[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0349530B2 - - Google Patents

Info

Publication number
JPH0349530B2
JPH0349530B2 JP62219782A JP21978287A JPH0349530B2 JP H0349530 B2 JPH0349530 B2 JP H0349530B2 JP 62219782 A JP62219782 A JP 62219782A JP 21978287 A JP21978287 A JP 21978287A JP H0349530 B2 JPH0349530 B2 JP H0349530B2
Authority
JP
Japan
Prior art keywords
plants
phosphor
lamp
fluorescent lamp
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62219782A
Other languages
Japanese (ja)
Other versions
JPS6463318A (en
Inventor
Minoru Kobayashi
Yoshinori Anzai
Hiroyoshi Yamazaki
Mari Yamanoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Mitsubishi Electric Corp
Original Assignee
Railway Technical Research Institute
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Mitsubishi Electric Corp filed Critical Railway Technical Research Institute
Priority to JP21978287A priority Critical patent/JPS6463318A/en
Publication of JPS6463318A publication Critical patent/JPS6463318A/en
Publication of JPH0349530B2 publication Critical patent/JPH0349530B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、植物育成用照明方法とそれに使用
する植物育成用蛍光ランプ、特に、植物の育成に
効果的な光を一定のエネルギー強度範囲で照射す
る植物育成用照明方法とその光を放射する植物育
成用蛍光ランプに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a lighting method for growing plants and a fluorescent lamp for growing plants used therein, and in particular, to a lighting method for growing plants and a fluorescent lamp for growing plants. The present invention relates to a lighting method for growing plants that emits light and a fluorescent lamp for growing plants that emits the light.

〔従来の技術〕[Conventional technology]

生育環境を制御した農作物などの植物の生育施
設では、生長に必要な光を人工照明で、あるいは
太陽光を主とし人工照明で、それを補なうなどに
より供給する方法が提案されている。この種の照
明としては、植物の生育メカニズムの研究から、
光合成感度、たとえば、第4図に示すDIN5031
に規定される感度曲線に合致するように、波長が
400〜500nmの青成分の光と600〜700nmの赤成
分の光を、500〜600nmの緑色成分の光より強く
放射するスペクトル分布を用いている。
In facilities for growing plants such as agricultural products in which the growth environment is controlled, methods have been proposed in which the light necessary for growth is supplied by artificial lighting, or by using sunlight as the main source and supplementing it with artificial lighting. This type of lighting is based on research into plant growth mechanisms.
Photosynthetic sensitivity, e.g. DIN5031 shown in Figure 4
The wavelength is adjusted to match the sensitivity curve defined by
A spectral distribution is used that emits blue component light of 400 to 500 nm and red component light of 600 to 700 nm more intensely than green component light of 500 to 600 nm.

特公昭46−26804号公報、特公昭44−22458号公
報に示したものは、蛍光ランプでこれを実現した
ものであり、使用する蛍光体の種類、混合比を変
えてこれを実現している。また、特公昭41−7550
号公報、特公昭46−19394号公報に示したものは、
メタルハライドランプで実現したものであり、封
入金属の組成、封入量を最適化して前記の目的を
達成したものである。いずれも、波長が400〜
500nmの青成分の光と600〜700nmの赤成分の光
を500〜600nmの緑成分の光より増加させ、光合
成効率を上げようとするものである。
The devices shown in Japanese Patent Publication No. 46-26804 and Japanese Patent Publication No. 44-22458 achieve this using fluorescent lamps, and achieve this by changing the type of phosphor used and the mixing ratio. . In addition, special public service 41-7550
What is shown in the Publication No. 19394, Special Publication No. 46-19394,
This was realized using a metal halide lamp, and the above objective was achieved by optimizing the composition and amount of the enclosed metal. In both cases, the wavelength is 400~
The aim is to increase photosynthesis efficiency by increasing the blue component light of 500 nm and the red component light of 600 to 700 nm compared to the green component light of 500 to 600 nm.

