JPH0348230B2 - - Google Patents
Info
- Publication number
- JPH0348230B2 JPH0348230B2 JP59058349A JP5834984A JPH0348230B2 JP H0348230 B2 JPH0348230 B2 JP H0348230B2 JP 59058349 A JP59058349 A JP 59058349A JP 5834984 A JP5834984 A JP 5834984A JP H0348230 B2 JPH0348230 B2 JP H0348230B2
- Authority
- JP
- Japan
- Prior art keywords
- zeolite
- silver
- sio
- present
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010457 zeolite Substances 0.000 claims description 87
- 229910021536 Zeolite Inorganic materials 0.000 claims description 73
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 68
- 229910052709 silver Inorganic materials 0.000 claims description 27
- 239000004332 silver Substances 0.000 claims description 27
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 19
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 16
- -1 silver ions Chemical class 0.000 claims description 15
- 239000008199 coating composition Substances 0.000 claims description 14
- 238000005342 ion exchange Methods 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000012266 salt solution Substances 0.000 claims description 6
- 229910052680 mordenite Inorganic materials 0.000 claims description 4
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 239000003755 preservative agent Substances 0.000 claims 1
- 230000002335 preservative effect Effects 0.000 claims 1
- 230000000844 anti-bacterial effect Effects 0.000 description 17
- 239000003973 paint Substances 0.000 description 14
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 230000002421 anti-septic effect Effects 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000000843 anti-fungal effect Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 231100000053 low toxicity Toxicity 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 101710134784 Agnoprotein Proteins 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 229910052908 analcime Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910001431 copper ion Inorganic materials 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- JYIMWRSJCRRYNK-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4] JYIMWRSJCRRYNK-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052675 erionite Inorganic materials 0.000 description 2
- 239000012013 faujasite Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 229910001923 silver oxide Inorganic materials 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241001279686 Allium moly Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241000223651 Aureobasidium Species 0.000 description 1
- 241001367053 Autographa gamma Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241001149955 Cladosporium cladosporioides Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 241001136494 Talaromyces funiculosus Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 241001149558 Trichoderma virens Species 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910001603 clinoptilolite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000012084 conversion product Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 150000004045 organic chlorine compounds Chemical class 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- OTCVAHKKMMUFAY-UHFFFAOYSA-N oxosilver Chemical class [Ag]=O OTCVAHKKMMUFAY-UHFFFAOYSA-N 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Landscapes
