JPH0354748A - Magneto-optical recording medium - Google Patents
Magneto-optical recording mediumInfo
- Publication number
- JPH0354748A JPH0354748A JP18918689A JP18918689A JPH0354748A JP H0354748 A JPH0354748 A JP H0354748A JP 18918689 A JP18918689 A JP 18918689A JP 18918689 A JP18918689 A JP 18918689A JP H0354748 A JPH0354748 A JP H0354748A
- Authority
- JP
- Japan
- Prior art keywords
- recording
- magneto
- film
- recording medium
- optical recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 21
- 239000002131 composite material Substances 0.000 claims abstract description 11
- 230000005415 magnetization Effects 0.000 claims abstract description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 239000005416 organic matter Substances 0.000 claims description 3
- 150000002910 rare earth metals Chemical class 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052692 Dysprosium Inorganic materials 0.000 claims 1
- 229910052779 Neodymium Inorganic materials 0.000 claims 1
- 229910052771 Terbium Inorganic materials 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 41
- 239000000463 material Substances 0.000 abstract description 14
- 239000010409 thin film Substances 0.000 abstract description 13
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 description 22
- 239000010410 layer Substances 0.000 description 13
- 230000005381 magnetic domain Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- -1 rare earth transition metal Chemical class 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 229910002546 FeCo Inorganic materials 0.000 description 1
- 230000005374 Kerr effect Effects 0.000 description 1
- 229910016629 MnBi Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910002837 PtCo Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学記録媒体、特に光磁気記録媒体に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to optical recording media, particularly magneto-optical recording media.
さらに詳しくは記録用媒体層の記録磁区形状の制御が容
易で、高密度記録、高速データ転送に適した新規な光磁
気記録媒体に関するものである。More specifically, the present invention relates to a novel magneto-optical recording medium that allows easy control of the shape of recording magnetic domains in a recording medium layer and is suitable for high-density recording and high-speed data transfer.
近年、情報処理の大容量化に伴い、高密度記録の可能な
各種記録技術が開発されている。特に、所謂磁気光学効
果を利用した書き換え可能な光磁気ディスクが有望視さ
れている。このような光磁気ディスク等の記録媒体は、
主にディスク面に対して垂直な方向に磁化容易軸を有す
る垂直磁化薄膜を、ガラス、樹脂等の基板上に形成した
もので、情報の書き込みには上記磁性薄膜へのレーザ光
による熱磁気書き込みを用い、再生時には磁気光学効果
による上記磁性薄膜からの反射光、もしくは透過光の偏
光面回転を検出することで、記録媒体に貯えられている
磁気的情報を読み出すものである。In recent years, various recording technologies capable of high-density recording have been developed as information processing capacity increases. In particular, rewritable magneto-optical disks that utilize the so-called magneto-optic effect are viewed as promising. Such recording media such as magneto-optical disks are
A perpendicularly magnetized thin film with an axis of easy magnetization mainly perpendicular to the disk surface is formed on a substrate such as glass or resin, and information is written using thermomagnetic writing using a laser beam on the magnetic thin film. During reproduction, the magnetic information stored in the recording medium is read out by detecting the rotation of the polarization plane of the reflected light or transmitted light from the magnetic thin film due to the magneto-optic effect.
情報を記憶する垂直磁化薄膜としては、近年は希土類遷
移金属アモルファス膜あるいはその合金のアモルファス
膜が主流となっている。このような材料としては、Gd
Fe, NdFe,Dyke, TbFe等が挙げられ
、更に、これらに第3元素としてSr, Gd, Co
等を添加することによって多元合金化すると記録特性が
改善されることも知られている。In recent years, rare earth transition metal amorphous films or amorphous films of alloys thereof have become mainstream as perpendicularly magnetized thin films for storing information. Such materials include Gd
Examples include Fe, NdFe, Dyke, TbFe, etc., and in addition, Sr, Gd, Co as a third element.
It is also known that the recording characteristics can be improved by forming a multi-component alloy by adding .