近年、光を含めた栽培条件を完全に制御して植
物を栽培する、いわゆる植物工場が注目され、そ
の実用化の検討がされている。植物工場は、環境
条件を完全に制御しているため、高品質で周年栽
培が可能などいままで自然環境下で得られない
数々のメリツトがある。一方、人工照明下で植物
を栽培しようとする場合、照明電力費は、栽培費
用の大きな部分を占めるので問題となる。とりわ
け変動費の大きな部分を占める照明費用が高いこ
とが問題で、照明電力費をできるだけ下げるた
め、照明の放射エネルギー強度をできるだけ低下
させて栽培しようとするこころみがなされてき
た。
In recent years, so-called plant factories, which cultivate plants by completely controlling cultivation conditions including light, have attracted attention, and their practical application is being considered. Because plant factories completely control environmental conditions, they offer many advantages that cannot be obtained in the natural environment, such as high quality and year-round cultivation. On the other hand, when trying to grow plants under artificial lighting, lighting power costs become a problem because they account for a large portion of the cultivation costs. In particular, the high cost of lighting, which accounts for a large portion of variable costs, is a problem, and efforts have been made to reduce the radiant energy intensity of lighting as much as possible in order to reduce lighting power costs as much as possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この低放射強度で栽培する場
合、従来の青成分と赤成分の光を強めた光合成に
有効とされているスペクトル分布を有するランプ
を使用すると、その植物の成長は形状やかたさな
ど品質面が特異なものとなる難点があつた。たと
えば、完全に環境条件を制御した条件下でサラダ
菜、サニーレタスなどの洋菜類を低放射強度で栽
培すると、光放射強度で栽培するよりも、葉の長
さが細長く、徒長傾向になり、かたさが低下し軟
弱化してしまい、ある程度以下の放射強度にする
ことができないという問題点があつた。
However, when cultivating at this low radiation intensity, using a lamp with a spectral distribution that is said to be effective for photosynthesis by intensifying the conventional blue and red components of light, the growth of the plant will be affected in terms of quality such as shape and firmness. There was a problem that made it unique. For example, when Western vegetables such as salad greens and sunny lettuce are grown at low radiation intensity under completely controlled environmental conditions, the leaves tend to be elongated and elongated compared to those grown at low radiation intensity. There was a problem in that the hardness decreased and the material became soft, making it impossible to reduce the radiation intensity below a certain level.

この発明は、前記のような問題点を解消するた
めになされたもので、光のスペクトル分布と植物
の生長度の関係を詳細に検討し、低放射強度でも
効率よく栽培可能な照明方法を提供することを目
的とする。
This invention was made to solve the above-mentioned problems, and it provides a lighting method that allows efficient cultivation even at low radiation intensity by examining the relationship between the spectral distribution of light and the growth rate of plants in detail. The purpose is to

また、別の発明生は育しようとする植物に光を
効率よく放射する蛍光ランプを提供することを目
的としている。
Another inventor aims to provide a fluorescent lamp that efficiently emits light to plants to be grown.

〔問題点を解決するための手段〕[Means for solving problems]

このため、この発明に係る植物育成用照明方法
においては、植物に照射する光のスペクトル分布
を、波長が400〜700nmの間でそのエネルギー比
率を400〜500nm間の青色成分を30±5%、500
〜600nm間の緑色成分を30±5%、600〜700nm
間の赤成分を40±5%とするとともに、その照射
エネルギー強度を光量子照射強度で80〜155μE/
m2・sとし、低照射強度でも効率よく栽培できる
直物育成用照明方法を提供することにより、この
発明の目的を達成しようとするものである。
For this reason, in the lighting method for growing plants according to the present invention, the spectral distribution of the light irradiated to the plants is such that the energy ratio of the blue component between 400 and 500 nm is 30±5% when the wavelength is between 400 and 700 nm. 500
30±5% green component between ~600nm, 600~700nm
The red component in between is 40±5%, and the irradiation energy intensity is 80 to 155μE/
The object of the present invention is to provide an illumination method for direct growth that allows efficient cultivation even with low irradiation intensity.