- Paints Or Removers (AREA)
Description
[産業上の利用分野]
本発明は、殺菌作用を有する銀イオンを担持し
ているゼオライト系固体粒子を含有せしめた防
腐、防カビ性に優れた塗料組成物の製法に関す
る。
[従来の技術]
従来より住宅、病院、および工場特に薬品・食
品工場において塗装表面でのカビ繁植による環境
汚染が問題となつている。また安全性が高く、取
扱いが簡単であることから近年盛んに使用される
水性塗料の場合には製造工程および保存中に細菌
あるいはカビによる腐敗の問題があつた。
そこでかかる細菌およびカビの繁植防止方法と
して、各種の防腐・防カビ剤を塗料に添加して来
た。すなわち有機水銀剤などの有機金属およびそ
れらの有毒性が指摘されてからは、有機塩素系、
有機硫黄系などが使用されて来た。しかしその低
毒性、防腐・防カビ性は必ずしも満足されている
とは言えない。
本発明者らはかかる現状に鑑み、種々検討した
結果、低濃度の銀塩溶液から銀イオンをイオン交
換により少量担持せしめられた銀イオン担持ゼオ
ライト固体粒子は変色が無く、塗料への分散性が
良く、これを含有せしめた塗料組成物が低毒性
で、強力な防腐・防カビ性を発揮することを見出
し、本発明を完成したものである。
すなわち、本発明は150m2/g以上の比表面積
及び14以下のSiO2/Al2O3モル比を有するゼオラ
イト固体粒子に0.1モル/以下の濃度の銀塩溶
液を含浸して0.001〜5重量%(無水ゼオライト
に対し)の銀イオンをイオン交換により担持させ
たゼオライト固体粒子を塗料に混合することを特
徴とする防腐防カビ性の塗料組成物の製法を与え
るものである。
ゼオライトは一般に三次元的に発達した骨格構
造を有するアルミノシリケートであつて、一般に
はAl2O3を基準にしてxM2/oO・Al2O3・ySiO2・
zH2Oで表わされる。Mはイオン交換可能な金属
イオンを表わし、通常は1価〜2価の金属であ
り、nはこの原子価に対応する。一方xおよびy
はそれぞれ金属酸化物、シリカの係数、zは結晶
水の数を表わしている。ゼオライトは、その組成
比及び細孔径、比表面積などの異る多くの種類の
ものが知られている。
しかし本発明で使用するゼオライト固体粒子の
比表面積は150m2/g(無水ゼオライト基準)以
上であつて、ゼオライト構成成分のSiO2/Al2O3
モル比は14以下が好ましくは11以下でなければな
らない。
本発明で使用する殺菌作用を有する銀の水溶性
塩類の溶液は、本発明で限定しているゼオライト
とは容易にイオン交換するので、かかる現象を利
用して必要とする量の銀イオンをゼオライトの固
定相に保持させることが可能であるが、銀イオン
を保持しているゼオライト粒子は、比表面積が
150m2/g以上、かつSiO2/Al2O3モリ比が14以
下であるという二つの条件を満たさなければなら
ない。もしそうでなければ効果的な殺菌作用を達
成する目的物が得られないことが判つた。これ
は、効果を発揮できる状態でゼオライトに固定さ
れた銀イオンの絶対量が不足するためであると考
えられる。つまり、ゼオライトの交換基の量、交
換速度、アクセシビリテイなどの物理化学的性質
に帰因するものと考えられる。
従つて、モレキユラーシーブとして知られてい
るSiO2/Al2O3モル比の大きなゼオライトは、本
発明において全く不適当である。
またSiO2/Al2O3モル比が14以下のゼオライト
においては、殺菌使用を有する銀イオンを均一に
保持させることが可能であり、このためにかかる
ゼオライトを用いることにより初めて十分な殺菌
効果が得られることが判つた。加えて、ゼオライ
トのSiO2/Al2O3モル比が14を越えるシリカ比率
の高いゼオライトの耐酸、耐アルカリ性はSiO2
の増大とともに増大するが、一方これの合成にも
長時間を要し、経済的にみてもかかる高シリカ比
率のゼオライトの使用は得策でない。本塗料組成
物のために前述したSiO2/Al2O3≦14の天然また
は合成ゼオライトは、耐酸性、耐アルカリ性の点
よりみても充分に使用可能であり、また経済的に
みても安価であり得策である。この意味からも
SiO2/Al2O3モル比は14以下でなればならない。
本発明で使用するSiO2/Al2O3のモル比が14以
下のゼオライト素材としては天然または合成品の
何れのゼオライトも使用可能である。例えば天然
のゼオライトとしてはアナルシン(Analcime:
SiO2/Al2O3=3.6〜5.6)、チヤバサイト
(Chabazite:SiO2/Al2O3=3.2〜6.0および6.4〜
7.6)、クリノプチロライト(Clinoptilolite:
SiO2/Al2O3=8.5〜10.5)、エリオナイト
(Erionite:SiO2/Al2O3=5.8〜7.4)、フオジヤ
サイト(Faujasite:SiO2/Al2O3=4.2〜4.6)、
モルデナイト(mordenite:SiO2/Al2O3=8.34
〜10.0)、フイリツプサイト(Phillipsite:
SiO2/Al2O3=2.6〜4.4)等が挙げられる。これ
らの典型的な天然ゼオライトは本発明に好適であ
る。一方合成ゼオライトの典型的なものとしては
A−型ゼオライト(SiO2/Al2O3=1.4〜2.4)、X
−型ゼオライト(SiO2/Al2O3=2〜3)、Y−
型ゼオライト(SiO2/Al2O3=3〜6)、モルデ
ナイト(SiO2/Al2O3=9〜10)等が挙げられる
が、これらの合成ゼオライトは本発明のゼオライ
ト素材として好適である。特に好ましいものは、
合成のA−型ゼオライト、X−型ゼオライト、Y
−型ゼオライト及び合成又は天然のモルデナイト
である。
ゼオライトの形状は微粒子であることが好まし
く、とくに粒子径5ミクロン好ましくは2ミクロ
ン以下の粉末粒子状が好ましい。
本発明において銀イオンはゼオライト固体粒子
にイオン交換反応により保持されなければならな
い。イオン交換によらず単に吸着あるいは付着し
たものでは抗菌効果およびその持続性が不充分で
ある。
本発明で定義した各種のゼオライトを本発明の
Ag−ゼオライトに転換する場合、通常は硝酸銀
のような水溶性銀塩の溶液が使用されるが、この
