up
US4904036A (en) * 1988-03-03 1990-02-27 American Telephone And Telegraph Company, At&T Bell Laboratories Subassemblies for optoelectronic hybrid integrated circuits
GB2216710B (en) * 1988-03-14 1992-09-02 Ici Plc Optical or magneto-optical data system
JPH02103744A (en) * 1988-10-12 1990-04-16 Sanyo Electric Co Ltd Optical head device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017521A (en) * 1973-06-15 1975-02-24
JPS50156311A (en) * 1974-06-04 1975-12-17
JPS5268307A (en) * 1975-12-05 1977-06-07 Olympus Optical Co Ltd Lihgt scanner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017521A (en) * 1973-06-15 1975-02-24
JPS50156311A (en) * 1974-06-04 1975-12-17
JPS5268307A (en) * 1975-12-05 1977-06-07 Olympus Optical Co Ltd Lihgt scanner

Also Published As

Publication number Publication date
JPS5756807A (en) 1982-04-05

Similar Documents

Publication Publication Date Title
US4887255A (en) Integrated optical head
US4861128A (en) Optical pickup using a waveguide
US5105403A (en) Optical information reading apparatus with waveguide and diffraction grating
US5128915A (en) Optical pickup device
JPS6289250A (en) Pickup for optical disk
US4816912A (en) Laser-beam printer with improved optical deflector
US5272689A (en) Optical head system with transparent contact member
JPH035566B2 (en)
US4855986A (en) Data storage and readout optical head using a single substrate having an electrooptic converging portion for adjustment of the light beam focal point
JP2527903B2 (en) Multi-channel data storage and multi-channel laser optics
JP2603086B2 (en) Optical waveguide device
JPH03189631A (en) Waveguide apparatus
JP2000187877A (en) Optical waveguide element and waveguide type optical head
US5048936A (en) Light beam deflector
US4929043A (en) Light beam deflector
JPH01107213A (en) Optical waveguide element
US5706370A (en) Optical deflection scanning device
US5150437A (en) Electro-optical scanner
JPH0451892B2 (en)
JPH0369032A (en) Optical head
JP2629168B2 (en) Optical head device
JPS62238537A (en) Two-dimensional optical deflecting device
JPH0234011B2 (en)
JPH01107212A (en) Optical waveguide element
JPS6275622A (en) Optical scanning recorder