通常、この非品質希土類・遷移金属合金薄膜の製造は、
日本金属学会会報第24巻第7号(1985)p581
〜p587やトリケッブス社「光磁気ディスクJ (1
986)p 43〜p 81に記載されているように、
真空蒸着法、直流2極スバッタ法、3極スパッタ法、高
周波スバッタ法、プレナー製マグネトロンスバッタ法な
どによってなされている。Typically, the production of this non-quality rare earth/transition metal alloy thin film is
Bulletin of the Japan Institute of Metals Vol. 24 No. 7 (1985) p581
~p587 and Trikebbs “Magneto-Optical Disk J (1
986) as described on pages 43 to 81,
This is accomplished by vacuum evaporation, DC two-pole sputtering, three-pole sputtering, high-frequency sputtering, Planar magnetron sputtering, and the like.
しかしながら、上述した金属薄膜を記録層とする光磁気
記録媒体は、高密度記録媒体として大きな注目、期待が
寄せられてはいるが、工業化に際しては克服すべきいく
つかの重大な課題を残していた。However, although magneto-optical recording media with the above-mentioned metal thin film as a recording layer have received great attention and expectations as high-density recording media, there remain several serious issues that need to be overcome before industrialization. .
即ち、大きな課題としては、記録磁区の形状が第2図に
示すように涙滴状となるため、ビットエッジの位置決め
や磁区幅の制御が困難で、記録密度の一層の向上が難し
く、ひいては高速転送の実現の大きな妨げとなっていた
。In other words, the major problem is that the shape of the recording magnetic domain is teardrop-like as shown in Figure 2, making it difficult to position the bit edges and control the magnetic domain width, making it difficult to further improve the recording density, and eventually increasing the speed of recording. This was a major hindrance to the realization of transfer.
この課題に対して様々な工夫が既になされてはいるが、
未だ克服するには至っていない。例えば、上記課題の克
服については、イ)媒体の加熱効率を良くすること、つ
まり熱伝導率が小さいこと、ロ)キュリー点が低いこと
等が望まれるが、未だこれらの要求を十分に満たす金属
薄膜材料は得られていないのが実情である。Although various efforts have already been made to address this issue,
I have not yet been able to overcome it. For example, in order to overcome the above problems, it is desirable to (a) improve the heating efficiency of the medium, that is, have low thermal conductivity, and (b) have a low Curie point, but there are still metals that fully meet these requirements. The reality is that thin film materials have not yet been obtained.
従って、本発明の目的は、効率良く高密度・高速記録の
できる光磁気記録媒体を提供することにある。Therefore, an object of the present invention is to provide a magneto-optical recording medium that allows efficient high-density and high-speed recording.
本発明はかかる現状に鑑みて、熱伝導度の小さい記録膜
材料を開発すべく種々検討した結果、光磁気記録媒体の
記録層中に有機物を複合すれば上記の目的を達或できる
ことを見出し、本発明の完或に至ったものである。In view of the current situation, the present invention has conducted various studies to develop a recording film material with low thermal conductivity, and has discovered that the above object can be achieved by compounding an organic substance into the recording layer of a magneto-optical recording medium. This is the completion of the present invention.
即ち本発明は、膜面に垂直な方向に磁化容易軸を有し、
かつカー回転軸が0.1度以上、キュリー点が400℃
以下の金属磁性膜中に、重量平均分子量が500未満の
有機物の1種以上を含有する有機複合膜からなる記録層
を有することを特徴とする有機複合光磁気記録媒体に係
るものである。That is, the present invention has an axis of easy magnetization in a direction perpendicular to the film surface,
And Kerr rotation axis is 0.1 degree or more, Curie point is 400℃
The present invention relates to an organic composite magneto-optical recording medium characterized by having a recording layer made of an organic composite film containing one or more organic substances having a weight average molecular weight of less than 500 in the following metal magnetic film.