濃度は過大にならないよう留意する必要がある。
例えばA−型またはX−型ゼオライト(ナトリウ
ム−型)をイオン交換反応を利用してAg−ゼオ
ライトに転換する際に、銀イオン濃度が大である
とイオン交換により銀イオンが固相のナトリウム
イオンと置換すると同時に、ゼオライト固相中に
銀の酸化物等が沈澱析出する。このために、ゼオ
ライトの多孔性は減少し、比表面積は著しく減少
する欠点がある。また比表面積は、さほど減少し
なくても、銀酸化物の存在自体によつて殺菌力は
低下する。このことは従来知られていなかつたこ
とである。かかる過剰銀のゼオライト相への析出
を防止するためには銀溶液の濃度を低く保つこと
が必要であり、もつとも安全なAgNO3の濃度は
0.1M以下である。かかる濃度のAgNO3溶液を使
用した場合には得られるAg−ゼオライトの比表
面積も転換素材のゼオライトとほぼ同等であり、
殺菌力の効果が最適条件で発揮できることが判つ
た。
また、塗料に添加する成分として重要な条件
は、耐候性たとえば経時的に、又は加熱下で変色
しないこと、及び塗料中への均一分散が容易であ
ることである。0.1M以下の濃度の銀溶液により
イオン交換して、5重量%以下の量で銀イオンを
含むゼオライト固体粒子は、経時的及び加熱下で
黄変、褐変せず、またこの微細粒子は凝集しない
ので塗料中への均一分散が容易である。しかし銀
溶液の濃度がより高いと、得られた銀イオンが担
持ゼオライト固体粒子は変色、凝集を起こしやす
い。
なお、銀イオンに加えて、銅イオン及び亜鉛イ
オンをもイオン交換により含有させることもでき
る。銅イオンでイオン交換する場合にも、銅塩の
濃度が高すぎると、前述のAg−ゼオライトの同
様な現象が起る。例えばA−型またはX−型ゼオ
ライト(ナトリウム−型)をイオン交換反応する
際に、1MCuSO4使用時は、Cu2+は固相のNa+と
置換するが、これと同時にゼオライト固相中に
Cu3(SO4)(OH)4のような塩基性沈澱が析出する
ためにゼオライトの多孔性は減少し、比表面積は
著しく減少する欠点がある。かかる過剰な銅のゼ
オライト相への析出を防止するためには使用する
水溶性銅液の濃度をより希釈状態、例えば0.05M
以下に保つことが好ましい。かかる濃度のCuSO4
溶液の使用時には得られるCu−ゼオライトの比
表面積も転換素材のゼオライトとほぼ同等であ
り、殺菌効果が最適な状態で発揮できる利点があ
ることが判つた。
亜鉛でのイオン交換においては使用する塩類が
2〜3Mの付近では、かかる現象がみられない。
上述のイオン交換反応をバツチ法で実施する際
には上述の濃度を有する塩類溶液を用いてゼオラ
イト素材の浸漬処理を実施すればよい。ゼオライ
ト素材中への金属含有量を高めるためにはバツチ
処理の回数を増大すればよい。一方、上述の濃度
を有する塩類溶液を用いてカラム法によりゼオラ
イト素材を処理する際には吸着塔にゼオライト素
材を充填し、これに塩類溶液を通過させれば容易
に目的とする金属−ゼオライトが得られる。
上記の金属−ゼオライト(無水ゼオライト基
準)中に占める金属の量は、銀については0.001
〜5重量%にある。銀、銅および亜鉛イオンを併
用して利用する場合は金属イオンの合計量は金属
−ゼオライト(無水ゼオライト基準)に対し35重
量%以下でよく、好ましい範囲は金属イオンの構
成比により左右されるが、およそ0.001〜15重量
%にある。
また、銀、銅、亜鉛以外の金属イオン、例えば
ナトリウム、カリウム、カルシウムあるいは他の
金属イオンが共存していても殺菌効果をさまたげ
ることはないので、これらのイオと残存又は共存
は何らさしつかえない。
本発明において塗膜形成要素、塗膜助要素など
には何ら制限はないが、代表的なものを例示する
と、アクリル樹脂系及び酢酸ビニル系のエマルジ
ヨン型塗料、アクリル樹脂系及びアルキド樹脂系
の溶剤型塗料が挙げられる。
本発明においては、殺菌作用を有する銀イオン
を保持しているゼオライト固体粒子を含有する塗
料組成物を作るには、塗膜形成要素中に塗膜助要
素を共に投入し撹拌して均一分散すれば良い。
本発明におけるゼオライト固体粒子の添加量
(塗料組成物に対する量としてB重量%)および
殺菌作用を有する銀の量(金属ゼオライトに対し
てA重量%)はいずれも殺菌効果に関係する。充
分な防腐・防カビ性を発揮せしめるためにはA×
B(%)の値が0.025以上となるように調整するこ
とが望ましい。
本発明で定義したゼオライトと銀イオンとの結
合力は極めて大きく、かかる金属ゼオライトを含
有する塗料組成物の強力な防腐・防カビ性とその
長時間持続性する。
さらに本発明の殺菌作用を有する銀イオンを保
持しているゼオライト系粒子は銀およびナトリウ
ム、カリウムなどを含有するアルミノシリケート
であつて、その毒性が低いことも本発明の特記す
べき特徴的利点である。
かくて得られた塗料組成物は、製造工程、保存
時および塗装後において防腐・防カビ性に優れて
いることが確認された。
次に本発明の実施例について述べるが、本発明
は本実施例により限定されるものではない。
また本実施例および比較例中の%は特にことわ
らない限り重量%である。
参考実施例 1
本発明の実施例で使用する未転換の天然及び合
成ゼオライト粒子を第1表に示した。各ゼオライ
トは粗原料を粉砕・分級して所望の粒子径を得
た。第1表のA−型ゼオライトをZ1、X−型ゼオ
ライトをZ2、Y−型ゼオライトをZ3、天然モルデ
ナイトをZ4と略記する。これらゼオライトの粒子
径、含水率、比表面積は第1表の通りであつた。
次いで第1表の各種ゼオライトの微粉末乾燥品
各250gを採取し、各々に1/10M硝酸銀水溶液
500mlを加えて得られた混合物を室温にて3時間
撹拌下に保持してイオン交換を行なつた。かかる
イオン交換法により得られた銀−ゼオライトを
過した後、水洗して過剰の銀イオンを除去した。
次に水洗済みの銀−ゼオライトを100〜105℃で乾
燥してから粉砕して銀−ゼオライトの微粉末を得
た。得られた銀−ゼオライト乾燥品の銀含有量及
び比表面積は第2表の如くであつた。
