[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0353439A - Electron optical lens barrel - Google Patents

Electron optical lens barrel

Info

Publication number
JPH0353439A
JPH0353439A JP1188166A JP18816689A JPH0353439A JP H0353439 A JPH0353439 A JP H0353439A JP 1188166 A JP1188166 A JP 1188166A JP 18816689 A JP18816689 A JP 18816689A JP H0353439 A JPH0353439 A JP H0353439A
Authority
JP
Japan
Prior art keywords
electron beam
electron
astigmatism
sample
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1188166A
Other languages
Japanese (ja)
Other versions
JP2946537B2 (en
Inventor
Mamoru Nakasuji
護 中筋
Shohei Suzuki
正平 鈴木
Hiroyasu Shimizu
弘泰 清水
Kenji Morita
憲司 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1188166A priority Critical patent/JP2946537B2/en
Publication of JPH0353439A publication Critical patent/JPH0353439A/en
Application granted granted Critical
Publication of JP2946537B2 publication Critical patent/JP2946537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To automatically adjust astigmatism or a focus at high speed by adjusting voltage applied to each of a plurality of electrodes in the way of forming an electrostatic field having almost two time-rotation symmetry in the midway of an electron beam with 45 deg.C angle. CONSTITUTION:An electron optical lens barrel has systems where an electron beam emitted from an electron gun is focused on a sample by a magnetic field- type focusing lens 6 and the position of the electron beam on the sample is altered by an electrostatic deflection apparatus having a plurality of electrodes 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b put along with the route of the electron beams. An astigmatism adjusting apparatus having voltage adjusting means 8-11 to adjust the voltage applied to each of the plurality of the electrode 1a-4b in the way of forming an electrostatic filed being almost two time-rotation symmetrical in the route of the electron beam with 45 deg.C angle is installed. Astigmatism adjustment is thus carried out electrostatically and waiting time after alteration of the voltage to be applied to an electrode can be shortened. In this way, astigmatism collection is carried automatically within a short time.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、電子線の非点収差あるいは、焦点を高速で
自動調整することのできる電子光学鏡筒に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electron optical lens barrel that can automatically adjust the astigmatism or focus of an electron beam at high speed.

(従来の技術) 従来の電子光学鏡筒に用いられている非点収差補正装置
としては、例えば、特公昭61−3422l号公報に開
示されているものがある。このものは、試料上に照射さ
れる電子ビームを細く集束するための集束レンズと、電
子ビームを試料上でX方向及びY方向へ二次元的に走査
するための偏向装置と、電子ビーム通路に配置されたx
y方式非点収差袖正装置とを備えた装置において、電子
ビームに照射される試料より発生ずる情報から試料上に
おける電子ビーム径に対応する信号を発生する装置と、
電子ビームをX方向へ走査したときに得られる電子ビー
ム径に対応する信号が最大となる状態における前記集東
レンズの励(B強度Iを求める装置と、電子ビームをY
方向へ走査したときに得られる電子ビーム径に対応する
信号が最大となる状態における前記集束レンズの励るR
強度12を求める装置と、励磁強度1,とI2の平均励
磁強度に前記集束レンズのMl1磁強度を設定する装置
と、前記集東レンズを平均励(ff強度に設定した状態
で電子ビームを走査したときに得られる電子ビーム径に
対応した信号が最大となるような曲記非点収差補正装置
に供給される非点捕正信号の値を求める装置とを設けて
なる非点補正装置である。
(Prior Art) An example of an astigmatism correcting device used in a conventional electron optical lens barrel is disclosed in Japanese Patent Publication No. 61-3422l. This device includes a focusing lens to narrowly focus the electron beam irradiated onto the sample, a deflection device to scan the electron beam two-dimensionally in the X and Y directions on the sample, and an electron beam path. placed x
a device for generating a signal corresponding to the diameter of the electron beam on the sample from information generated by the sample irradiated with the electron beam;
Excitation of the focusing lens in a state where the signal corresponding to the electron beam diameter obtained when the electron beam is scanned in the X direction is maximum (device for determining B intensity I,
R of the focusing lens in a state where the signal corresponding to the electron beam diameter obtained when scanning in the direction is maximum
A device for determining the intensity 12, a device for setting the Ml1 magnetic intensity of the focusing lens to the average excitation intensity of the excitation intensities 1 and I2, and scanning an electron beam with the focusing lens set to the average excitation (ff intensity). This astigmatism correction device is provided with a device for determining the value of the astigmatism signal to be supplied to the astigmatism correction device such that the signal corresponding to the electron beam diameter obtained when .