本発明における光磁気記録媒体に使用される金,嘱磁性
膜は膜面に垂直な磁化容易軸を有し、かつカ一回転角が
0.1度以上、好ましくは0.2度以上、キュリー点が
400℃以下の範囲のものであることを要する。つまり
垂直磁気記録用に用いられるCoC’r, CoNiP
等の薄膜材料は、キュリー点が高く、半導体レーザ光に
よる熱磁気書き込みを行うことが難しく、光磁気記録媒
体としては実用的でないため除外される。The magnetic gold film used in the magneto-optical recording medium of the present invention has an axis of easy magnetization perpendicular to the film surface, and has a rotation angle of 0.1 degree or more, preferably 0.2 degree or more, and a Curie It is required that the temperature is below 400°C. In other words, CoC'r, CoNiP used for perpendicular magnetic recording
Thin film materials such as these have a high Curie point, are difficult to perform thermomagnetic writing using semiconductor laser light, and are not practical as magneto-optical recording media, so they are excluded.
本発明によれば、上記の如き金属連続薄膜中に重量平均
分子量が500未満の有機物の1種以上を複合した磁性
膜を記録層として用いることによって、高密度・高速記
録を可能にした光磁気記録媒体が提供される。According to the present invention, a magneto-optical film that enables high-density and high-speed recording is obtained by using a magnetic film, which is a composite of one or more organic substances having a weight average molecular weight of less than 500, in a continuous metal thin film as described above, as a recording layer. A recording medium is provided.
本発明の光磁気記録媒体に於いては、有機物の適量と金
属元素とを、金属薄膜の有する本来の磁気光学特性を劣
化させることなく複合化させ、この複合化した有機物の
作用によって記録層の熱伝導度を低下させることができ
る。つまり熱伝導度を小さくすることによって記録磁区
の不必要なふくらみを防止し、且つ形状が精密にコント
ロールされた微小な記録磁区を高密度に形或できるため
、高密度・高速記録が可能となった。さらには本発明に
よると、加熱効率も高められるため、出力の制約された
半導体レーザを光源に用いても短時間で書き込みを行う
ことが可能である。In the magneto-optical recording medium of the present invention, an appropriate amount of an organic substance and a metal element are composited without deteriorating the original magneto-optical properties of the metal thin film, and the recording layer is formed by the action of the composite organic substance. Thermal conductivity can be reduced. In other words, by reducing thermal conductivity, unnecessary bulging of the recording magnetic domain can be prevented, and minute recording magnetic domains whose shapes are precisely controlled can be formed at high density, making high-density and high-speed recording possible. Ta. Furthermore, according to the present invention, heating efficiency is also improved, so even if a semiconductor laser with limited output is used as a light source, writing can be performed in a short time.
従来、媒体の熱伝導を妨げる手段として、保護膜に熱伝
導率の小さいTa,05等を用いることなどが提案され
ている。しかしこれらの方法では、実際に情報が記録さ
れる記録膜自身の熱特性は何ら改善されず、記録磁区が
涙滴状となることは防げない。また、保護膜に要求され
る透過率、屈折率、保護特性などの特性を満足し、かつ
熱伝導度が十分小さい保護膜材料は見出されていなかっ
た。これらの従来の提案は、記録膜自身の熱伝導度を低
下させることを可能にした本発明とは本質的に異なるも
のであるが、また、本発明を保護膜に応用すれば、従来
使用されている保護膜材料の熱伝導度を更に低下させる
ことも可能である。Conventionally, it has been proposed to use Ta, 05, or the like, which has a low thermal conductivity, as a protective film as a means to prevent heat conduction of the medium. However, these methods do not improve the thermal characteristics of the recording film itself on which information is actually recorded, and cannot prevent the recording magnetic domain from becoming teardrop-shaped. Furthermore, no protective film material has been found that satisfies the characteristics required for a protective film, such as transmittance, refractive index, and protective properties, and has sufficiently low thermal conductivity. These conventional proposals are essentially different from the present invention, which makes it possible to reduce the thermal conductivity of the recording film itself, but if the present invention is applied to a protective film, it will be possible to reduce the thermal conductivity of the recording film itself. It is also possible to further reduce the thermal conductivity of the overcoat material used.
