JPH0353155A - Detector for internal defect or damage for steel material - Google Patents
Detector for internal defect or damage for steel materialInfo
- Publication number
- JPH0353155A JPH0353155A JP19001689A JP19001689A JPH0353155A JP H0353155 A JPH0353155 A JP H0353155A JP 19001689 A JP19001689 A JP 19001689A JP 19001689 A JP19001689 A JP 19001689A JP H0353155 A JPH0353155 A JP H0353155A
- Authority
- JP
- Japan
- Prior art keywords
- excitation
- core
- detection
- cores
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007547 defect Effects 0.000 title claims abstract description 62
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 45
- 239000010959 steel Substances 0.000 title claims abstract description 45
- 239000000463 material Substances 0.000 title claims abstract description 28
- 230000006378 damage Effects 0.000 title claims abstract description 12
- 230000005291 magnetic effect Effects 0.000 claims abstract description 50
- 230000004907 flux Effects 0.000 claims abstract description 14
- 230000005284 excitation Effects 0.000 claims description 107
- 238000001514 detection method Methods 0.000 claims description 96
- 239000003302 ferromagnetic material Substances 0.000 claims description 7
- 230000007797 corrosion Effects 0.000 abstract description 10
- 238000005260 corrosion Methods 0.000 abstract description 10
- 238000005266 casting Methods 0.000 abstract description 6
- 238000009826 distribution Methods 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 230000005294 ferromagnetic effect Effects 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、機械部品等の鋼材の鋳造過程における巣等に
よる内部欠陥及び鋼板若しくは鋼管の表面又は裏面側の
腐食による食孔又は減肉部を非破壊で検出する鋼材の内
部欠陥又は損傷検出装置に関する。Detailed Description of the Invention [Industrial Application Field] The present invention is directed to the prevention of internal defects caused by cavities during the casting process of steel materials such as machine parts, and corrosion holes or thinning areas caused by corrosion on the front or back side of steel plates or steel pipes. This invention relates to an internal defect or damage detection device for steel materials that non-destructively detects defects or damages in steel materials.
従来、導電性の被検査体に生じた微細な亀裂、欠陥を非
破壊で検出する装置は各種提供されているが、その殆ど
は被検査体に誘起する渦電流を利用したものである。例
えば、特開昭60 − 66156号公報にて開示され
る如く、環状コアにトーラス状に巻回したコイルをその
中心線を管体の軸方向と平行となして内挿し、該コイル
により発生する軸方向の磁界により、管体の円周方向に
誘起される潟電流による信号を検出コイルで検出する装
置、又は実開昭62 − 108148号公報にて開示
される如く、フエライトコアに励磁コイルと検出コイル
を巻回し、該フエライトコアを被検査体に対して略直角
に接触又は近接させて移動し、励磁コイルにより被検査
体に誘起されたi電涼による信号を検出コイルで検出す
る装置が提供されているが、比較的精度は高いものの、
渦電流による検出信号レベルを高めるために、1kHz
以上の周波数の交流電流又は急峻な立上り及び立下りの
矩形波電流を励磁コイルに供給しなければならず、その
ため励磁コイルによる磁界が十分に被検査体内部へ浸透
せず、特に強磁性体では更に浸透深さが浅くなるため原
理的に被検査体表層部の厚さ数龍の領域又は浅い部分の
欠陥のみ、換言すれば厚さ数n以下の被検査体の検査し
か行うことができなかった。Conventionally, various devices have been provided for nondestructively detecting minute cracks and defects occurring in conductive objects to be inspected, but most of them utilize eddy currents induced in the objects to be inspected. For example, as disclosed in Japanese Unexamined Patent Publication No. 60-66156, a coil wound in a torus shape around an annular core is inserted with its center line parallel to the axial direction of the tube, and the coil generates energy. A device that uses a detection coil to detect a signal due to a lagoon current induced in the circumferential direction of a tube by an axial magnetic field, or a device that uses a ferrite core with an excitation coil as disclosed in Japanese Utility Model Application Publication No. 108148/1983. A device is provided in which a detection coil is wound, the ferrite core is moved approximately perpendicularly to or in contact with an object to be inspected, and the detection coil detects a signal due to i-current induced in the object to be inspected by an excitation coil. However, although the accuracy is relatively high,
1kHz to increase the detection signal level due to eddy current.
It is necessary to supply the excitation coil with an alternating current with a frequency higher than that or a rectangular wave current with steep rises and falls, and as a result, the magnetic field from the excitation coil does not penetrate sufficiently into the object to be inspected, especially for ferromagnetic materials. Furthermore, since the penetration depth becomes shallower, it is theoretically possible to inspect only defects in the area or shallow part of the surface layer of the object to be inspected, in other words, only to inspect objects with a thickness of several n or less. Ta.
本発明が前述の状況に鑑み、解決しようとするところは
、厚さ10m程度までの強磁性体からなる鋼材の内部深
い所に存在する鋳造過程における巣等による内部欠陥及
び鋼板若しくは鋼管の表面又は裏面側の腐食による食孔
又は減内部を非破壊で感度よく検出することができる鋼
材の内部欠陥又は損傷検出装置を提供する点にある。In view of the above-mentioned situation, the present invention aims to solve internal defects caused by cavities during the casting process that exist deep inside steel materials made of ferromagnetic material up to a thickness of about 10 m, and the surface or surface of steel plates or steel pipes. It is an object of the present invention to provide an internal defect or damage detection device for a steel material that can non-destructively and sensitively detect pits or internal loss due to corrosion on the back side.
C課題を解決するための手段〕
本発明は、前述の課題解決の為に、両側の励磁用コアと
その中間の検出用コアからなるヨーク型コアの両側励磁
用コアに励磁コイルを壱回するととともに、前記検出用
コアに検出コイルを巻回してなり、そして前記両励磁コ
イルに互いが逆極性となるように同位相の交流電流を供
給し、両励磁用コアの一端を強磁性体からなる鋼材の表
面に密接若しくは一定微小間隔を隔てた状態で移動させ
、鋼材中の欠陥若しくは食孔、減内部による磁気抵抗の
変化を前記検出コイルにて誘導電圧振幅変化として検出
し、該電圧振幅信号を信号処理回路にて欠陥等が検出用
コアと一方の励磁用コア間及び他方の励磁用コア間に位
置した場合とでは異なる信号となし、該処理信号を表示
器に出力してなる鋼材の内部欠陥又は損傷検出装置を構
成した。Means for Solving Problem C] In order to solve the above-mentioned problem, the present invention provides a method in which an excitation coil is arranged in both excitation cores of a yoke-shaped core consisting of excitation cores on both sides and a detection core in the middle. In addition, a detection coil is wound around the detection core, and alternating current of the same phase is supplied to both excitation coils so that they have opposite polarities, and one end of both excitation cores is made of a ferromagnetic material. The detection coil moves the steel material closely or at a constant minute interval, and the detection coil detects changes in magnetic resistance due to defects, pits, and internal reduction in the steel material as induced voltage amplitude changes, and detects the voltage amplitude signal. In the signal processing circuit, when a defect etc. is located between the detection core and one excitation core and between the other excitation core, a different signal is generated, and the processed signal is output to the display to display the steel material. An internal defect or damage detection device was constructed.