また、別の発明においては、育成しようとする
植物に照射する放射エネルギー分布を、ユウロピ
ウム付活ストロンチウム・バリウムクロロ燐酸塩
蛍光体、ユウロピウム付活ストロンチウム硼リン
酸塩蛍光体、ユウロピウム付活酸化イツトリウム
蛍光体およびスズ付活燐酸ストロンチウム・マグ
ネシウム蛍光体などの特定の蛍光体を混合使用し
て効率よく得る植物育成用蛍光ランプを提供する
ことにより、前記別の発明の目的を達成しようと
するものである。
In another invention, the radiant energy distribution to be irradiated to plants to be grown can be changed to europium-activated strontium/barium chlorophosphate phosphor, europium-activated strontium borophosphate phosphor, europium-activated yttrium oxide phosphor, or europium-activated strontium borophosphate phosphor. This invention aims to achieve the object of the other invention by providing a fluorescent lamp for growing plants that can be obtained efficiently by using a mixture of a specific phosphor such as a tin-activated strontium/magnesium phosphate phosphor and a tin-activated strontium/magnesium phosphor. .

〔作用〕[Effect]

以上のような構成により、この発明の照明条件
下で、人工光を使用して植物を栽培した場合、
100μE/m2・s程度の低照射強度でも、植物の形
状や品質を低下させることなく栽培が可能にな
る。
With the above configuration, when plants are cultivated using artificial light under the lighting conditions of the present invention,
Even with low irradiation intensity of around 100μE/m 2 ·s, cultivation is possible without deteriorating the shape or quality of plants.

また、別の発明においては、育成しようとする
植物に照射する最適なエネルギー分布をランプ単
位消費電力当り0.18Wの量とし、効率よく放出す
るランプを使用するので栽培に使用する照明のエ
ネルギー効率が上がるものである。
In addition, in another invention, the optimal energy distribution for irradiating plants to be grown is set to 0.18W per lamp unit power consumption, and as a lamp that emits efficiently is used, the energy efficiency of lighting used for cultivation is improved. It's something that goes up.

〔実施例〕〔Example〕

以下に、この発明を実施例に基づいて説明す
る。
The present invention will be explained below based on examples.

実施例 1 第1図はこの発明に係る一実施例を適用した植
物育成施設における照明装置の概念を示す図であ
る。図において、1は植物育成施設、2a,2b
……2dはランプを備えた照明器具、3は栽培植
物である。
Embodiment 1 FIG. 1 is a diagram showing the concept of a lighting device in a plant growing facility to which an embodiment of the present invention is applied. In the figure, 1 is a plant cultivation facility, 2a, 2b
...2d is a lighting fixture equipped with a lamp, and 3 is a cultivated plant.