一方、レーザ光加熱により情報を記録する光記録媒体と
しては、光磁気型以外に有機薄膜やカルコゲナイト系の
材料等を用いた相変化型あるいは穴あけ型光ディスクが
知られている。本発明は主として光磁気記録媒体に関す
るものであるが、他のヒートモード光記録媒体に関して
も、特に記録媒体に合金等熱伝導率の大きい材″.ケ用
いられているものについては、本発明を応用して記録感
度を高めることができる。On the other hand, as optical recording media on which information is recorded by laser beam heating, in addition to the magneto-optical type, phase change type or perforated type optical disks using organic thin films, chalcogenite-based materials, etc. are known. Although the present invention mainly relates to magneto-optical recording media, the present invention can also be applied to other heat mode optical recording media, especially those in which materials with high thermal conductivity such as alloys are used in the recording media. It can be applied to increase recording sensitivity.
本発明で使用できる金属磁性膜材料としては、膜面に垂
直な方向に磁化容易軸を有し一即ち垂直磁気異方性エネ
ルギーが正でありー、半導体レーザによる熱磁気書き込
みに適したキュリー温度あるいは補償温度を有すること
が好ましい。The metal magnetic film material that can be used in the present invention has an axis of easy magnetization perpendicular to the film surface, that is, has positive perpendicular magnetic anisotropy energy, and has a Curie temperature suitable for thermomagnetic writing using a semiconductor laser. Alternatively, it is preferable to have a compensation temperature.
このような材料としては、希土類一遷移金属アモルファ
ス合金が一般には好ましいが、結晶体の形式であっても
よい。これらの例としては、GdFe, TbFe,
GdCo, DyFe, GdTbFe, TbDyF
e,TbFeCo, NdDyFe, NdDyFeC
o, GdTbCo, GdTbFeCo,GdFeB
i, GdTbFeCe ;あるいはこれらにBi,
Ni,Pt, Ta, In, Cr, Ti, Sr
, Ce等の添加元素が添加されたもの;MnBi,
PtCo, PtMnSb, MnCuB5MnAIC
e等が挙げられる。Such materials are generally preferred to be rare earth-transition metal amorphous alloys, but may also be in crystalline form. Examples of these include GdFe, TbFe,
GdCo, DyFe, GdTbFe, TbDyF
e, TbFeCo, NdDyFe, NdDyFeC
o, GdTbCo, GdTbFeCo, GdFeB
i, GdTbFeCe; or Bi,
Ni, Pt, Ta, In, Cr, Ti, Sr
, to which additional elements such as Ce are added; MnBi,
PtCo, PtMnSb, MnCuB5MnAIC
Examples include e.
本発明で使用できる有機物は特に制約はないが、次の条
件を満たしていることが好ましい。Although there are no particular restrictions on the organic substance that can be used in the present invention, it is preferable that it satisfies the following conditions.
1) 実用波長域で光の吸収が小さい
2) 希土類及び遷移金属に対して酸化剤とならない
3) 融点が少なくとも記録膜のキュリー点より高い
4〉 ノイズの原因となる様な光学活性を示さない
また、有機複合膜を真空蒸着法により製造する場合、有
機物の添加量を制御するために有機物は室温で固定であ
ることが望ましいが、有機粉末が常温で液体或いは基体
であっても、真空蒸着法で膜中に有機物を複合させるこ
とは可能である。1) Light absorption is small in the practical wavelength range 2) Does not act as an oxidizing agent for rare earths and transition metals 3) Melting point is at least higher than the Curie point of the recording film 4> Does not exhibit optical activity that may cause noise Furthermore, when manufacturing an organic composite film by vacuum evaporation, it is desirable that the organic substance be fixed at room temperature in order to control the amount of organic substance added. It is possible to combine organic substances into a film using a method.
有機物の添加量は、0.001〜10重量%の範囲が使
用できるが、好ましくは有機物の種類にもよるがおおむ
ね0.01〜5重量%の範囲が良い。The amount of the organic substance added can be in the range of 0.001 to 10% by weight, preferably in the range of 0.01 to 5% by weight, although it depends on the type of organic substance.