そして、前記両側励磁用コア及び励磁コイルの特性を一
致させるとともに、該両側励磁コイルに供給した同位相
の交流電流によりそれぞれ互いに逆極性且つ等しい磁束
密度の磁界を発生させるか若しくは該両側励磁コイルに
供給した同位相且つ大小異なる電流値の交流電流により
それぞれ異なる磁束密度で逆極性の磁界を発生させてい
る。Then, the characteristics of the excitation core on both sides and the excitation coil are made to match, and magnetic fields with opposite polarities and equal magnetic flux densities are generated by alternating currents of the same phase supplied to the excitation coils on both sides, or The supplied alternating currents of the same phase and different magnitudes generate magnetic fields of opposite polarity and different magnetic flux densities.
また、前記励磁コイルに供給する交流電流の周波数を、
鋼材の内部深くまで磁界が浸透するように、数十Hz以
下の低い周波数に設定している。Furthermore, the frequency of the alternating current supplied to the excitation coil is
The frequency is set to a low frequency of several tens of Hz or less so that the magnetic field penetrates deep into the steel material.
更に、前記ヨーク型コアとして、両側励磁用コアと検出
用コアを平行に配するとともに、それぞれの下端が同一
平面となるように設定してなるヨーク型コアを用いるか
若しくは検出用コアを両側励磁用コアに対して相対的に
上下高さ調節可能となしたヨーク型コアを用いた。Furthermore, as the yoke-type core, a yoke-type core is used in which a core for excitation on both sides and a core for detection are arranged in parallel, and their lower ends are set to be on the same plane, or a core for excitation on both sides is excited. We used a yoke-type core whose height can be adjusted vertically relative to the core.
以上の如き内容からなる本発明の鋼の内部欠陥検出装置
は、ヨーク型コアの両側励磁用コアに巻回した励磁コイ
ルに同位相の交流電流を供給して、それぞれの励磁コイ
ルで互いに逆極性の磁界を発生させる電磁石を構戒し、
該励磁用コアの先端を鋼板の表面に密接若しくは一定微
小間隔を隔てた状態で移動させた際、該鋼材内部に欠陥
及び表面又は裏面側に食孔、減内部が存在する場合に前
記励磁コイルにより発生され鋼材内部に?fkmした磁
界の磁束密度の変化即ち磁気抵抗の変化が生し、その変
化を前記検出用コアに巻回した検出コイルで誘導電圧振
幅変化として検出してその欠陥等の存在を確認するとと
もに、該検出コイルの出力信号を信号処理回路にて欠陥
等が検出用コアと一方の励磁用コア間及び他方の励磁用
コア間に位置した場合とでは異なる信号に変換し、その
処理信号を表示器に出力して該欠陥等が検出用コアに対
してどちら側の励磁用コア間に位置するのかを検出する
のである.
また、両側の励磁用コア及び励磁コイルで互いに等しい
磁束密度で逆極性の磁界を発生させてその中点で平衡さ
せた場合、欠陥等が存在しない場合には中間部の検出コ
イルには出力が得られず、両励磁用コアの間に欠陥等が
存在する場合には、励磁用コアと検出用コアの間の磁気
抵抗が変化するために中点での平衡が崩れて磁力線の一
部が検出コイルの中を通るようになるため該検出コイル
に誘導電圧が生じるが、該欠陥等が検出用コアのどちら
の側に位置しているかは検出コイルの誘導電圧のみでは
判別できないので、その信号を区別するために信号処理
回路にて位相検波して、検出用コアを介して異なる側に
欠陥等が位置した際には異なる符号の信号電圧となるよ
うに変換して表示器に出力するのである。The steel internal defect detection device of the present invention having the above-mentioned contents supplies an alternating current of the same phase to the excitation coils wound around the excitation cores on both sides of the yoke type core, and the excitation coils have opposite polarity. Be wary of electromagnets that generate magnetic fields,
When the tip of the excitation core is moved closely to the surface of the steel plate or at a certain minute distance, if there are defects inside the steel material, pits, or thinner parts on the front or back side, the excitation coil Is it generated inside the steel material? A change in the magnetic flux density of the magnetic field, that is, a change in magnetic resistance occurs, and this change is detected as a change in induced voltage amplitude by a detection coil wound around the detection core to confirm the existence of defects, etc. A signal processing circuit converts the output signal of the detection coil into a different signal depending on whether a defect is located between the detection core and one excitation core or between the other excitation core, and displays the processed signal on the display. The output is used to detect which side of the excitation core the defect, etc. is located between the detection core and the excitation core. In addition, if the excitation cores and excitation coils on both sides generate magnetic fields with equal magnetic flux densities and opposite polarities and are balanced at the midpoint, there will be no output to the detection coil in the middle if there is no defect. If this is not possible and there is a defect between both excitation cores, the magnetic resistance between the excitation core and detection core will change, causing the balance at the midpoint to collapse and some of the lines of magnetic force to be distorted. Since it passes through the detection coil, an induced voltage is generated in the detection coil, but it is not possible to determine on which side of the detection core the defect is located based only on the induced voltage of the detection coil, so the signal In order to distinguish between defects, the signal processing circuit performs phase detection, and when a defect is located on a different side via the detection core, it is converted to a signal voltage with a different sign and output to the display. be.
一方、両側の励磁用コア及び励磁コイルで互いに逆極性
且つ異なる磁束密度の磁界を発生させた場合には、欠陥
等が存在しない場合でも検出コイルに常に一定の基準電
圧振幅の出力が得られ、欠陥等が存在する場合には該検
出用コアを介してどちら側に欠陥等が位置するかに応じ
て前記基準電圧振幅より大又は小の出力電圧が得られる
ので、その信号を信号処理回路にて増幅、整流して表示
器に出力するのである。On the other hand, if the excitation cores and excitation coils on both sides generate magnetic fields with opposite polarities and different magnetic flux densities, the detection coil will always output a constant reference voltage amplitude even if there is no defect, etc. If a defect, etc. exists, an output voltage larger or smaller than the reference voltage amplitude can be obtained depending on which side the defect, etc. is located via the detection core, so the signal is sent to the signal processing circuit. The signal is then amplified, rectified, and output to the display.