第2図はこの発明の照明条件を求める栽培装置
に使用した別の発明の植物育成用蛍光ランプの一
実施例としての蛍光ランプである。第2図におい
て、蛍光ランプ4は内面に蛍光体被膜5を設けた
ガラス管6よりなり、その両端に電極7を有し、
かつ内部には水銀蒸気およびアルゴン、ネオンな
どの不活性希ガスが封入しており、一般の蛍光ラ
ンプと同一構造である。8,9は電極7を支持し
た導入線で、ガラス管6の端部に封着している。
10,11はガラス管6の端部に固着した口金1
2に絶縁して取付けた接続ピンであり、導入線
8,9の端部が接続してある。この蛍光体被膜5
を構成する蛍光体成分として、青成分を主に発光
するユウロピウム付活ストロンチウム、バリウム
クロロ燐酸塩蛍光体15%、ユウロピウム付活スト
ロンチウム硼リン酸塩蛍光体8%、緑色成分を主
に発光するマンガン付活硅散亜鉛蛍光体7%と赤
色成分を主に発光するユウロピウム付加酸化イツ
トリウム蛍光体30%、スズ付活燐酸ストロンチウ
ム・マグネシウム蛍光体40%よりなる組成とし、
蛍光ランプ4を製作した。このランプの分光エネ
ルギー分布は第3図に示すものとなり、その分光
エネルギー比は、波長が400〜500nm間の青成分
が31%、500〜600nm間の緑色成分が30%、600
〜700nmの赤色成分39%であり、また、波長が
400〜700nm間のランプの放射効率は20ワツト形
ランプで0.198W/ランプWであつた。この実施
例ランプと従来の植物育成用として製作している
波長が400〜500nm間の青成分光と600〜700nm
間の赤成分光を500〜600nm間の緑色成分光より
増加させたランプとを、完全人工環境制御下でい
ろいろ照射強度を変えてサラダ菜を栽培した。栽
培環境条件は、温度22±1℃、相対湿度70±2、
%CO2温度1000±500ppm、溶液温度22±1℃と
し、播種後21日で促成栽培室に移し、24時間連続
照射下で栽培比較を行なつた。第5図にその結果
を示す。
FIG. 2 shows a fluorescent lamp as an example of a fluorescent lamp for plant cultivation according to another invention used in a cultivation apparatus for determining illumination conditions according to the present invention. In FIG. 2, the fluorescent lamp 4 consists of a glass tube 6 with a phosphor coating 5 on its inner surface, and has electrodes 7 at both ends.
The inside is filled with mercury vapor and inert rare gases such as argon and neon, and has the same structure as a general fluorescent lamp. Reference numerals 8 and 9 are lead-in wires that support the electrode 7 and are sealed to the end of the glass tube 6.
Reference numerals 10 and 11 indicate a cap 1 fixed to the end of the glass tube 6.
This is a connecting pin that is insulated and attached to the lead-in wires 8 and 9, and the ends of the lead-in wires 8 and 9 are connected. This phosphor coating 5
The phosphor components that make up the phosphor include: 15% europium-activated strontium and barium chlorophosphate phosphors that emit mainly blue components, 8% europium-activated strontium borophosphate phosphors, and manganese that mainly emit green components. The composition consists of 7% activated silica-dispersed zinc phosphor, 30% europium-added yttrium oxide phosphor that emits mainly red components, and 40% tin-activated strontium/magnesium phosphate phosphor.
Fluorescent lamp 4 was manufactured. The spectral energy distribution of this lamp is shown in Figure 3, and the spectral energy ratio is 31% for the blue component between 400 and 500 nm, 30% for the green component between 500 and 600 nm, and 30% for the green component between 500 and 600 nm.
~700nm red component is 39%, and the wavelength is
The radiation efficiency of the lamp between 400 and 700 nm was 0.198 W/lamp W for a 20 Watt type lamp. This example lamp and conventional lamps manufactured for plant cultivation have blue component light with wavelengths between 400 and 500 nm and 600 and 700 nm.
Salad vegetables were grown under a completely controlled artificial environment with various irradiation intensities using a lamp that increased the red component light between 500 and 600 nm compared to the green component light between 500 and 600 nm. The cultivation environment conditions are temperature 22±1℃, relative humidity 70±2,
%CO 2 temperature was 1000±500 ppm, and the solution temperature was 22±1° C. 21 days after sowing, the seeds were transferred to a forced cultivation room, and cultivation comparisons were performed under continuous irradiation for 24 hours. Figure 5 shows the results.