有機物の添加量が0. 001重量%未満では、本発明
による熱伝導率の低下がほとんど認められず、0.01
重量%以上であればおおむね上記の効果が認められる。The amount of organic matter added is 0. When the amount is less than 0.01% by weight, almost no decrease in thermal conductivity according to the present invention is observed;
If the amount is at least % by weight, the above effects are generally observed.
また、有機物の添加量がIO重量%を超えると、得られ
る記録膜の耐食性が低下して問題となる。5重量%以下
であれば、耐食性低下も緩和され、本発明の目的に最も
合った記録膜が得られる。Furthermore, if the amount of organic substance added exceeds IO weight %, the corrosion resistance of the resulting recording film decreases, which poses a problem. When the content is 5% by weight or less, the deterioration in corrosion resistance is alleviated, and a recording film that best meets the purpose of the present invention can be obtained.
本発明で使用される有機物の重量平均分子量は500未
満である。有機物の重量平均分子量が500未満のもの
は実用波長域の吸収が極めて低いため、磁気光学特性の
劣化を気にかけることなく複合化できる点に大きなメリ
ットがある。The weight average molecular weight of the organic material used in the present invention is less than 500. Organic substances with a weight average molecular weight of less than 500 have extremely low absorption in the practical wavelength range, and therefore have a great advantage in that they can be combined without worrying about deterioration of magneto-optical properties.
また、分子量の下限としては常温で固体のものが好まし
く、重量平均分子量が100以上のものが好ましい。The lower limit of the molecular weight is preferably one that is solid at room temperature, and one with a weight average molecular weight of 100 or more.
膜厚は光磁気記録媒体の記録層として100〜2000
人の範囲が好ましい。The film thickness is 100 to 2000 mm as a recording layer of a magneto-optical recording medium.
A range of people is preferred.
薄膜を形成する基板としては、ボリカーボネート、ポリ
オレフィンあるいはガラス等の透明基板、もしくはその
上に窒化物、酸化物等の透明下地層が形或されたものを
用いることができる。As the substrate on which the thin film is formed, a transparent substrate made of polycarbonate, polyolefin, glass, or the like, or one on which a transparent base layer of nitride, oxide, or the like is formed can be used.
また、記録層の上に更にスパッタリング等により保護膜
等を形或し、例えば第1図の様な多層構造としても良い
。この様な多層構造としたとき、保護膜、反射膜等に用
いることができる材料としては、Cu, AI, Ti
, Pt, Au, Ni, Mn,Bi, Cr,
Ag, Sn等の金属や、AIN, SI3N4,
AISIN,CeF2, MgF2, LaF,,
CaF2, NaF, ZnS, Sin,
Sh02,CeF,, AIF,, Ta,Os,
CoFe,O., Y3Fes[]+2,3i,Fe
5口+2+ (BIY) 3F’eSoi等の誘電体
を挙げることができる。Further, a protective film or the like may be further formed on the recording layer by sputtering or the like to form a multilayer structure as shown in FIG. 1, for example. When creating such a multilayer structure, materials that can be used for the protective film, reflective film, etc. include Cu, AI, and Ti.
, Pt, Au, Ni, Mn, Bi, Cr,
Metals such as Ag, Sn, AIN, SI3N4,
AISIN, CeF2, MgF2, LaF,,
CaF2, NaF, ZnS, Sin,
Sh02,CeF,, AIF,, Ta,Os,
CoFe,O. , Y3Fes[]+2,3i,Fe
Dielectric materials such as 5+2+ (BIY) 3F'eSoi can be mentioned.
本発明による光磁気記録媒体は以下1)〜5)の特徴的
作用を有する。The magneto-optical recording medium according to the present invention has the following characteristic effects 1) to 5).
1) 有機物の作用により膜の緻密性、表面平滑性が増
大し、読み出し時の媒体ノイズが低減される。1) The denseness and surface smoothness of the film are increased by the action of organic substances, and the medium noise during reading is reduced.
2〉 有機物の作用により膜の熱伝導が抑制され、書き
込みレーザ光による加熱効率が向上し、書き込み速度が
向上する。2> Heat conduction in the film is suppressed by the action of the organic substance, improving the heating efficiency of the writing laser beam and increasing the writing speed.