また、励磁コイルに供給する交流電流の周波数を数+t
lz以下の低い周波数に設定し、強磁性体からなる鋼材
の内部深くまで磁界が浸透するようになして、厚さ10
n程度の鋼材の内部欠陥及び表面又は裏面側の食孔及び
減肉部を検出できるようになしている。Also, the frequency of the alternating current supplied to the excitation coil is set to several + t.
The magnetic field is set to a low frequency of 10 oz or less, so that the magnetic field penetrates deep into the steel material made of ferromagnetic material.
It is possible to detect internal defects of steel materials, corrosion holes on the front or back side, and thinned parts of the steel material.
更に、検出用コアを両励磁用コアに対して相対的に上下
高さ調節可能となして、平面又は曲面を有する鋼材の表
面に沿うように検出用コアを調節するのである。Further, the height of the detection core can be adjusted relative to both excitation cores, so that the detection core can be adjusted along the surface of the steel material, which has a flat or curved surface.
〔実施例)
次に添付図面に示した実施例に基づき更に本発明の詳細
を説明する。[Example] Next, the present invention will be further explained in detail based on the example shown in the accompanying drawings.
第1図〜第3図は本発明の代表的実施例を示し、図中1
はセンサ部、2は交流電源、3は信号処理回路、4は表
示器をそれぞれ示している。1 to 3 show typical embodiments of the present invention, in which 1
2 indicates a sensor section, 2 an AC power supply, 3 a signal processing circuit, and 4 a display device.
センサ部1は、第1図に示す如く両側に平行に励磁用コ
ア5.6を配するとともに、その中間に平行に検出用コ
ア7を配し、それぞれの上部を一体達設したヨーク型コ
ア8となし、両励磁用コア5,6にはそれぞれ逆巻きに
励磁コイル9.10を巻回し、前記検出用コア7には検
出コイル11を巻回して構成したものである。ここで、
前記励磁用コア5と励磁コイル9及び励磁用コア6と励
磁コイル10から構成される電磁石の特性を一致させて
、それぞれに供給する交流電流により互いに逆極性の磁
界を発生させるのである。また、両励磁コイル9.10
に供給する交流電流の電流値を調節できるように、一方
の励磁コイル9には固定抵抗R。を、伯方の励磁コイル
10には可変抵抗VRをそれぞれ直列に接続している。As shown in FIG. 1, the sensor section 1 is a yoke-type core in which excitation cores 5 and 6 are arranged in parallel on both sides, and a detection core 7 is arranged in parallel in the middle, and the upper part of each core is integrally extended. 8, excitation coils 9 and 10 are wound in opposite directions around both excitation cores 5 and 6, and a detection coil 11 is wound around the detection core 7. here,
The characteristics of the electromagnets constituted by the excitation core 5 and the excitation coil 9 and the excitation core 6 and the excitation coil 10 are matched, and magnetic fields of opposite polarity are generated by alternating current supplied to each. In addition, both excitation coils 9.10
A fixed resistor R is provided in one excitation coil 9 so that the current value of the alternating current supplied to the coil can be adjusted. A variable resistor VR is connected in series to each of the excitation coils 10.
尚、両励磁コイル9,10をどちらも同じ方向に巻回し
た場合には、互いに電流の流れる方向が逆になるように
接続すればよい。In addition, when both excitation coils 9 and 10 are both wound in the same direction, they may be connected so that the directions of current flow are opposite to each other.
また、前記ヨーク型コア8は、薄い鉄板を積層して形威
したものや、フエライトで形戒したものが使用され、そ
の形状は第1図に示す如く前記両励磁用コア5.6と検
出用コア7の上部を一体連結し、励磁用コア5,6の下
端と検出用コア7の下端とが平面状の被検査体の面に接
するように設定したものや、第8図に示す如く両励磁用
コア5.6のみを一体連設し、検出用コア7は別体に設
けて、該検出用コア7を両励磁用コア5.6に対して上
下高さ調節可能となし、曲面状の被検査体に対してもそ
の面に検出用コア7が沿うようになしたものが使用され
る。Further, the yoke type core 8 is formed by laminating thin iron plates or formed by ferrite, and its shape is detected as the dual excitation core 5.6 as shown in Fig. 1. The upper parts of the excitation cores 7 are integrally connected, and the lower ends of the excitation cores 5 and 6 and the lower end of the detection core 7 are in contact with the surface of a flat object to be inspected, or as shown in FIG. Only both excitation cores 5.6 are integrally connected, and the detection core 7 is provided separately, so that the height of the detection core 7 can be adjusted up and down with respect to both excitation cores 5.6, and the curved surface A device in which the detection core 7 is arranged along the surface of an object to be inspected is also used.
前記交流電源2は、低い周波数の正弦波を発生する発振
器l2と該発振器12の出力を所望電流値に増幅する電
流増幅器l3とよりなり、該交流電源2の出力を分岐し
、一方を固定抵抗R0を介して励磁コイル9に供給する
とともに、他方を可変抵抗VRを介して励磁コイル10
に供給し、互いに同位相で且つ逆極性の磁界を発生する
ようになしている。The AC power supply 2 includes an oscillator l2 that generates a low frequency sine wave, and a current amplifier l3 that amplifies the output of the oscillator 12 to a desired current value, and branches the output of the AC power supply 2, one of which is connected to a fixed resistor. It is supplied to the excitation coil 9 via R0, and the other is supplied to the excitation coil 10 via the variable resistor VR.
are supplied to generate magnetic fields with the same phase and opposite polarity.
尚、前記発振器12にて発生させる正弦波の周波数は、
例えば10〜30Hzに設定する。The frequency of the sine wave generated by the oscillator 12 is
For example, it is set to 10 to 30 Hz.
そして、前記センサ部1の励磁コイル9.10に同位相
の交流電流を供給して、互いに逆極性で同一磁束密度の
磁界を発生させた状!Q(以下、平衡状態という。)で
、該センサ部1の励磁用コア5,6の下端を強磁性体か
らなる被検査体14の表面に接触若しくは一定微小間隔
を隔てた状態で移動させる。この時、両励磁用コア5,
6の何れか一方と検出用コア7間に、被検査体14であ
る鋼材の鋳造過程における巣等による内部欠陥及び鋼板
若しくは鋼管の表面又は裏面側の腐食による食孔又は減
肉部a (以下、欠陥等aという。)が存在する場合に
は、両励磁コイル9.10で発生し、被検査体14の内
部に浸透した磁界の磁束密度分布が変化し、従って磁気
抵抗の差が生じるので、前記検出コイル11に誘導電圧
振幅変化として出力される。Then, alternating currents of the same phase are supplied to the excitation coils 9 and 10 of the sensor section 1 to generate magnetic fields with opposite polarities and the same magnetic flux density! Q (hereinafter referred to as an equilibrium state), the lower ends of the excitation cores 5 and 6 of the sensor section 1 are moved in contact with the surface of the object to be inspected 14 made of ferromagnetic material or at a constant minute interval. At this time, both excitation cores 5,
6 and the detection core 7, there are internal defects such as cavities during the casting process of the steel material to be inspected 14, and corrosion holes or thinned areas a (hereinafter referred to as , defect, etc. a) exists, the magnetic flux density distribution of the magnetic field generated in both excitation coils 9 and 10 and penetrating into the inspected object 14 changes, resulting in a difference in magnetic resistance. , is outputted to the detection coil 11 as an induced voltage amplitude change.