[Industrial Field of Application] The present invention relates to a method for producing a coating composition having excellent antiseptic and antifungal properties and containing zeolite solid particles carrying silver ions having a bactericidal effect. [Prior Art] Environmental pollution caused by mold growing on painted surfaces has been a problem in houses, hospitals, and factories, especially pharmaceutical and food factories. Furthermore, in the case of water-based paints, which have been widely used in recent years because of their high safety and ease of handling, there has been a problem of spoilage due to bacteria or fungi during the manufacturing process and storage. Therefore, various antiseptic and antifungal agents have been added to paints as a method to prevent the growth of bacteria and mold. In other words, after the toxicity of organic metals such as organic mercury agents and their toxicity was pointed out, organic chlorine and
Organic sulfur compounds have been used. However, it cannot be said that its low toxicity, antiseptic, and antifungal properties are necessarily satisfied. In view of the current situation, the present inventors conducted various studies and found that silver ion-supported zeolite solid particles, in which a small amount of silver ions were supported by ion exchange from a low-concentration silver salt solution, do not discolor and have good dispersibility in paints. The present invention was completed based on the discovery that a coating composition containing this compound has low toxicity and exhibits strong antiseptic and antifungal properties. That is, in the present invention, zeolite solid particles having a specific surface area of 150 m 2 /g or more and a SiO 2 /Al 2 O 3 molar ratio of 14 or less are impregnated with a silver salt solution having a concentration of 0.1 mol/g or less to obtain a solution of 0.001 to 5 wt. % (based on anhydrous zeolite) of silver ions supported by ion exchange into a paint composition. Zeolite is generally an aluminosilicate with a three-dimensionally developed skeleton structure, and is generally xM 2/o O・Al 2 O 3・ySiO 2・based on Al 2 O 3
It is expressed as zH 2 O. M represents an ion-exchangeable metal ion, usually a monovalent to divalent metal, and n corresponds to this valence. while x and y
are the coefficients of metal oxide and silica, respectively, and z represents the number of crystal water. Many types of zeolites are known, differing in their composition ratio, pore diameter, specific surface area, etc. However, the specific surface area of the zeolite solid particles used in the present invention is 150 m 2 /g or more (based on anhydrous zeolite), and the zeolite constituent SiO 2 /Al 2 O 3
The molar ratio should be 14 or less, preferably 11 or less. The solution of water-soluble silver salts having a bactericidal effect used in the present invention easily undergoes ion exchange with the zeolite defined in the present invention, so utilizing this phenomenon, the required amount of silver ions can be transferred to the zeolite. However, the specific surface area of the zeolite particles holding silver ions is