第5図において、○印は適当、△印はやや問
題、×印は問題であることを意味しており、照射
強度の高い場合、従来ランプは徒長度、軟弱度と
も適当なものが得られるが、低くなると問題が起
きる。これに対して、この別の発明の一実施例の
ランプは、照射強度が高いと、徒長度、軟弱度と
もやや過度になり、ややかたく丸みを帯び問題と
なるが、低くなると適当な成長を示し、また、低
過ぎるとエネルギー不足となり、徒長し、かつ成
長度が低下した。したがつて、この別の発明の一
実施例のランプは、従来のランプに比較し省電力
的に有利な低照射条件、すなわち光量子照射強度
で80〜155μE/m2・sの範囲で栽培するのに適し
ている。また、ランプの波長が400〜700nm間の
放射エネルギー効率も20ワツト形ランプで従来の
ランプの値0.176W/ランプWより大きい
0.198W/ランプWであり省電力的にも有利に達
成できる。
In Figure 5, the ○ mark means that it is appropriate, the △ mark means that there is a slight problem, and the × mark means that there is a problem.When the irradiation intensity is high, conventional lamps can obtain appropriate elongation and softness. However, when it becomes low, problems arise. On the other hand, when the irradiation intensity is high, the lamp according to the embodiment of this other invention becomes somewhat excessive in elongation and softness, resulting in a somewhat hard and rounded shape, but when the irradiation intensity is low, it does not allow proper growth. Moreover, if it is too low, there will be a lack of energy, the growth will be elongated, and the growth rate will be reduced. Therefore, the lamp according to an embodiment of this other invention is used for cultivation under low irradiation conditions that are advantageous in terms of power saving compared to conventional lamps, that is, in the range of photon irradiation intensity of 80 to 155 μE/m 2 ·s. suitable for. In addition, the radiant energy efficiency in the wavelength range of 400 to 700 nm is also higher than that of conventional lamps, which is 0.176W/lamp W for a 20 Watt type lamp.
It is 0.198W/lamp W, which is advantageous in terms of power saving.

この発明の上気一実施例1によれば、植物への
照射条件は波長が400〜700nm間の照射エネルギ
ーの比率を 400〜500nm間に30±5% 500〜600nm間に30±5% 600〜700nm間に40±5% とし、栽培物への照射光量子強度を80〜155μE/
m2・sとしたことにより、光の低照射エネルギー
時の植物の光合成メカニズムと形態、形成メカニ
ズムに対応するように光の分光エネルギー比率を
選択したので、従来の照射エネルギー強度よりも
低い状態であつても良好な植物の栽培ができ、人
工環境下で植物を栽培する場合の電力費を低減し
うるという効果がある。
According to Example 1 of this invention, the irradiation conditions for plants are such that the ratio of irradiation energy between wavelengths of 400 and 700 nm is 30±5% between 400 and 500 nm, and 30±5% between 500 and 600 nm. ~700nm is 40±5%, and the irradiation light quantum intensity to the cultivated plants is 80~155μE/
m2・s, the spectral energy ratio of the light was selected to correspond to the photosynthesis mechanism, morphology, and formation mechanism of plants when the irradiation energy of light is low. This has the effect of allowing good plants to be cultivated under any conditions, and reducing power costs when cultivating plants in an artificial environment.

実施例 2 実施例2として、実施例1で用いた蛍光体の組
成比をいろいろ変化し、波長が400〜700nmの
青・緑・赤の各成分割合を変化した蛍光ランプを
製作し、実施例1と同様の栽培試験を実施した。
その結果、栽培物に照射する照射エネルギー比率
が、400〜500nm間を25〜35%、500〜600nm間
を25〜35%、600〜700nm間を35〜45%のとき実
施例1と同様な良結果を得た。また、波長が400
〜600nm間の放射エネルギー効率が0.18W/ラン
プWのランプであれば、従来ランプより省電力的
に目標を達成できた。
Example 2 As Example 2, fluorescent lamps were manufactured in which the composition ratio of the phosphor used in Example 1 was varied, and the proportions of blue, green, and red components with wavelengths of 400 to 700 nm were varied. A cultivation test similar to 1 was conducted.
As a result, when the irradiation energy ratio irradiated to the cultivated plants was 25 to 35% for 400 to 500 nm, 25 to 35% for 500 to 600 nm, and 35 to 45% for 600 to 700 nm, the same results as in Example 1 were obtained. Good results were obtained. Also, the wavelength is 400
A lamp with a radiant energy efficiency of 0.18 W/lamp W between 600 nm and 600 nm could achieve the target with lower power consumption than conventional lamps.