ここで、前記ヨーク型コア8の両励磁用コア5,6間の
幅lは、20〜500の範囲内で適宜設定されるが、幅
が狭すぎると発生する磁界が被検査体14の内部深くま
で浸透しなく、また幅が広すぎると欠陥等aの検出に対
する空間分解能が悪くなるので、被検査体14の厚みを
考慮した上で最適な幅に設定する必要がある。通常、被
検査体14の厚みdが約3fiの場合には、幅lを30
〜40nに設定すると良好な結果が得られる。Here, the width l between the excitation cores 5 and 6 of the yoke-shaped core 8 is appropriately set within the range of 20 to 500 mm, but if the width is too narrow, the generated magnetic field will be inside the object to be inspected 14. If it does not penetrate deeply and if the width is too wide, the spatial resolution for detecting defects etc. a will be poor, so it is necessary to set the optimum width in consideration of the thickness of the object 14 to be inspected. Normally, when the thickness d of the inspected object 14 is about 3fi, the width l is about 30mm.
A setting of ˜40n gives good results.
第2図は、センサ部1を励磁用コア5.6と検出用コア
7が並んだ方向(以下、X方向という.)に等速度Uで
移動させた際に、平衡状態に設定した場合に検出コイル
11に生じる振幅電圧V。を、両励磁用コア5.6の位
iA,Bと欠陥等aの相対位置の関数として示したもの
である。Figure 2 shows the state of equilibrium when the sensor unit 1 is moved at a constant speed U in the direction in which the excitation core 5.6 and the detection core 7 are lined up (hereinafter referred to as the X direction). An amplitude voltage V generated in the detection coil 11. is shown as a function of the positions iA, B of both excitation cores 5.6 and the relative position of the defect a.
このように、平衡状態に設定した場合には、欠陥等aが
検出用コア7と励磁用コア5との間及び検出用コア7と
励磁用コア6との間に位置する場合に、略同様の出力が
得られ、欠陥等aの存在は検出できるものの、その位置
の特定が困難であるので、以下の信号処理回路3でそれ
ぞれに対して異なる符号の信号電圧に変換するのである
。In this way, when the equilibrium state is set, when the defect etc. a is located between the detection core 7 and the excitation core 5, and between the detection core 7 and the excitation core 6, approximately the same Although it is possible to detect the presence of a defect or the like, it is difficult to specify its position, so the following signal processing circuit 3 converts each into a signal voltage of a different sign.
第4図に示す如く前記交流電源2の発振器l2により発
生された交流電流■。の周期に対応して前記検出コイル
l1から検出電圧V,が出力され、該検出電圧V,の包
路線は、前記振幅電圧V0に一致するのであるが、前記
検出用コア7の位置を境に左右で位相は反転している。As shown in FIG. 4, an alternating current (2) is generated by the oscillator l2 of the alternating current power supply 2. A detection voltage V, is outputted from the detection coil l1 in accordance with the period of , and the envelope of the detection voltage V, coincides with the amplitude voltage V0, but with the position of the detection core 7 as the boundary. The phase is reversed between left and right.
前記信号処理回@3は、前記検出電圧V,を交流増幅器
15で所定電圧に増幅し、その出力をフオトカブラ16
の電界効果型フォトトランジスタに入力し、前記発振器
12からの交流電流I。によりスイソチングするトラン
ジスタl7に接続された発光ダイオードに通電している
間だけ、該電界効果型フォトトランジスタが導通し、そ
の出力を抵抗R,とコンデンサC,を並列に接続した充
放電回路に供給して第4図に示す如くコンデンサC,の
両端に位相検波電圧v2を発生させ、更に該位相検波電
圧v2を抵抗R2とコンデンサC2からなる積分回路で
前記発振器12で発生させる周波数程度の変動戒分を平
滑化して信号電圧v3を発生させ、そして該信号電圧v
3を直流増幅器18で所望電圧に増幅するものである.
ここで、前記フォトカプラ16の発光ダイオードは順方
向に正電圧付勢されてエミッタを接地した前記トランジ
スタ17のコレクタに接続され、そしてベースは前記発
振器12に抵抗R。を介して接続され、ベースに正の所
定電流値の電流が入力された際に、直ちに飽和するのに
十分な電流がコレクタと工主ッタ間に流れるように設定
してあり、第4図に示す如く発振器12の交流電流■。The signal processing circuit @3 amplifies the detected voltage V to a predetermined voltage using an AC amplifier 15, and outputs the output from the photocoupler 16.
The alternating current I from the oscillator 12 is input to the field effect phototransistor of the oscillator 12. The field-effect phototransistor becomes conductive only while the light-emitting diode connected to the transistor l7, which is switched on by As shown in FIG. 4, a phase detection voltage v2 is generated across the capacitor C, and the phase detection voltage v2 is generated by the oscillator 12 using an integrating circuit consisting of a resistor R2 and a capacitor C2. is smoothed to generate a signal voltage v3, and the signal voltage v
3 is amplified to a desired voltage by a DC amplifier 18.
Here, the light emitting diode of the photocoupler 16 is forward-energized with a positive voltage and connected to the collector of the transistor 17 whose emitter is grounded, and the base is connected to the oscillator 12 by a resistor R. It is set so that when a positive predetermined current value is input to the base, enough current flows between the collector and the main body to immediately saturate it, as shown in Figure 4. The alternating current of the oscillator 12 is as shown in FIG.
が正の値の場合にのみ略矩形波のパルス電流I1が流れ
るのである。従って、第4図において前記検出電圧V.
の左側は正の電圧が、右側は負の電圧がフォトカプラl
6の電界効果型フォトトランジスタを通過するのである
尚、前記充放電回路の時定数RIC+は、発振器12の
交流電流I。の周期よりあまり大きくならないように設
定するとともに、積分回路の時定数R2C2は前記時定
数RIClよりも十分大きく設定している。The approximately rectangular wave pulse current I1 flows only when is a positive value. Therefore, in FIG. 4, the detection voltage V.