Two conditions must be met: 150 m 2 /g or more and a SiO 2 /Al 2 O 3 moly ratio of 14 or less. It has been found that if this is not the case, the object of achieving effective bactericidal action cannot be obtained. This is thought to be because the absolute amount of silver ions fixed on the zeolite is insufficient in a state where the effect can be exerted. In other words, this is thought to be due to the physicochemical properties of the zeolite, such as the amount of exchange groups, exchange rate, and accessibility. Therefore, zeolites with a high SiO 2 /Al 2 O 3 molar ratio, known as molecular sieves, are completely unsuitable for the present invention. In addition, in zeolite with a SiO 2 /Al 2 O 3 molar ratio of 14 or less, it is possible to uniformly retain silver ions, which have a bactericidal effect, and for this reason, it is only by using such zeolite that a sufficient bactericidal effect can be achieved. It turns out that it can be obtained. In addition, the acid resistance and alkali resistance of zeolite with a high silica ratio, where the SiO 2 /Al 2 O 3 molar ratio of zeolite exceeds 14, is higher than that of SiO 2
However, it also takes a long time to synthesize, and from an economic standpoint, it is not a good idea to use a zeolite with such a high silica ratio. The natural or synthetic zeolite with SiO 2 /Al 2 O 3 ≦14 described above for this coating composition can be used satisfactorily in terms of acid resistance and alkali resistance, and is also economically inexpensive. This is a possible solution. From this meaning as well
The SiO 2 /Al 2 O 3 molar ratio must be 14 or less. As the zeolite material having a SiO 2 /Al 2 O 3 molar ratio of 14 or less used in the present invention, either natural or synthetic zeolite can be used. For example, natural zeolite is analcime (Analcime).
SiO2 / Al2O3 =3.6 ~ 5.6 ), Chabazite: SiO2 / Al2O3 =3.2~6.0 and 6.4~
7.6), Clinoptilolite:
SiO 2 /Al 2 O 3 = 8.5 to 10.5), Erionite (Erionite: SiO 2 / Al 2 O 3 = 5.8 to 7.4), Faujasite (Faujasite: SiO 2 / Al 2 O 3 = 4.2 to 4.6),
mordenite: SiO 2 /Al 2 O 3 = 8.34
~10.0), Philipsite:
SiO 2 /Al 2 O 3 =2.6 to 4.4), and the like. These typical natural zeolites are suitable for the present invention. On the other hand, typical synthetic zeolites include A-type zeolite (SiO 2 /Al 2 O 3 = 1.4-2.4),
-type zeolite (SiO 2 /Al 2 O 3 = 2-3), Y-
These synthetic zeolites are suitable as the zeolite material of the present invention . . Particularly preferred are
Synthetic A-type zeolite, X-type zeolite, Y
- type zeolites and synthetic or natural mordenites. The zeolite is preferably in the form of fine particles, particularly preferably in the form of powder particles with a particle diameter of 5 microns or less, preferably 2 microns or less. In the present invention, silver ions must be retained in the zeolite solid particles by an ion exchange reaction. If it is simply adsorbed or attached without ion exchange, the antibacterial effect and its durability will be insufficient. The various zeolites defined in the present invention are
When converting to Ag-zeolite, a solution of a water-soluble silver salt such as silver nitrate is usually used, but care must be taken not to increase the concentration too much.