(発明が解決しようとする課題) 上記の如き従来の技術に於いては、正イ,仁点を求める
ため、集束磁界を与える集束レンズの電流値を何ステソ
プも変化させる必要がある。集束レンズのコイルは大き
いインダクタンス(L)を持っていること、強磁性体の
磁気回路を持っていること、金属製の真空璧を持ってい
ること等のため、電流値を変えてから磁界が変化するま
での応答速度が遅く、電流を変えた後数1 0 0mR
ecの待時間を各ステンプで必要とし、自動調整しても
数秒〜数10秒の所要時間を要していた。
(Problems to be Solved by the Invention) In the conventional technology as described above, in order to find the positive and negative points, it is necessary to change the current value of the focusing lens that provides the focusing magnetic field by many steps. The coil of the focusing lens has a large inductance (L), a magnetic circuit made of ferromagnetic material, and a metal vacuum wall, so the magnetic field does not change after changing the current value. The response speed until the current changes is slow, several 100mR after changing the current.
Each step requires a waiting time for ec, and even when automatically adjusted, the required time ranges from several seconds to several tens of seconds.

また従来の装置では、「電子ビーム径に対応する信号が
最大となる状態」をX方向及びY方向において求める必
要があった。そして、この場合、最大値近傍では信号の
励!R電流の変化に対する傾斜が零になっているため、
測定誤差が大きいこと及び最大値の両側で測定を行う必
要があるため、多くの測定回数を要する問題点があった
Furthermore, in the conventional apparatus, it was necessary to find "a state in which the signal corresponding to the electron beam diameter is maximum" in the X direction and the Y direction. In this case, the signal excitation near the maximum value! Since the slope with respect to the change in R current is zero,
Since the measurement error is large and it is necessary to perform measurements on both sides of the maximum value, there is a problem that a large number of measurements are required.

本発明はこの様な従来の問題点に鑑みなされたもので、
非点収差あるいは惧点を高速で自動調整することのでき
る電子光学鏡筒を提供することを目的とする。
The present invention was made in view of these conventional problems.
It is an object of the present invention to provide an electron optical lens barrel that can automatically adjust astigmatism or points of concern at high speed.

(課題を解決する為の手段) 上記問題点の解央のために本発明では、電子銃から射出
された電子線をCil界型集東レンズ(6)によって試
料上に集束すると共に、前記電子線の通路の周りに配設
された複数の電極を有する静電偏向装置四a,lb、2
a、2b、3a、3b、4a、4b)によって試料上の
位置4:移動させるようになした電子光学鏡筒において
、 前記電子線の通路中にほぼ2回回転対称な静電場を45
度方向にずらせで作るように前記複数の電極の各hに印
加する電圧を調整することのできる電圧調整手段(8、
9、10、I1)を有する非点調整装置、を設けた電子
光学&l1t41であり、さらに、また、電子銃から射
出された電子線を磁界型集束レンズ(6)によって試料
上に集束すると共に、偏向装置( 1 a、1b、2a
、2b、3・1、3b、4a、4b)によって二式車J
−ヒの位置をf多{リJさせるようになした電子光学鏡
筒において、ほぼ軸対称な静電場を作ることのできる電
極群(Ia,  Ib、2a,2b,3a、3b、4a
、,llb)と、該雷極群の各電極に印加する電圧をス
テノブ可変ずる電ta装置(10)と、前記試料−ヒの
電子線がスボノト状の場合には、任意の一方11の寸法
とそれに直角な方向の寸l去とがほぼ等しくなる電圧を
、また、前記試rI上の電子線が可変成形されたパター
ン形状の場合には、任意の一方向の工,ジ分解能とそれ
に直角な方向のエンジ分解能とがほぼ等しくなる電圧を
、前記電tx装置が前記各電極に印加するように前記電
源装置を制fffUする制御手段(1l)と、を有する
電子光学鏡筒である。
(Means for Solving the Problems) In order to solve the above-mentioned problems, in the present invention, the electron beam emitted from the electron gun is focused onto the sample by a Cil field focusing lens (6), and the electron beam is Electrostatic deflection device 4a, lb, 2 having a plurality of electrodes arranged around the path of the wire
a, 2b, 3a, 3b, 4a, 4b) on the sample at position 4: In the electron optical column which is moved, an approximately two-fold rotationally symmetrical electrostatic field is created during the path of the electron beam.
Voltage adjusting means (8,
9, 10, I1), and an electron optics &l1t41 equipped with an astigmatism adjustment device having an electron beam (9, 10, I1); Deflection device (1a, 1b, 2a
, 2b, 3・1, 3b, 4a, 4b)
- In an electron optical lens barrel in which the position of 1 is varied by f times, a group of electrodes (Ia, Ib, 2a, 2b, 3a, 3b, 4a) capable of creating an approximately axially symmetrical electrostatic field
. In addition, if the electron beam on the sample rI has a variable pattern shape, the mechanical resolution in any one direction and the dimension perpendicular to it are and control means (1l) for controlling the power supply device so that the electric TX device applies a voltage to each of the electrodes so that the engine resolution in each direction is approximately equal.