The positive voltage is on the left side of the photocoupler l, and the negative voltage is on the right side of the photocoupler l.
Note that the time constant RIC+ of the charging/discharging circuit is equal to the alternating current I of the oscillator 12. The time constant R2C2 of the integrating circuit is set to be sufficiently larger than the time constant RICl.
そして、前記信号処理回路3により位相検波して処理し
た出力は、レコーダー19、アナログメータ20及びオ
シロスコープ等の表示器4に入力して表示するのである
。Then, the output obtained by phase detection and processing by the signal processing circuit 3 is input to a recorder 19, an analog meter 20, and a display 4 such as an oscilloscope for display.
また、前記センサ部1を前記X方向と直交する方向に移
動させた場合には、中央の検出用コア7と両側の励磁用
コア5.6間の何れか一方の間を欠陥等aが通過するこ
とになるが、その場合には前記信号電圧v3の正部分又
は負部分のみが出力され、欠陥等aの位置を決定するこ
とが可能である以上のように、前記交流電源2から励磁
コイル9.10に供給する交流電流I。の周波数を数十
Hz以下の低い周波数に設定したことにより、前記被検
査体14の摩さdが約10m以内であれば、十分に裏面
側にまで磁界が浸透して、裏面に生じた欠陥等aも検出
することが可能となるのである。Furthermore, when the sensor unit 1 is moved in a direction perpendicular to the X direction, a defect, etc. a passes between the central detection core 7 and the excitation cores 5.6 on both sides. However, in that case, only the positive part or the negative part of the signal voltage v3 is output, and it is possible to determine the position of the defect etc. a. 9. The alternating current I supplied to 10. By setting the frequency to a low frequency of several tens of Hz or less, if the abrasion d of the object to be inspected 14 is within about 10 m, the magnetic field can sufficiently penetrate to the back side and eliminate defects that occur on the back side. Therefore, it becomes possible to detect even a.
また、前記可変抵抗VRを調整して、両励磁コイル9.
10に同位相且つ大小異なる電流値の交流電流を供給す
る場合(以下、非平衡伏態という。Also, by adjusting the variable resistor VR, both excitation coils 9.
When alternating currents of the same phase and different magnitudes are supplied to the terminals 10 (hereinafter referred to as unbalanced state).
)には、欠陥等aが存在しない場合でも第5図に示す如
く一定レベルの振幅電圧が生じ、そしてセンサ部1をX
方向に移動させて欠陥等aを通過した場合には、前記信
号電圧v3の波形と同様な極大極小を有する波形の振幅
電圧V。が生しる。この場合における信号処理回路3は
、もっと簡単に構成され、即ち検出コイルl1の検出電
圧V,を増幅する交流増幅器15とダイオード21とコ
ンデンサc3により構威される整流回路と、前記同様な
積分回路と、直流増幅器l8とより構成される。該直流
増幅器18は、演算増幅器22の正端子には前記積分回
路のコンデンサC2に並列に接続した抵抗R3に生じる
電圧が入力され、負端子には正電圧に電圧付勢された可
変抵抗VR,とその摺動子に接続された抵抗R4で所定
電圧が印加され、壜幅抵抗R5と抵抗Ra及び可変抵抗
V R + で定まる増幅率を可変となしたものである
。ここで、第6図中の代表的な各部での電圧波形を第7
図に示している。), even if there is no defect a, a constant level amplitude voltage is generated as shown in FIG. 5, and the sensor section 1 is
When the waveform is moved in the direction and passes through the defect etc. a, the amplitude voltage V has a waveform having the same maximum and minimum as the waveform of the signal voltage v3. is born. The signal processing circuit 3 in this case has a simpler configuration, namely, an AC amplifier 15 for amplifying the detection voltage V of the detection coil l1, a rectifier circuit composed of a diode 21 and a capacitor c3, and an integrating circuit similar to the above. and a DC amplifier l8. The DC amplifier 18 has a positive terminal of the operational amplifier 22 inputted with a voltage generated in a resistor R3 connected in parallel to the capacitor C2 of the integrating circuit, and a negative terminal supplied with a variable resistor VR, which is energized to a positive voltage. A predetermined voltage is applied through a resistor R4 connected to the slider, and the amplification factor determined by the bottle width resistor R5, the resistor Ra, and the variable resistor V R + is made variable. Here, the voltage waveform at each representative part in FIG.
As shown in the figure.
非平衡状態の場合に生じる前記振幅電圧V。は、検出用
コア7と何れか一方の励磁用コア5.6間では電圧値が
極大と極小となり、前述の如く位相検波をする必要がな
く、その極大極小により欠陥等aがどちらの間を通過し
たかを判断できるのである。また、前記X方向と直交す
る方向に移動させる場合も、前述の如く極大又は極小の
何れか一方の部分のみの出力電圧が得られるのである。Said amplitude voltage V that occurs in the case of an unbalanced state. The voltage value becomes maximum and minimum between the detection core 7 and one of the excitation cores 5 and 6, so there is no need to perform phase detection as described above, and the maximum and minimum determines whether the defect, etc. You can determine whether it has passed. Furthermore, even when moving in a direction perpendicular to the X direction, the output voltage of only one of the maximum and minimum portions can be obtained as described above.
また、第8図に示したセンサ部1の他の実施例は、前述
の如く検出用コア7を両励磁用コア5,6に対して相対
的に上下動可能となしたもので、被検査体l4である鋼
材に励磁用コア5,6と同時に接触するように調節でき
るものである。Further, in another embodiment of the sensor unit 1 shown in FIG. 8, the detection core 7 is movable up and down relative to the excitation cores 5 and 6 as described above, and the It can be adjusted so that the excitation cores 5 and 6 come into contact with the steel material that is the body 14 at the same time.
また、第9図及び第10図に示したセンサ部1の更に他
の実施例は、両側に励磁用コア5.6を有する断面倒コ
字形の長尺のヨーク型コア8を用い、両励磁用コア5.
6との間に複数本の検出用コア7,・・・をその長さ方
向に一定間隔で列設し、そのぞれの検出用コア7には検
出コイル11を巻回したものである。本実施例では、検
出用コア7及び検出コイル11の対を6本設けている。Further, another embodiment of the sensor unit 1 shown in FIGS. 9 and 10 uses an elongated yoke-type core 8 having excitation cores 5 and 6 on both sides and a U-shaped cross section. Core 5.
A plurality of detection cores 7, . In this embodiment, six pairs of detection cores 7 and detection coils 11 are provided.