For example, when converting A-type or At the same time, silver oxides etc. are precipitated in the zeolite solid phase. This has the disadvantage that the porosity of the zeolite is reduced and the specific surface area is significantly reduced. Furthermore, even if the specific surface area does not decrease significantly, the bactericidal activity decreases due to the presence of silver oxide itself. This was previously unknown. In order to prevent the precipitation of excess silver into the zeolite phase, it is necessary to keep the concentration of the silver solution low, and the safe concentration of AgNO 3 is
Less than 0.1M. When using an AgNO 3 solution with such a concentration, the specific surface area of the Ag-zeolite obtained is almost the same as that of the zeolite used as the conversion material.
It was found that the bactericidal effect can be demonstrated under optimal conditions. Further, important conditions for the component to be added to the paint are weather resistance, such as not discoloring over time or under heating, and ease of uniform dispersion in the paint. Zeolite solid particles containing silver ions in an amount of 5% by weight or less by ion exchange with a silver solution with a concentration of 0.1M or less do not yellow or brown over time or under heat, and these fine particles do not aggregate. Therefore, it is easy to uniformly disperse it into the paint. However, when the concentration of the silver solution is higher, the resulting silver ion-supported zeolite solid particles tend to discolor and agglomerate. Note that in addition to silver ions, copper ions and zinc ions can also be contained by ion exchange. In the case of ion exchange with copper ions, if the concentration of copper salt is too high, the same phenomenon as described above with Ag-zeolite occurs. For example , when performing an ion exchange reaction with A-type or
The disadvantage is that the porosity of zeolite decreases due to the precipitation of basic precipitates such as Cu 3 (SO 4 )(OH) 4 and the specific surface area decreases significantly. In order to prevent the precipitation of excess copper into the zeolite phase, the concentration of the aqueous copper solution used should be diluted, for example 0.05M.
It is preferable to keep it below. Such a concentration of CuSO4
It was found that the specific surface area of the Cu-zeolite obtained when the solution is used is almost the same as that of the zeolite used as the conversion material, and that it has the advantage of being able to exhibit its bactericidal effect in an optimal state. In ion exchange with zinc, such a phenomenon is not observed when the salt used is around 2 to 3M. When carrying out the above-mentioned ion exchange reaction by the batch method, the zeolite material may be immersed in a salt solution having the above-mentioned concentration. In order to increase the metal content in the zeolite material, the number of batch treatments can be increased. On the other hand, when treating a zeolite material by a column method using a salt solution having the above concentration, the desired metal-zeolite can be easily obtained by filling an adsorption tower with the zeolite material and passing the salt solution through it. can get. The amount of metal in the above metal-zeolite (based on anhydrous zeolite) is 0.001 for silver.