(作用) 本発明によれば、静電的に非点調整を行74 ’5ため
、電極に与える電圧を変えた後の待時間が短かくなるの
で、従来の電磁的に非点調整を行なうものに比し、非常
に短時間で非点補正を行なうことができる。
(Function) According to the present invention, since the astigmatism adjustment is performed electrostatically, the waiting time after changing the voltage applied to the electrode is shortened, so that the astigmatism adjustment is performed electrostatically in the conventional method. Astigmatism correction can be performed in a very short time compared to conventional methods.

また、非点補正のための電極群として静電偏向装置を共
用することにより、鏡筒の措戚を節単なものにすること
ができる。
Further, by sharing the electrostatic deflection device as an electrode group for astigmatism correction, the lens barrel assembly can be simplified.

さらに、電極に印加する電圧をステップ状に変えていき
、2つの直交する方向での電子線の寸法もしくはエノジ
分解能がほぼ等しくなる電圧によって、正焦点を求める
ので、電磁レンズのみを用いた場合に比し、非常に短時
間で正座点を求めることができるばかりでなく、変化す
る信号の交点位置を正焦点とするので、精度もよく、検
出時間も短くなる。
Furthermore, the positive focus is determined by changing the voltage applied to the electrodes in steps, and determining the voltage that makes the electron beam dimensions or energetic resolution approximately equal in two orthogonal directions. In comparison, not only can the correct sitting point be found in a very short time, but also the intersection position of the changing signals is set as the correct focal point, so the accuracy is good and the detection time is shortened.

(実施例) 第1図は、本発明の非点補正及び焦点調整を実施するた
めの電子光学鏡筒における対物レンズ近辺の概略図であ
る。幻物レンズ6の内部で、電子光学系の光軸5を中心
にして8本の電極1a,1b、2a、2b、3a、3b
、4a、4bがほぼ等間隔に配置され、これら電極群に
て偏向器が形威されている。そして、これらの8木の電
極1aから4bには電子線を偏向させるために、偏向器
が印加されている。第2図は、光軸方向から見たこれら
8本の電Fi l aから4bとこれら電極1aから4
bに電圧を印加する非補正電a8、9と焦点調整電a1
0とそれらの電源の制御装置l1とを示した図である。
(Example) FIG. 1 is a schematic diagram of the vicinity of an objective lens in an electron optical lens barrel for implementing astigmatism correction and focus adjustment of the present invention. Inside the phantom lens 6, eight electrodes 1a, 1b, 2a, 2b, 3a, 3b are formed around the optical axis 5 of the electron optical system.
, 4a, 4b are arranged at approximately equal intervals, and these electrode groups form a deflector. A deflector is applied to these eight electrodes 1a to 4b in order to deflect the electron beam. Figure 2 shows these eight electrodes Fi l a to 4b and these electrodes 1a to 4 as seen from the optical axis direction.
Non-correction voltages a8 and 9 and focus adjustment voltage a1 that apply voltage to b
0 and a control device l1 for those power supplies.