この場合の七ンサ部1の移動方向は、図示した如くX方
向にすることにより、広い幅で同時に欠陥等aを検出す
ることが可能になり、検査時間の大幅な短縮を図れるの
である。例えば、それぞれの検出コイル11には前記同
様の信号処理回路3をそれぞれ接続して、検出コイル1
1に生じる検出電圧V,を独立に処理した後、それぞれ
表示器4に表示するが又はマルチチャンネルの表示器4
に同時に表示するようにすることも可能である。また、
検出コイルIIの検出電圧v1をそれぞれ信号処理回路
3で処理した後、コンパレータにより二値化し、それぞ
れをOR回路に入力して、何れがの検出コイル11に出
ヵが得られた場合に音又は光を発するとともに、検出コ
イル11の出力を比較して最も大きい出力の検出コイル
11の位置を表示するようにすることも実用的である。In this case, by setting the movement direction of the seven-sensor section 1 in the X direction as shown in the figure, it becomes possible to simultaneously detect defects, etc. a over a wide width, and the inspection time can be significantly shortened. For example, the same signal processing circuit 3 as described above is connected to each detection coil 11, and the detection coil 1
After processing the detected voltages V, occurring in the channels 1 and 1 independently, they are displayed on the display 4 or on the multi-channel display 4.
It is also possible to display both at the same time. Also,
After each detection voltage v1 of the detection coil II is processed by the signal processing circuit 3, it is binarized by a comparator, and each is input to an OR circuit, and when an output is obtained from which detection coil 11, a sound or It is also practical to emit light and compare the outputs of the detection coils 11 to display the position of the detection coil 11 with the largest output.
以上にしてなる本発明の鋼の内部欠陥検出装置によれば
以下の効果を有する。The steel internal defect detection apparatus of the present invention as described above has the following effects.
請求項1)によれば、ヨーク型コアの両側励磁用コアに
巻回したj?I磁コイルに同位相の交流電流を供給して
、それぞれの励磁コイルで互いに逆極性の磁界を発生さ
せて、該励磁用コアの先端を被検査体の表面に接触若し
くは一定微小間隔を隔てた状態で移動させることにより
、被検査体としての鋼材の鋳造過程における巣等による
内部欠陥及び鋼板若しくは鋼管の表面又は裏面側の腐食
による食孔又は減内部が両励磁用コア間に存在する場合
に、前記励磁コイルにより発生され被検査体の内部に浸
透した磁界の磁束密度の変化即ち磁気抵抗の変化が生じ
、その変化を前記検出用コアに巻回した検出コイルで誘
導電圧振幅変化として検出してその欠陥等の存在を確認
することができるとともに、該検出コイルの出力fB号
を信号処理回路にて欠陥等が検出用コアと一方の励磁用
コアとの間及び他方の励磁用コアとの間に位置した場合
とでは異なる符号又は極大極小を有する信号電圧に変換
し、その処理信号を表示器に出力するようになしたので
、該欠陥等が検出用コアを介してどちら側の励磁用コア
との間に位置するのかを検出することができ、欠陥等の
位置の検出も可能となる。According to claim 1), j? is wound around the excitation core on both sides of the yoke type core. An alternating current of the same phase is supplied to the I-magnetic coils, each excitation coil generates a magnetic field of opposite polarity, and the tip of the excitation core is brought into contact with the surface of the object to be inspected or is spaced at a certain minute distance. By moving the test piece in this condition, if there are internal defects such as cavities during the casting process of the steel material to be inspected, or corrosion holes or internal loss due to corrosion on the surface or back side of the steel plate or steel pipe, it can be detected between both excitation cores. , a change in the magnetic flux density of the magnetic field generated by the excitation coil and penetrating inside the object to be inspected occurs, that is, a change in magnetic resistance, and the change is detected as a change in induced voltage amplitude by a detection coil wound around the detection core. The presence of defects, etc. can be confirmed by using the output fB of the detection coil, and the defect, etc. can be detected between the detection core and one excitation core and between the other excitation core using the signal processing circuit. Since the signal voltage is converted to a signal voltage having a different sign or maximum and minimum when the defect is located in between, and the processed signal is output to the display, it is possible to determine which side the defect is detected via the detection core. It is possible to detect whether it is located between the core and the core, and it is also possible to detect the position of defects, etc.
請求項2)によれば、両側の励磁用コア及び励磁コイル
で互いに等しい磁束密度で逆極性の磁界を発生させて中
点で平衡させるので、両励磁用コア間に欠陥等が存在し
ない場所に設定した状態で、中間部の検出コイルの出力
を最小にすることにより、0点調整を容易に行うことが
でき、また欠陥等による出力電圧のみを増幅することが
できるので、検出感度を高めることが容易にできる.請
求項3〉によれば、両側の励磁用コア及び励磁コイルで
互いに逆極性且つ異なる磁束密度の磁界を発生させた場
合には、両励磁用コア間に欠陥等が存在する場合に該検
出用コアを介してどちら側に欠陥等が位置するかに応し
て欠陥等が存在しない場合の基準電圧振幅より大又は小
の出力が得られるので、その後の信号処理を簡単な回路
で容易に行うことができるのである。According to claim 2), the excitation cores and excitation coils on both sides generate magnetic fields with equal magnetic flux densities and opposite polarities and are balanced at the midpoint, so that the excitation cores and excitation coils on both sides generate magnetic fields of opposite polarity and are balanced at the midpoint. By minimizing the output of the intermediate detection coil in the set state, 0 point adjustment can be easily performed, and only the output voltage due to defects etc. can be amplified, increasing detection sensitivity. can be easily done. According to claim 3, when the excitation cores and excitation coils on both sides generate magnetic fields of opposite polarity and different magnetic flux densities, if a defect or the like exists between both excitation cores, the detection Depending on which side of the core the defect, etc. is located on, an output larger or smaller than the reference voltage amplitude when there is no defect, etc. can be obtained, so subsequent signal processing can be easily performed with a simple circuit. It is possible.
請求項4)によれば、励磁コイルに供給する交流電流の
周波数を数+Ilz以下の低い周波数に設定したことに
より、強磁性体からなる被検査体の内部深くまで磁界を
浸透させることができ、厚さlOn程度の被検査体とし
ての鋼材の鋳造過程における巣等による内部欠陥及び鋼
板若しくは鋼管の表面又は裏面側の腐食による食孔又は
減肉部を検出することが可能となる。According to claim 4), by setting the frequency of the alternating current supplied to the excitation coil to a low frequency of several + Ilz or less, the magnetic field can penetrate deep inside the object to be inspected made of ferromagnetic material, It is possible to detect internal defects such as cavities during the casting process of a steel material to be inspected having a thickness of about 1 On, and corrosion holes or thinned parts due to corrosion on the front or back side of a steel plate or steel pipe.