3) 熱伝導が小さいため、レーザ光東が照射されない
部分への熱の伝播を防ぐことができ、書き込みレーザ光
の軌跡に忠実に微小な記録磁区が形或され、記録密度の
増大が可能となる。3) Because heat conduction is small, it is possible to prevent heat from propagating to areas not irradiated by the laser beam, and a minute recording magnetic domain is formed faithfully to the trajectory of the writing laser beam, making it possible to increase the recording density. Become.
4) 上記2〉による書き込み時間の短縮と、上記3)
による線記録密度の増大により、従来の書き込みレーザ
出力及びディスク回転数で光磁気ディスクの高速データ
転送が可能となる。4) Shortening of writing time due to 2> above and 3) above
Due to the increase in linear recording density, high-speed data transfer on magneto-optical disks becomes possible with conventional writing laser output and disk rotation speed.
5) 磁気光学特性を損なうことなく、上記1)の効果
を得ることができる。5) The effect of 1) above can be obtained without impairing the magneto-optical properties.
以下実施例を用いて本発明をさらに詳細に説明するが、
本発明は以下の実施例に限定されるものではない。The present invention will be explained in more detail using Examples below.
The present invention is not limited to the following examples.
成膜方法
電子銃付真空蒸着装置を用いて希土類金属用、遷移金属
用及び有機物用るつぼを各々セットし、3元同時蒸着を
行った。有機物の蒸発源は一部抵抗加熱を用いた。Film Formation Method Using a vacuum evaporation apparatus equipped with an electron gun, crucibles for rare earth metals, transition metals, and organic substances were set, and ternary simultaneous evaporation was performed. Resistance heating was used in part as the evaporation source for organic matter.
本実施例で用いた有機物を表1に示す。Table 1 shows the organic substances used in this example.
表
1
表
1
(続
き)
表
1
(続
き)
?機物含有量の測定
金属中炭素分析装置(堀場製作所製、BMIA−110
)を用いて1000−1350℃に加熱し、発生するC
O■,CDを定量する方法、UV吸収法、もしくは蛍光
X線法のいずれかにより定量した。Table 1 Table 1 (continued) Table 1 (continued) ? Metal carbon analyzer (manufactured by Horiba, BMIA-110)
) to 1000-1350℃, and the generated C
Quantification was carried out by either the method of quantifying O■, CD, UV absorption method, or fluorescent X-ray method.
金属組或の分析
ICP法(日本ジャーレルアッシュ社製、ICAP−5
75型)を用いて分析した。Metal assembly analysis ICP method (manufactured by Nippon Jarrell Ash Co., Ltd., ICAP-5)
75 type).
膜厚の測定
触針式段差測定機、又は繰り返し反射干渉計により測定
した。Measurement of film thickness: Measurement was performed using a stylus-type step measuring device or a repeating reflection interferometer.
磁気光学特性の測定
カー効果測定装置(日本分光K−250) によりカー
回転角(θk)、保磁力(Hc)及びキュリー点(TC
)を測定した。Measurement of magneto-optical properties Kerr rotation angle (θk), coercive force (Hc), and Curie point (TC) were measured using a Kerr effect measuring device (JASCO K-250).
) was measured.
耐食性試験
0. 1N NaC]溶液を膜面に均一に噴霧した後、
60℃,90%RHの環境下で連続100時間放置試験
を行い、その前後での膜の腐食部分の面積率を画像解析
装置により求めた。100時間放置後の腐食部分の面積
率により、次の3段階で評価した。Corrosion resistance test 0. After uniformly spraying the 1N NaC] solution onto the membrane surface,
A standing test was conducted in an environment of 60° C. and 90% RH for 100 hours continuously, and the area ratio of the corroded portion of the film before and after was determined using an image analysis device. Evaluation was made on the following three levels based on the area ratio of the corroded portion after being left for 100 hours.