(他の実施例) 前記実施例1および実施例2では、蛍光体を数
種混合して所望の分光エネルギー分布を持つ蛍光
ランプを製作して用いたが、これをおのおの蛍光
体を単独あるいは複数用いて製作したランプを複
数用い、その混合光が前記実施例1および実施例
2の照射エネルギー比率、照射エネルギー強度の
範囲にあれば同様の効果を示した。
(Other Examples) In Example 1 and Example 2, a fluorescent lamp having a desired spectral energy distribution was manufactured by mixing several types of phosphors. A similar effect was obtained when a plurality of lamps manufactured using the same method were used and the mixed light was within the irradiation energy ratio and irradiation energy intensity range of Examples 1 and 2.

また、前記実施例では、検討のしやすいため
に、蛍光ランプを用いて説明したが、これに限定
されるものではなく、高圧放電灯、たとえば高圧
ナトリウムランプとメタルハライドランプのよう
な他の放電灯を用いて分光照射エネルギー比率、
照射強度を得ても、前記実施例と同様の効果を奏
する。
Furthermore, in the above embodiments, a fluorescent lamp is used for easy consideration, but the invention is not limited to this, and other discharge lamps such as high-pressure discharge lamps, for example, high-pressure sodium lamps and metal halide lamps may be used. Spectral irradiation energy ratio using
Even if the irradiation intensity is increased, the same effects as in the embodiment described above can be obtained.

なお、前記実施例では、栽培対象物としてサラ
ダ菜、サニーレタス、中国野菜など葉菜類全般に
その効果を確認したが、いちごなどにも効果が認
められ、広く人工環境下で栽培する植物に効果を
奏するものである。
In the above example, the effect was confirmed on all leafy vegetables such as salad greens, sunny lettuce, and Chinese vegetables as cultivation targets, but the effect was also observed on strawberries, etc., and it is effective on a wide range of plants grown in artificial environments. It is something.

また、この効果は、人工光を自然光の補光とし
て用いる場合でも同様の効果を示すことはいうま
でもない。
Moreover, it goes without saying that this effect is similar even when artificial light is used as supplementary light for natural light.

〔発明の効果〕〔Effect of the invention〕

以上に、説明してきたように、この発明によれ
ば、光の低照射エネルギー時の植物の光合成メカ
ニズムと形態、形成メカニズムに対応するよう
に、光の分光エネルギー比率を選択したので、従
来の照射エネルギー強度より低い状態でも良好な
栽培ができ、人工環境下で植物を栽培する場合の
電力費を低減し得る効果がある。
As explained above, according to the present invention, the spectral energy ratio of light is selected to correspond to the photosynthesis mechanism, morphology, and formation mechanism of plants when the irradiation energy of light is low. Good cultivation is possible even under conditions lower than the energy intensity, and has the effect of reducing power costs when cultivating plants in an artificial environment.