すなわち、第2図に示したように、電′a10は、不図
示の偏向電圧に重畳させて、8木の電極1aから4b合
体に同し直流電圧を印加し、対物レンズ6の焦点距創を
変えるための電源である。即ち、8本の電極1aから4
bに同し正の電圧を印加すると、光軸5上のポテンシャ
ルが高くなり、電子線は高速になり、対物レンズ6で曲
げ難くなるので、対物レンズ6の色点距離は長くなり、
逆に8本の電極1aから4bに同し負の電圧を与えると
、電子線は低速になり、レンズで曲げ易くなり、対物レ
ンズ6の焦点距離は短くなる。従って、電[10の出力
電圧を変えることにより焦点距離が変化する。
That is, as shown in FIG. 2, the voltage 'a10 is superimposed on a deflection voltage (not shown), and a direct current voltage is applied to the eight electrodes 1a to 4b combined to change the focal length of the objective lens 6. It is a power source for changing. That is, eight electrodes 1a to 4
When the same positive voltage is applied to b, the potential on the optical axis 5 increases, the electron beam becomes faster, and becomes difficult to bend by the objective lens 6, so the color point distance of the objective lens 6 becomes longer.
Conversely, when the same negative voltage is applied to the eight electrodes 1a to 4b, the electron beam becomes slower and more easily bent by the lens, and the focal length of the objective lens 6 becomes shorter. Therefore, by changing the output voltage of the electric current [10], the focal length changes.

次に、電極1a,lbに正電圧、2a、2bに負電圧を
与えると、第2図で水平方向(X方向)の焦点距離は短
く、垂直方向(y方向)の熊点距離は長くなるので、非
点を発生させることができる。従って、電極1a,lb
、2a、2bへ印加する電圧を調整することにより、非
点を補正することができる。45゜回転した方向の非点
を補正するには電極3a、3b、4a、4bに同様な電
圧を重畳すればよい。
Next, when a positive voltage is applied to electrodes 1a and lb and a negative voltage is applied to electrodes 2a and 2b, the focal length in the horizontal direction (X direction) becomes shorter and the dot distance in the vertical direction (y direction) becomes longer in Fig. 2. Therefore, astigmatism can occur. Therefore, electrodes 1a, lb
, 2a, 2b, the astigmatism can be corrected. In order to correct the astigmatism in the direction rotated by 45 degrees, similar voltages may be superimposed on the electrodes 3a, 3b, 4a, and 4b.

第3図は、本装置Cこよって非点補正を行なう場合の手
順を示した説明図である。試料ステージの特定の場所に
X方向及びy方向のナイフエッジ状のパターンを形成し
、ステージを移動することによって、電子光学鏡筒のほ
ぼ光軸位置にこのパターンを移動し、8つの電極1aか
ら4bに焦点合わ巴のために印加する電圧を制御装置1
1があらかしめ定めたプログラムに従って少しずつステ
ソブ的に変化させ(第3図の横軸)、他方、制御装置1
1は各ステソブで電子線をX方向及びy方向のナイフエ
ノジを直角方向に走査するように制御し、y方向及びX
方向における電子線の寸法を測定する。この測定は走査
速度に同期させてナイフエノジからの2次電子を検出す
ることにより自動的に求められる。勿論、電P綿の寸法
が自動的に求める手段であればどのような構成のもので
もよい。ステップ数をある程度行うことによって、X方
向とy方向における電子線の寸法が等しくなる電圧Vo
が得られる。従って、制御装置1lは、このようにして
求まった8つの電極1aから4bに電圧Voを与え、さ
らに第4図(a)に示したように、電極1a,lb,2
a、2bに重畳する非点補正のためのX電圧をステノブ
的に変え前述のように、電8iila、1bとMZFj
2a、2bとに印加する電圧の符号は逆である、各ステ
ップでX方向あるいはy方向のビーム寸法を同上の如く
測定すると、第4図(a)に示したように電子線の寸法
が最小になる電圧X。(正・負)が得られるので、制御
装111は、その電圧X。(正・負)を電極1a,lb
 (+xo )、電I!TI2a,2b(−x.)に重
畳する。
FIG. 3 is an explanatory diagram showing the procedure for performing astigmatism correction using the present apparatus C. A knife-edge pattern in the X and Y directions is formed at a specific location on the sample stage, and by moving the stage, this pattern is moved to approximately the optical axis position of the electron optical column, and from the eight electrodes 1a. The control device 1 controls the voltage applied for focusing on 4b.
The control device 1 changes the speed little by little in accordance with a predetermined program (horizontal axis in Fig. 3).
1, the electron beam is controlled to scan the knife energy in the
Measure the dimensions of the electron beam in the direction. This measurement is automatically determined by detecting secondary electrons from the knife technology in synchronization with the scanning speed. Of course, any configuration may be used as long as it is a means for automatically determining the dimensions of the electric P cotton. By performing a certain number of steps, the voltage Vo that makes the dimensions of the electron beam in the X direction and the y direction equal
is obtained. Therefore, the control device 1l applies the voltage Vo to the eight electrodes 1a to 4b determined in this way, and further applies the voltage Vo to the electrodes 1a, lb, 2 as shown in FIG.
By changing the X voltage for astigmatism correction superimposed on a and 2b, as mentioned above,
The signs of the voltages applied to 2a and 2b are opposite.If the beam size in the X or Y direction is measured in the same manner as above at each step, the size of the electron beam is the minimum as shown in Figure 4(a). voltage X. (Positive/Negative) is obtained, so the control device 111 obtains the voltage X. (positive/negative) to electrodes 1a, lb
(+xo), Den I! Superimposed on TI2a, 2b (-x.).