A:30%未満
B:60%未満
C;60%以上
熱伝導率の測定
ポリイミド及びPETフィルム上に膜厚l〜5μmで或
膜した試料についてレーザフラッシコ法により測定した
。A: less than 30% B: less than 60% C: 60% or more Measurement of thermal conductivity Measurement was performed using a laser flashco method on samples coated on polyimide and PET films with a film thickness of 1 to 5 μm.
膜構造及び表面形状
透過型電子顕微鏡(日本電子■製2000FX)、電解
放射型走査型電子顕微鏡(日立s−4000>を用いて
膜の微細構造、非品質性、表面形状等の観察を行った。Membrane structure and surface shape The fine structure, non-quality, surface shape, etc. of the membrane were observed using a transmission electron microscope (JEOL 2000FX) and a field emission scanning electron microscope (Hitachi S-4000). .
結 果
表2に本発明品の金属組戒、使用有機物(表1に示した
ものの番号)及び戊膜方法と熱伝導率及び比較例として
有機物を含まない場合の例と共に示す。The results are shown in Table 2, along with the metal composition of the product of the present invention, the organic substances used (the numbers shown in Table 1), the coating method, the thermal conductivity, and a comparative example in which no organic substances were included.
まず、熱伝導率は、有機物の添加によりいずれも低下し
ている。また、力一回転角は金属組戊により0.30〜
0.42度の範囲で金属組戊が等しい場合は±0.02
度の範囲内でほぼ一定であった。First, the thermal conductivity of all the samples decreased due to the addition of organic substances. In addition, the rotation angle per force is 0.30 to 0.30 depending on the metal assembly.
±0.02 if the metal assemblies are equal within a range of 0.42 degrees
It was almost constant within the range of degrees.
保磁力は5kG以上、キュリー点は150〜200℃の
範囲であった。有機物を添加したことによる磁気光学特
性の劣化(力一回転角の減少、保磁力の低下及びキュリ
ー点の上昇〉は、添加量5重量%以下の範囲内では認め
られていない。The coercive force was 5 kG or more, and the Curie point was in the range of 150 to 200°C. No deterioration of magneto-optical properties (decrease in force/rotation angle, decrease in coercive force, and increase in Curie point) due to the addition of organic substances was observed within the range of addition amount of 5% by weight or less.
その他GdTbFeCo, GdTbFe, NdDy
FeCo, NdDyFe,TbFeのいずれの系(N
o.16 〜19)においても有機物の添加による同様
の効果が認められた。OthersGdTbFeCo, GdTbFe, NdDy
FeCo, NdDyFe, TbFe (N
o. 16 to 19), similar effects due to the addition of organic substances were observed.
表
2
表
2
(続
き)
(注)京1
膜中の金属の全量を100としたときの各金属の組或比
本2
25℃における値
以上の如く本発明により得られる有機複合希土類遷移金
属合金膜を記録層に用いることにより、その熱伝導率が
低下するため高密度・高速記録のできる光磁気記録媒体
を提供できることがわかった。Table 2 Table 2 (Continued) (Note) K1 Composition ratio of each metal when the total amount of metal in the film is 100 Book 2 Organic composite rare earth transition metal alloy obtained by the present invention as above the value at 25°C It has been found that by using a film as a recording layer, the thermal conductivity of the film is reduced, so that a magneto-optical recording medium capable of high-density and high-speed recording can be provided.