~5% by weight. When silver, copper and zinc ions are used in combination, the total amount of metal ions may be 35% by weight or less based on the metal-zeolite (based on anhydrous zeolite), although the preferred range depends on the composition ratio of the metal ions. , approximately 0.001-15% by weight. Furthermore, even if metal ions other than silver, copper, and zinc, such as sodium, potassium, calcium, or other metal ions, coexist, the bactericidal effect is not hindered, so there is no problem with their remaining or coexistence with these ions. In the present invention, there are no restrictions on the coating film forming elements, coating auxiliary elements, etc., but representative examples include acrylic resin-based and vinyl acetate-based emulsion paints, acrylic resin-based and alkyd resin-based solvents. Examples include mold paint. In the present invention, in order to produce a coating composition containing solid zeolite particles holding silver ions having a bactericidal effect, coating auxiliary elements are added to the coating film forming element and stirred to uniformly disperse the coating composition. Good. In the present invention, the amount of zeolite solid particles added (B weight % relative to the coating composition) and the amount of bactericidal silver (A weight % relative to the metallic zeolite) are both related to the bactericidal effect. In order to demonstrate sufficient antiseptic and mold resistance, A
It is desirable to adjust the value of B (%) to be 0.025 or more. The bonding strength between the zeolite defined in the present invention and silver ions is extremely large, and the coating composition containing such metal zeolite has strong antiseptic and antifungal properties and lasts for a long time. Furthermore, the zeolite-based particles holding silver ions having a bactericidal effect of the present invention are aluminosilicate containing silver, sodium, potassium, etc., and their low toxicity is a special characteristic advantage of the present invention. be. It was confirmed that the coating composition thus obtained had excellent antiseptic and antifungal properties during the manufacturing process, during storage, and after painting. Next, examples of the present invention will be described, but the present invention is not limited to these examples. In addition, % in the present Examples and Comparative Examples is by weight unless otherwise specified. Reference Example 1 Table 1 shows unconverted natural and synthetic zeolite particles used in the examples of the present invention. Each zeolite was obtained by crushing and classifying crude raw materials to obtain the desired particle size. In Table 1, the A-type zeolite is abbreviated as Z1 , the X-type zeolite as Z2 , the Y-type zeolite as Z3 , and the natural mordenite as Z4 . The particle diameter, water content, and specific surface area of these zeolites were as shown in Table 1. Next, 250 g of dried fine powder of each type of zeolite listed in Table 1 was collected, and a 1/10M silver nitrate aqueous solution was added to each.
500 ml was added and the resulting mixture was kept under stirring at room temperature for 3 hours to perform ion exchange. After the silver-zeolite obtained by this ion exchange method was filtered, it was washed with water to remove excess silver ions.
Next, the water-washed silver-zeolite was dried at 100 to 105°C and then ground to obtain a fine powder of silver-zeolite. The silver content and specific surface area of the obtained dried silver-zeolite product were as shown in Table 2.
【表】【table】
【表】
銀−ゼオライト転換品のうち、銀−A型ゼオラ
イトをZ5、銀−X型ゼオライトをZ6、銀−Y型ゼ
オライトをZ7、銀−天然モルデナイトをZ8と略記
する。
実施例1および比較例1
アクリル系樹脂43%含有エマルジヨン70%、二
酸化チタン10%、4%ヒドロキシルエチルセルロ
ース10%、25%デモールEP8%(花王石鹸(株)製)
水2%から成るアクリル樹脂系エマルジヨン塗料
100gをスズメツキ缶に秤種し、これに所定濃度
の第2表に示した各種のゼオライトを添加し撹拌
混合した。第1表に示したA型ゼオライト(Z1)
を添加したものおよびゼオライト無添加のものを
比較例1−1および1−2とする。
次いで塗料の腐敗起因菌として約1×106/ml
に希釈したBacillus subtilis,Pseudomonas
aeruginosaおよびEscherichia coliの混合懸濁液
を1mlずつ塗料に接種した。缶を密封し28℃×7
日間培養した後、塗料中の生菌数から殺菌効果を
評価した。その結果を第3表に示した。[Table] Among the silver-zeolite conversion products, silver-A type zeolite is abbreviated as Z5 , silver-X type zeolite as Z6 , silver-Y type zeolite as Z7 , and silver-natural mordenite as Z8 . Example 1 and Comparative Example 1 70% emulsion containing 43% acrylic resin, 10% titanium dioxide, 4% hydroxyl ethyl cellulose 10%, 25% Demol EP 8% (manufactured by Kao Soap Co., Ltd.)
Acrylic resin emulsion paint consisting of 2% water
100 g was weighed out in a tin can, and various zeolites shown in Table 2 at predetermined concentrations were added thereto and mixed by stirring. Type A zeolite (Z 1 ) shown in Table 1
Comparative Examples 1-1 and 1-2 are those to which zeolite was added and those to which zeolite was not added. Next, the number of paint rot-causing bacteria is approximately 1×10 6 /ml.