その状態でさらに、電極3a、3b、4a、4bに重畳
する非点補正のためのy電圧も第4図(b)に示したよ
うに、同様に決められる。
In this state, the y voltage for astigmatism correction superimposed on the electrodes 3a, 3b, 4a, and 4b is also determined in the same manner as shown in FIG. 4(b).

以上で焦点合せ、非点調整が完了したことになる。This completes focusing and astigmatism adjustment.

なお、プローブ電流が可変戒形電子線(スボノト状に絞
られているのではなく、矩形等の形状を有しているの場
合は、電子線寸法の代りに電子線のエッヂ分解能を評価
項目として同様の操作を行えばよい. 以」二は非点隔差があまり大きくない場合について述べ
た。大きい非点収差があり、非点隔差が大きい場合には
、非点調整の間に正焦点の値がvOO値と多少ずれるこ
とがある。さらに、上述の調整操作を繰り返すことによ
って、非点は完全には補正されないが、残留非点はかな
り小さくなる。
In addition, if the probe current is a variable shape electron beam (not narrowed into a suboto shape but has a rectangular or other shape), the edge resolution of the electron beam is used as an evaluation item instead of the electron beam dimension. You can perform the same operation.In the following, we have described the case where the astigmatism difference is not very large.If there is a large astigmatism, and the astigmatism difference is large, the value of the positive focus is adjusted during the astigmatism adjustment. may deviate from the vOO value to some extent.Furthermore, by repeating the above adjustment operation, although the astigmatism will not be completely corrected, the residual astigmatism will become considerably smaller.

従ってその場合は■。の値はほぼ正焦点と等しくなり、
ほぼ完全に非点が補正できる。
Therefore, in that case ■. The value of is almost equal to the positive focus,
Astigmatism can be almost completely corrected.

(発明の効果) 以上述べたように、非点補正を行なう本発明によれば、
非点補正を非常に短時間で行なうことができる。
(Effects of the Invention) As described above, according to the present invention that performs astigmatism correction,
Astigmatism correction can be performed in a very short time.

また、非点補正を静電偏向装置を共用して行なうことに
より、鏡筒の構成を簡単なものとすることができる。
Furthermore, by using the electrostatic deflection device in common for astigmatism correction, the structure of the lens barrel can be simplified.

また、正焦点を求める本発明によれば、非常に短時間で
求めることができるばかりでなく、得られる精度も良い
ものである。
Further, according to the present invention, which determines the positive focal point, not only can it be determined in a very short time, but also the accuracy obtained is good.