4,4,
第1図は一般的な光磁気記録媒体の構或を示ず断面略示
図、第2図は従来の媒体に書き込まれた記録磁区の形状
を模式的に示す図である。
1.2:媒体の熱伝導率が大きいために涙滴状となった
記録磁区
3:ビーム走査方向
4:ビーム照射時間が異なるときの磁区幅の差
5,6:理想的な記録磁区形状
7:ビットエッジの位置ずれ
11.21:基板
12.22:記録層
13, 23 :保護層
14.24:下地層
15:封止材層FIG. 1 is a schematic cross-sectional view showing the structure of a general magneto-optical recording medium, and FIG. 2 is a diagram schematically showing the shape of recording magnetic domains written on a conventional medium. 1.2: Recorded magnetic domain with teardrop shape due to high thermal conductivity of the medium 3: Beam scanning direction 4: Difference in domain width when beam irradiation time differs 5, 6: Ideal recording domain shape 7 : Misalignment of bit edge 11.21: Substrate 12.22: Recording layer 13, 23: Protective layer 14.24: Base layer 15: Encapsulant layer
Claims (1)
転軸が0.1度以上、キュリー点が400℃以下の金属
磁性膜中に、重量平均分子量が500未満の有機物の1
種以上を含有する有機複合膜からなる記録層を有するこ
とを特徴とする複合光磁気記録媒体。 2 金属磁性膜の主成分が希土類金属及び遷移金属元素
の中から選ばれた1種以上である請求項1記載の光磁気
記録媒体。 3 金属磁性膜がTb、Gd、Nd、Dyの中から選ば
れる希土類元素を少なくとも1種以上含み、かつFe、
Coのどちらか一方又は両方を含むものである請求項1
又は2記載の光磁気記録媒体。[Scope of Claims] 1. A metal magnetic film having an axis of easy magnetization perpendicular to the film surface, a Kerr rotation axis of 0.1 degrees or more, and a Curie point of 400°C or less, with a weight average molecular weight of 500°C or less. less than 1 organic matter
1. A composite magneto-optical recording medium comprising a recording layer made of an organic composite film containing at least one species. 2. The magneto-optical recording medium according to claim 1, wherein the main component of the metal magnetic film is one or more selected from rare earth metals and transition metal elements. 3. The metal magnetic film contains at least one rare earth element selected from Tb, Gd, Nd, and Dy, and Fe,
Claim 1 containing either or both of Co.
Or magneto-optical recording medium according to 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18918689A JP2653520B2 (en) | 1989-07-21 | 1989-07-21 | Magneto-optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18918689A JP2653520B2 (en) | 1989-07-21 | 1989-07-21 | Magneto-optical recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0354748A true JPH0354748A (en) | 1991-03-08 |
JP2653520B2 JP2653520B2 (en) | 1997-09-17 |
Family
ID=16236948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18918689A Expired - Lifetime JP2653520B2 (en) | 1989-07-21 | 1989-07-21 | Magneto-optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2653520B2 (en) |
-
1989
- 1989-07-21 JP JP18918689A patent/JP2653520B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2653520B2 (en) | 1997-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3072812B2 (en) | Magneto-optical recording medium and method of reproducing information from the medium | |
US4753853A (en) | Double-layered magnetooptical recording medium | |
JP3781823B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JP3078145B2 (en) | Method for manufacturing magneto-optical recording medium | |
JPH06124500A (en) | Magneto-optical recording medium and playback method of this medium | |
JPH0550400B2 (en) | ||
JP2653520B2 (en) | Magneto-optical recording medium | |
US4999260A (en) | Magneto-optical recording medium comprising a rare-earth-transition metal dispersed in a dielectric | |
JP2001110104A (en) | Magneto-optical data memory disk having smooth reflector layer of high conductivity | |
JPS6132242A (en) | Optothermomagnetic recording medium | |
JP2957260B2 (en) | Magneto-optical recording medium | |
JP2678222B2 (en) | Magneto-optical recording medium | |
JP3592399B2 (en) | Magneto-optical recording medium | |
JP2932687B2 (en) | Magneto-optical recording medium | |
JPH0677347B2 (en) | Information recording medium | |
JPH08315435A (en) | Magneto-optical recording medium | |
JPH0638370B2 (en) | Amorphous magneto-optical layer | |
JP3446297B2 (en) | Magneto-optical recording medium | |
JPH08106662A (en) | Magneto-optical recording medium | |
JPH07254176A (en) | Magneto-optical recording medium and method for reproducing information with same medium | |
JPH06251445A (en) | Magneto-optical recording medium and information reproducing method using this medium | |
JPH0644624A (en) | Magneto-optical recording medium | |
JPH05342662A (en) | Magneto-optical recording medium | |
JPH0785512A (en) | Magneto-optical recording medium | |
JPH0554452A (en) | Magneto-optical recording medium |