また、この発明の別の発明は、放射エネルギー
比率を効率のよい蛍光体を選択使用することによ
つて、効率のよい育成用の蛍光ランプを得ること
ができるので、省電力的に植物を育成することが
できる効果がある。
Another invention of the present invention is that by selecting and using a phosphor with an efficient radiant energy ratio, an efficient fluorescent lamp for growing can be obtained, so plants can be grown while saving power. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る一実施例を適用した植
物育成施設の概念説明図、第2図はこの発明の照
明条件を達成する一実施例としての蛍光ランプの
構造図、第3図はこの発明の照明条件を作り出す
のに用いる蛍光ランプの分光エネルギー分布図、
第4図はDIN5031の光合成分光特性曲線を示す
図、第5図はランプの照射強度による徒長度およ
び軟弱度の比較表である。 1……植物育成施設、2……照明器具、3……
栽培物、4……蛍光ランプ、なお、各図中、同一
符号は同一部分または相当部分を示す。
Fig. 1 is a conceptual explanatory diagram of a plant growing facility to which an embodiment of the present invention is applied, Fig. 2 is a structural diagram of a fluorescent lamp as an embodiment to achieve the illumination conditions of this invention, and Fig. A spectral energy distribution diagram of a fluorescent lamp used to create the lighting conditions of the invention,
FIG. 4 is a diagram showing the photosynthetic spectral characteristic curve of DIN5031, and FIG. 5 is a comparison table of the degree of elongation and degree of softness depending on the irradiation intensity of the lamp. 1...Plant cultivation facility, 2...Lighting equipment, 3...
Cultivated products, 4...Fluorescent lamps. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 植物を人工光源を用いて栽培する育成方法に
おいて、植物への照射条件は波長が400〜700nm
間の照射エネルギーの比率を 400〜500nm間に30±5% 500〜600nm間に30±5% 600〜700nm間に40±5% とし、栽培物への照射光量子強度を80〜155μE/
m2・sとしたことを特徴とする植物育成用照明方
法。 2 波長が400〜700nm間の放射エネルギーの比
率を 400〜500nm間に30±5% 500〜600nm間に30±5% 600〜700nm間に40±5% とし、400〜700nm間の放射効率を0.18W/ラン
プW以上となるように数種の蛍光体を混合被着し
てなることを特徴とする植物育成用蛍光ランプ。 3 前記蛍光ランプは、蛍光体として少なくとも
ユウロピウム付活ストロンチウム・バリウムクロ
ロ燐酸塩蛍光体、ユウロピウム付活ストロンチウ
ム硼リン酸塩蛍光体、ユウロピウム付活酸化イツ
トリウム蛍光体およびスズ付活燐酸ストロンチウ
ム・マグネシウム蛍光体よりなる混合蛍光体を被
着したことを特徴とする特許請求の範囲第2項記
載の植物育成用蛍光ランプ。
[Claims] 1. In a growing method for cultivating plants using an artificial light source, the irradiation conditions for the plants are such that the wavelength is 400 to 700 nm.
The ratio of irradiation energy between 400 to 500 nm is 30 ± 5%, 500 to 600 nm is 30 ± 5%, and 600 to 700 nm is 40 ± 5%, and the irradiation light quantum intensity to cultivated plants is 80 to 155 μE/
A lighting method for growing plants, characterized in that the lighting is m 2 ·s. 2 The ratio of radiant energy between wavelengths of 400 and 700 nm is 30 ± 5% between 400 and 500 nm, 30 ± 5% between 500 and 600 nm, and 40 ± 5% between 600 and 700 nm, and the radiation efficiency between 400 and 700 nm is A fluorescent lamp for growing plants characterized by being coated with a mixture of several types of phosphors so that the output power is 0.18W/lamp W or more. 3. The fluorescent lamp includes at least a europium-activated strontium barium chlorophosphate phosphor, a europium-activated strontium borophosphate phosphor, a europium-activated yttrium oxide phosphor, and a tin-activated strontium-magnesium phosphate phosphor. A fluorescent lamp for growing plants according to claim 2, characterized in that it is coated with a mixed phosphor consisting of the following.
JP21978287A 1987-09-02 1987-09-02 Method for lighting used in rearing plant and fluorescent lamp therefor Granted JPS6463318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21978287A JPS6463318A (en) 1987-09-02 1987-09-02 Method for lighting used in rearing plant and fluorescent lamp therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21978287A JPS6463318A (en) 1987-09-02 1987-09-02 Method for lighting used in rearing plant and fluorescent lamp therefor