請求項5)によれば、両側励磁用コアと検出用コアを平
行に配するとともに、それぞれの下端が同一平面となる
ように設定してなるヨーク型コアを用いることにより、
検出用コアを平面状の被検査体の表面に沿って安定に移
動させることができる。According to claim 5), by using a yoke-type core in which both-side excitation cores and detection cores are arranged in parallel and their lower ends are set to be on the same plane,
The detection core can be stably moved along the surface of the planar object to be inspected.
請求項6)によれば、両側励磁用コアと検出用コアを平
行に配するとともに、該検出用コアを両側励磁用コアに
対して上下高さ調節可能となしたヨーク型コアを用いる
ことにより、被検査体が平面又は曲面を有する場合にも
、検出用コアの高さを調節して、被検査体の表面に沿っ
て移動させることが可能となる。According to claim 6), by using a yoke-type core in which the excitation core on both sides and the detection core are arranged in parallel, and the height of the detection core is adjustable in the vertical direction with respect to the excitation core on both sides. Even when the object to be inspected has a flat or curved surface, it is possible to adjust the height of the detection core and move it along the surface of the object to be inspected.
第1図は本発明の鋼板の欠陥等の検出原理を示すセンサ
部と鋼板の簡略説明図、第2図は平衡状態の励磁コイル
に交流電流を供給した場合の検出コイルに生じる電圧振
幅変化を位置の関数と示したグラフ、第3図は同じく平
衡状態における信号処理回路を含めた装置全体の簡略回
路図、第4図は第31!Iに示した各部の信号波形を示
したタイムチャート図、第5図は非平衡状態の励磁コイ
ルに交流電流を供給した場合の検出コイルに生じる電圧
振幅変化を位置の関数として示したグラフ、第6図は同
じく非平衡状態における信号処理回路を示した簡略回路
図、第7図は第6図に示した各部の信号波形を示したタ
イムチャート図、第8図はセンサ部の他の実施例を示す
簡略正面図、第9図はセンサ部の更に他の実施例を示す
全体斜視図、第lO図は同じく底面図である。
a:欠陥等、1:センサ部、2:交流電源、3:信号処
理回路、4:表示器、5:励磁用コア、6:励磁用コア
、7:検出用コア、8:ヨーク型コア、9:励磁コイル
、lO:励磁コイル、ll:検出コイル、12:発振器
、13:電流増幅器、14:被検査体、l5:交流増幅
器、l6:フォトカブラ、l7:トランジスタ、18:
直流増幅器、19:レコーダ、20:アナログメータ、
21:ダイオード、22:演算増幅器。Figure 1 is a simplified explanatory diagram of the sensor section and the steel plate showing the principle of detecting defects in steel plates according to the present invention, and Figure 2 shows the voltage amplitude change that occurs in the detection coil when alternating current is supplied to the excitation coil in a balanced state. 3 is a simplified circuit diagram of the entire device including the signal processing circuit in an equilibrium state, and FIG. 4 is a graph showing the function of position. Fig. 5 is a time chart showing the signal waveforms of each part shown in Fig. Figure 6 is a simplified circuit diagram showing the signal processing circuit in the same non-equilibrium state, Figure 7 is a time chart diagram showing signal waveforms of each part shown in Figure 6, and Figure 8 is another example of the sensor section. FIG. 9 is an overall perspective view showing still another embodiment of the sensor section, and FIG. 10 is a bottom view. a: Defects, etc., 1: Sensor section, 2: AC power supply, 3: Signal processing circuit, 4: Display unit, 5: Excitation core, 6: Excitation core, 7: Detection core, 8: Yoke type core, 9: Excitation coil, lO: Excitation coil, l: Detection coil, 12: Oscillator, 13: Current amplifier, 14: Test object, l5: AC amplifier, l6: Photocoupler, l7: Transistor, 18:
DC amplifier, 19: recorder, 20: analog meter,
21: Diode, 22: Operational amplifier.
Claims (1)
ヨーク型コアの両側励磁用コアに励磁コイルを巻回する
ととともに、前記検出用コアに検出コイルを巻回してな
り、そして前記両励磁コイルに互いが逆極性となるよう
に同位相の交流電流を供給し、両励磁用コアの一端を強
磁性体からなる鋼材の表面に密接若しくは一定微小間隔
を隔てた状態で移動させ、鋼材中の欠陥若しくは食孔、
減肉部による磁気抵抗の変化を前記検出コイルにて誘導
電圧振幅変化として検出し、該電圧振幅信号を信号処理
回路にて欠陥等が検出用コアと一方の励磁用コア間及び
他方の励磁用コア間に位置した場合とでは異なる信号と
なし、該処理信号を表示器に出力してなることを特徴と
する鋼材の内部欠陥又は損傷検出装置。 2)前記両側励磁用コア及び励磁コイルの特性を一致さ
せるとともに、該両側励磁コイルに供給した同位相の交
流電流によりそれぞれ互いに逆極性且つ等しい磁束密度
の磁界を発生させてなる特許請求の範囲第1項記載の鋼
材の内部欠陥又は損傷検出装置。 3)前記両側励磁用コア及び励磁コイルの特性を一致さ
せるとともに、該両側励磁コイルに供給した同位相且つ
大小異なる電流値の交流電流によりそれぞれ互いに逆極
性且つ異なる磁束密度の磁界を発生させてなる特許請求
の範囲第1項記載の鋼材の内部欠陥又は損傷検出装置。 4)前記励磁コイルに供給する交流電流の周波数を、数
十Hz以下の低い周波数に設定してなる特許請求の範囲
第1項又は第2項又は第3項記載の鋼材の内部欠陥又は
損傷検出装置。 5)前記ヨーク型コアとして、両側励磁用コアと検出用
コアを平行に配するとともに、それぞれの下端が同一平
面となるように設定してなるヨーク型コアを用いてなる
特許請求の範囲の第1項又は第2項又は第3項記載の鋼
材の内部欠陥又は損傷検出装置。 6)前記ヨーク型コアとして、両側励磁用コアと検出用
コアを平行に配するとともに、該検出用コアを両側励磁
用コアに対して上下高さ調節可能となしたヨーク型コア
を用いてなる特許請求の範囲の第1項又は第2項又は第
3項記載の鋼材の内部欠陥又は損傷検出装置。[Scope of Claims] 1) An excitation coil is wound around both excitation cores of a yoke-type core consisting of excitation cores on both sides and a detection core in the middle, and a detection coil is wound around the detection core. Then, an alternating current of the same phase is supplied to both excitation coils so that the polarities are opposite to each other, and one end of both excitation cores is placed close to the surface of the steel material made of ferromagnetic material or at a certain minute distance. to remove defects or pits in the steel material,
The change in magnetic resistance due to the thinned portion is detected as a change in induced voltage amplitude by the detection coil, and the voltage amplitude signal is sent to a signal processing circuit to detect defects, etc. between the detection core and one excitation core, and between the other excitation core. A device for detecting internal defects or damage in a steel material, characterized in that a signal is generated differently when the core is located between cores, and the processed signal is output to a display. 2) The properties of the excitation core on both sides and the excitation coil are matched, and magnetic fields of opposite polarity and equal magnetic flux density are generated by alternating currents of the same phase supplied to the excitation coils on both sides. The device for detecting internal defects or damage in steel according to item 1. 3) The characteristics of the excitation core on both sides and the excitation coil are matched, and magnetic fields of opposite polarity and different magnetic flux densities are generated by alternating currents of the same phase and different magnitudes supplied to the excitation coils on both sides. An apparatus for detecting internal defects or damage in steel materials according to claim 1. 