そして、いずれの場合にも静電的に行なうことによりヒ
ステリシスが生しないので、調整精度が向上するばかり
でなく、ヒステリシスの影響を避けたプログラムを作る
手間が省けるので、自動調整プログラムの簡略化が行な
える。
In either case, electrostatic adjustment eliminates hysteresis, which not only improves adjustment accuracy, but also saves the effort of creating a program that avoids the effects of hysteresis, simplifying automatic adjustment programs. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は、本発明の一実施例として用いられる電子光学
鏡筒の対物レンズ部の溝造を示す断面図、第2図は、第
1図の電極に焦点・非点収差調整のために印加する電気
回路を示すブロノク図、第3図は焦点調整の場合の検出
動作を説明するためのグラフ、第4図は非点収差調整の
場合の検出動作を説明するためのグラフである。 (主要部分の符号の説明) 1a、1b、2a、2b、3a、3b、4a、4b・・
・・・・電極、 8、9・・・・・・非点補正、電源、 l0 ・・・・・・・・焦点調整電源、 1 1 ・・・・・・・・制御装置。
Fig. 1 is a cross-sectional view showing the groove structure of the objective lens part of an electron optical lens barrel used as an embodiment of the present invention, and Fig. 2 is a cross-sectional view showing the groove structure of the objective lens part of an electron optical lens barrel used as an embodiment of the present invention. FIG. 3 is a Bronok diagram showing an electric circuit for applying voltage, FIG. 3 is a graph for explaining the detection operation in the case of focus adjustment, and FIG. 4 is a graph for explaining the detection operation in the case of astigmatism adjustment. (Explanation of symbols of main parts) 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b...
... Electrode, 8, 9 ... Astigmatism correction, power supply, l0 ... Focus adjustment power supply, 1 1 ...... Control device.

Claims (2)

【特許請求の範囲】[Claims] (1)電子銃から射出された電子線を磁界型集束レンズ
によって試料上に集束すると共に、前記電子線の通路の
周りに配設された複数の電極を有する静電偏向装置によ
って試料上の位置を移動させるようになした電子光学鏡
筒において、 前記電子線の通路中にほぼ2回回転対称な静電場を45
度方向にずらせて作るように前記複数の電極の各々に印
加する電圧を調整することのできる電圧調整手段を有す
る非点調整装置、を設けたことを特徴とする電子光学鏡
筒。
(1) The electron beam emitted from the electron gun is focused onto the sample by a magnetic field type focusing lens, and an electrostatic deflection device having a plurality of electrodes arranged around the path of the electron beam is used to position the electron beam on the sample. In an electron optical lens barrel configured to move a
An electron optical lens barrel comprising: an astigmatism adjustment device having voltage adjustment means capable of adjusting the voltage applied to each of the plurality of electrodes so as to be shifted in the degree direction.
(2)電子銃から射出された電子線を磁界型集束レンズ
によって試料上に集束すると共に、偏向装置によって試
料上の位置を移動させるようになした電子光学鏡筒にお
いて、 ほぼ軸対象な静電場を作ることのできる電極群と、該電
極群の各電極に印加する電圧をステップ可変する電源装
置と、前記試料上の電子線がスポット状の場合には、任
意の一方向の寸法とそれに直角な方向の寸法とがほぼ等
しくなる電圧を、また、前記試料上の電子線が可変成形
されたパターン形状の場合には、任意の一方向のエッジ
分解能とそれに直角な方向のエッジ分解能とがほぼ等し
くなる電圧を、前記電源装置が前記各電極に印加するよ
うに前記電源装置を制御する制御手段と、を有すること
を特徴とする電子光学鏡筒。
(2) In the electron optical column, which focuses the electron beam emitted from the electron gun onto the sample using a magnetic field type focusing lens and moves the position on the sample using a deflection device, an almost axis-symmetric electrostatic field is generated. a power supply device that can step-variably vary the voltage applied to each electrode of the electrode group; In addition, in the case of a pattern shape in which the electron beam on the sample is variably shaped, the edge resolution in any one direction and the edge resolution in the direction perpendicular to it are approximately equal. An electron optical lens barrel comprising: control means for controlling the power supply device so that the power supply device applies equal voltages to each of the electrodes.
JP1188166A 1989-07-20 1989-07-20 Electron optical column Expired - Lifetime JP2946537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188166A JP2946537B2 (en) 1989-07-20 1989-07-20 Electron optical column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188166A JP2946537B2 (en) 1989-07-20 1989-07-20 Electron optical column

Publications (2)

Publication Number Publication Date
JPH0353439A true JPH0353439A (en) 1991-03-07
JP2946537B2 JP2946537B2 (en) 1999-09-06

Family

ID=16218909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188166A Expired - Lifetime JP2946537B2 (en) 1989-07-20 1989-07-20 Electron optical column

Country Status (1)