Publications (2)

Publication Number Publication Date
JPS6463318A JPS6463318A (en) 1989-03-09
JPH0349530B2 true JPH0349530B2 (en) 1991-07-29

Family

ID=16740921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21978287A Granted JPS6463318A (en) 1987-09-02 1987-09-02 Method for lighting used in rearing plant and fluorescent lamp therefor

Country Status (1)

Country Link
JP (1) JPS6463318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736167B2 (en) 2010-11-22 2014-05-27 Iwasaki Electric Co., Ltd. Metal halide lamp

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269093A (en) * 1990-11-30 1993-12-14 Matsushita Electric Industrial Co., Ltd. Method and apparatus for controlling plant growth with artificial light
NL9401530A (en) * 1994-09-21 1996-05-01 Marius Jan Van Lieburg Fluorescent lamp, in particular designed to expose plant material to be grown to light
NL1000972C2 (en) * 1994-09-21 1996-09-12 Willem Verbeek Fluorescent lamp, in particular for illuminating plant material to be cultivated.
JP2007267616A (en) * 2006-03-30 2007-10-18 Graduate School For The Creation Of New Photonics Industries Method for cultivating leaf vegetable
EP2224163A1 (en) * 2009-02-27 2010-09-01 Reddy Solutions Lighting arrangement for light conversion and spreading
JP2012239417A (en) * 2011-05-19 2012-12-10 Ushio Inc Light source apparatus for raising plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945581A (en) * 1972-08-04 1974-05-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945581A (en) * 1972-08-04 1974-05-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736167B2 (en) 2010-11-22 2014-05-27 Iwasaki Electric Co., Ltd. Metal halide lamp

Also Published As

Publication number Publication date
JPS6463318A (en) 1989-03-09

Similar Documents

Publication Publication Date Title
US3670193A (en) Electric lamps producing energy in the visible and ultra-violet ranges
KR101783368B1 (en) Horticultural led lighting assembly
US5269093A (en) Method and apparatus for controlling plant growth with artificial light
Moe et al. Stem elongation and flowering of the long-day plant Campanula isophylla Moretti in response to day and night temperature alternations and light quality
Tazawa Effects of various radiant sources on plant growth (Part 1)
WO2019218859A1 (en) Full-spectrum fluorescent powder, full-spectrum diode, and full-spectrum plant lamp
JP6585919B2 (en) Phalaenopsis cultivation method and light source device used therefor
JP2013123417A (en) Illuminating device for plant growth disease control
US5525860A (en) Plant growing 4 phosphor fluorescent lamp having a photon flux ratio of from 0.8 to 1.0 for light in the 600 NM-700 NM and 700 NM-800 NM bands
JPH0349530B2 (en)
CN102972278B (en) Method for cultivating brassica chinensis to bloom indoors with LED light source
JP4167843B2 (en) Long-day plant cultivation method
JP2004097082A (en) Method for promoting flowering in flowering plant
JP2002360067A (en) Fluorescent lamp for growing plant
JPS6054618A (en) Improvement in plant growth by intermittent irradiation
JP2971470B2 (en) Fluorescent light for plant growth
JPH01304828A (en) Forcing-culturing method of plant and discharge lamp for plant culturing
Appelgren Effects of supplementary light to mother plants on adventitious shoot formation in flower peduncle segments of Begonia× hiemalis Fotsch in vitro
JP7236186B1 (en) Plant cultivation method and plant cultivation device
Murakami et al. Fundamental studies on the development of new fluorescent lamps for plant growth
Krishnapriya et al. Potential Use of Photo-Excited Phosphors in Energy-Efficient Plant Lighting
JP7157489B1 (en) Plant cultivation method and plant cultivation device
JPH04207128A (en) Apparatus for cultivating plant
JPH04207127A (en) Apparatus for cultivating plant
JPH04304822A (en) Lamp for growing plant