4) Detection of internal defects or damage in steel materials according to claim 1, 2, or 3, in which the frequency of the alternating current supplied to the excitation coil is set to a low frequency of several tens of Hz or less. Device. 5) As the yoke-type core, a yoke-type core is used in which a core for excitation on both sides and a core for detection are arranged in parallel, and their lower ends are set to be on the same plane. The internal defect or damage detection device for steel materials according to item 1, item 2, or item 3. 6) As the yoke-type core, a yoke-type core is used in which both-side excitation cores and detection cores are arranged in parallel, and the detection core is vertically adjustable with respect to the both-side excitation cores. An apparatus for detecting internal defects or damage in steel materials according to claim 1, 2, or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19001689A JPH0353155A (en) | 1989-07-20 | 1989-07-20 | Detector for internal defect or damage for steel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19001689A JPH0353155A (en) | 1989-07-20 | 1989-07-20 | Detector for internal defect or damage for steel material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0353155A true JPH0353155A (en) | 1991-03-07 |
Family
ID=16250967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19001689A Pending JPH0353155A (en) | 1989-07-20 | 1989-07-20 | Detector for internal defect or damage for steel material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0353155A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08193980A (en) * | 1995-01-19 | 1996-07-30 | Yoshihiro Murakami | Method and device for magnetic flaw detection |
US5942893A (en) * | 1996-07-16 | 1999-08-24 | General Dynamics Advanced Technology Systems | Shielded eddy current sensor for enhanced sensitivity |
KR100405687B1 (en) * | 2000-12-26 | 2003-11-14 | 현대자동차주식회사 | Casting parts deficient status inspection device and method thereof |
JP2009103500A (en) * | 2007-10-22 | 2009-05-14 | Hitachi Ltd | Apparatus and method for eddy current flaw detection |
WO2017010214A1 (en) * | 2015-07-16 | 2017-01-19 | 住友化学株式会社 | Defect measurement method, defect measurement device, and testing probe |
US10539535B2 (en) | 2015-07-16 | 2020-01-21 | Sumitomo Chemical Company, Limited | Defect measurement method, defect measurement device, and testing probe |
KR102259948B1 (en) * | 2020-02-25 | 2021-06-01 | 주식회사 아이피트 | High Power Pulse Generator Using Super Capacitor in Magnetic Nondestructive Measurement |
-
1989
- 1989-07-20 JP JP19001689A patent/JPH0353155A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08193980A (en) * | 1995-01-19 | 1996-07-30 | Yoshihiro Murakami | Method and device for magnetic flaw detection |
US5942893A (en) * | 1996-07-16 | 1999-08-24 | General Dynamics Advanced Technology Systems | Shielded eddy current sensor for enhanced sensitivity |
KR100405687B1 (en) * | 2000-12-26 | 2003-11-14 | 현대자동차주식회사 | Casting parts deficient status inspection device and method thereof |
JP2009103500A (en) * | 2007-10-22 | 2009-05-14 | Hitachi Ltd | Apparatus and method for eddy current flaw detection |
WO2017010214A1 (en) * | 2015-07-16 | 2017-01-19 | 住友化学株式会社 | Defect measurement method, defect measurement device, and testing probe |
JP2017026353A (en) * | 2015-07-16 | 2017-02-02 | 住友化学株式会社 | Defect measuring method, defect measuring apparatus and inspection probe |
US10539535B2 (en) | 2015-07-16 | 2020-01-21 | Sumitomo Chemical Company, Limited | Defect measurement method, defect measurement device, and testing probe |
KR102259948B1 (en) * | 2020-02-25 | 2021-06-01 | 주식회사 아이피트 | High Power Pulse Generator Using Super Capacitor in Magnetic Nondestructive Measurement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4303883A (en) | Apparatus for detecting the center of a welded seam in accordance with fundamental harmonic component suppression | |
US4188577A (en) | Pulse eddy current testing apparatus for magnetic materials, particularly tubes | |
CA2299373A1 (en) | Eddy-current testing probe | |
JPH01203965A (en) | Inspector for material to be inspected made of non-ferromagnetic metal | |
CN106442713A (en) | Thick-wall steel tube internal crack detection method based on surface magnetic conductivity differential measurement | |
JPH0353155A (en) | Detector for internal defect or damage for steel material | |
US5418459A (en) | Method and apparatus for flaw detection using an AC saturating field generated by a first coil and an eddy current sensor second coil | |
EP3159854B1 (en) | Coin detection system | |
US4675605A (en) | Eddy current probe and method for flaw detection in metals | |
JP2006189347A (en) | Flaw detection probe and flaw detector | |
JPH0989843A (en) | Method and apparatus for eddy current flaw detection | |
JPH0784021A (en) | Very weak magnetism measuring apparatus and non-destructive inspection method | |
JP2011191324A (en) | Flaw detection probe | |
JP2617570B2 (en) | Magnetic measuring device | |
JPH0470561A (en) | Method and apparatus for detecting heterogeneous layer in metal | |
JPH05203629A (en) | Electromagnetic flaw detection and device | |
JPS6345555A (en) | Inspection method for pitting corrosion of steel tube | |
JPH0439031B2 (en) | ||
JP3223991U (en) | Nondestructive inspection equipment | |
CN117607247A (en) | Magnetization vortex detection device and optimal magnetization state adjustment method | |
JP2509207Y2 (en) | Eddy current flaw detector | |
JPS6015020B2 (en) | Electromagnetic induction detection device using orthogonal crossed magnetic fields | |
JPH05172786A (en) | Leakage flux detector | |
JPS5824210Y2 (en) | Electromagnetic flaw detection equipment | |
JPS6021445A (en) | Eddy current detecting apparatus |