Country Link
JP (1) JP2946537B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108567A (en) * 2003-09-29 2005-04-21 Hitachi High-Technologies Corp Sample observation method by electron microscope
US7109484B2 (en) 2000-07-27 2006-09-19 Ebara Corporation Sheet beam-type inspection apparatus
US7135676B2 (en) 2000-06-27 2006-11-14 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
JP2007095576A (en) * 2005-09-29 2007-04-12 Horon:Kk Charged particle beam device and its focus control method
US7241993B2 (en) 2000-06-27 2007-07-10 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
JP2007227700A (en) * 2005-11-17 2007-09-06 Nuflare Technology Inc Method and apparatus for charged particle beam drawing
JP2013077778A (en) * 2011-09-30 2013-04-25 Nuflare Technology Inc Charged particle beam lithography apparatus and charged particle beam lithography method
KR20230143624A (en) * 2021-03-01 2023-10-12 아이씨티 인티그레이티드 써킷 테스팅 게젤샤프트 퓌어 할프라이터프뤼프테크닉 엠베하 Methods for influencing charged particle beams, multipole devices, and charged particle beam devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299207A (en) 2001-03-29 2002-10-11 Toshiba Corp Charged particle beam lithography device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368031B2 (en) 2000-06-27 2013-02-05 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7411191B2 (en) 2000-06-27 2008-08-12 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US9368314B2 (en) 2000-06-27 2016-06-14 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US8053726B2 (en) 2000-06-27 2011-11-08 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7601972B2 (en) 2000-06-27 2009-10-13 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US8803103B2 (en) 2000-06-27 2014-08-12 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7297949B2 (en) 2000-06-27 2007-11-20 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7241993B2 (en) 2000-06-27 2007-07-10 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7135676B2 (en) 2000-06-27 2006-11-14 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7829871B2 (en) 2000-07-27 2010-11-09 Ebara Corporation Sheet beam-type testing apparatus
US7109484B2 (en) 2000-07-27 2006-09-19 Ebara Corporation Sheet beam-type inspection apparatus
US7417236B2 (en) 2000-07-27 2008-08-26 Ebara Corporation Sheet beam-type testing apparatus
JP2005108567A (en) * 2003-09-29 2005-04-21 Hitachi High-Technologies Corp Sample observation method by electron microscope
JP2007095576A (en) * 2005-09-29 2007-04-12 Horon:Kk Charged particle beam device and its focus control method
JP2007227700A (en) * 2005-11-17 2007-09-06 Nuflare Technology Inc Method and apparatus for charged particle beam drawing
JP2013077778A (en) * 2011-09-30 2013-04-25 Nuflare Technology Inc Charged particle beam lithography apparatus and charged particle beam lithography method
KR20230143624A (en) * 2021-03-01 2023-10-12 아이씨티 인티그레이티드 써킷 테스팅 게젤샤프트 퓌어 할프라이터프뤼프테크닉 엠베하 Methods for influencing charged particle beams, multipole devices, and charged particle beam devices

Also Published As

Publication number Publication date
JP2946537B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
JPH10116581A (en) Ion beam scanning method and its device
JPH0353439A (en) Electron optical lens barrel
JPH08195345A (en) Electron beam drawing device
US4218621A (en) Electron beam exposure apparatus
JPH0234139B2 (en)
JPH0652650B2 (en) Alignment method of charged beam
JPH08255589A (en) Scanning electron microscope
JPH0414490B2 (en)
JP3031100B2 (en) Electron beam drawing equipment
JP2001110347A (en) Automated focusing method for charged-particle beam apparatus
JPH0691001B2 (en) Charge beam control method
WO2021229732A1 (en) Charged particle beam device, and method for controlling charged particle beam device
JP2582152B2 (en) Deflection correction method for deflection system drawing field
JP3112541B2 (en) Astigmatism correction method for electron beam device
JPH113676A (en) Scanning electron microscope
JPH04181716A (en) Adjusting diameter of drawing beam
JPH09223476A (en) Astigmatism correcting method for charged particle beam apparatus
JPS6312146A (en) Pattern-dimension measuring apparatus
JPS62119847A (en) Charged beam device
JP4048573B2 (en) Deflection data and correction data acquisition method
JPH07335531A (en) Adjusting method of electron beam lithography system
JP2002216685A (en) Apparatus and method for adjusting axis
JPS62296351A (en) Charged beam device
KR970048677A (en) Scanning electron microscope
JPH10284384A (en) Method and system for charged particle beam exposure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11