Bacillus subtilis, Pseudomonas diluted to
1 ml of a mixed suspension of aeruginosa and Escherichia coli was inoculated onto the paint. Seal the can and store at 28℃ x 7
After culturing for one day, the bactericidal effect was evaluated based on the number of viable bacteria in the paint. The results are shown in Table 3.
【表】
本発明の塗料組成物は強力な殺菌効果を有して
おり製造工程および保存時に優れた防腐性を示し
た。なお、上記ゼオライトを添加した塗料組成物
及び添加しない組成物の塗料としての性質を比較
したが、ほとんど差は認められなかつた。
実施例2および比較例2
実施例1に示したアクリル系樹脂エマルジヨン
塗料に所定濃度の第2表に示した各種のゼオライ
トを添加し撹拌混合した。第1表に示したA型ゼ
オライト(Z1)を添加したものを比較例2−1お
よびゼオライト無添加のものを比較例2−2とす
る。
30mm直径×2mmの木板に上記塗料組成物を塗膜
が均一になるように二回塗りし、室温で48時間乾
燥して試験片を作成した。該試験片を18時間水に
浸したのち取り出し、室温2時間放置したのち80
〜85℃で2時間乾燥した。(以上の乾燥はすべて
該試験片をつるして行なつた。)
次に該試験片を水1、ぶどう糖40g、ペプト
ン10g、寒天10gの組成からなる平板培地の培養
面の中央にはりつけた。さらにAspergillus
niger,Penicillium funiculosum,
Cladosporium cladosprioides,Aureobasidium
PullulansおよびGliocladium virensの混合胞子
懸濁液1mlを培地の表面と該試験片の上に均等に
まきかけ、ペトリー皿にふたをして28℃で14日間
培養した。その結果を表4に示す。なお菌が発育
しなかつた場合を++、試験片の約1/3以下に菌
が発育した場合を+、約1/3以上に発育した場合
を−として示す。
本発明の塗料組成物は強力な殺菌効果を有して
おり優れた防カビ性があることを示した。[Table] The coating composition of the present invention had a strong bactericidal effect and exhibited excellent antiseptic properties during the manufacturing process and storage. Incidentally, the coating properties of the coating composition to which the zeolite was added and the composition to which it was not added were compared, but almost no difference was observed. Example 2 and Comparative Example 2 Various zeolites shown in Table 2 at predetermined concentrations were added to the acrylic resin emulsion paint shown in Example 1 and mixed with stirring. A sample to which type A zeolite (Z 1 ) shown in Table 1 was added was referred to as Comparative Example 2-1, and a sample to which no zeolite was added was referred to as Comparative Example 2-2. A test piece was prepared by applying the above coating composition twice to a wooden board with a diameter of 30 mm and 2 mm so as to form a uniform coating, and drying at room temperature for 48 hours. The test piece was immersed in water for 18 hours, taken out, and left at room temperature for 2 hours.
Dry at ~85°C for 2 hours. (All of the above drying was carried out by hanging the test piece.) Next, the test piece was attached to the center of the culture surface of a plate medium consisting of 1 portion of water, 40 g of glucose, 10 g of peptone, and 10 g of agar. Furthermore Aspergillus
niger, Penicillium funiculosum,
Cladosporium cladosprioides,Aureobasidium
1 ml of a mixed spore suspension of Pullulans and Gliocladium virens was evenly spread over the surface of the medium and the test piece, and the Petri dish was covered with a lid and cultured at 28°C for 14 days. The results are shown in Table 4. In addition, the case where bacteria did not grow is shown as ++, the case where bacteria grew on about 1/3 or less of the test piece is shown as +, and the case where bacteria grew on about 1/3 or more of the test piece is shown as -. The coating composition of the present invention was shown to have a strong bactericidal effect and excellent antifungal properties.
Claims (1)
SiO2/Al2O3モル比を有するゼオライト固体粒子
に0.1モル/以下の濃度の銀塩溶液を含浸して
0.001〜5重量%(無水ゼオライトに対し)の銀
イオンをイオン交換により担持させたゼオライト
固体粒子を塗料に混合することを特徴とする防腐
防カビ性の塗料組成物の製法。 2 ゼオライト固体粒子がA−型ゼオライト、X
−型ゼオライト、Y−型ゼオライト又はモルデナ
イトから構成されている特許請求の範囲第1項記
載の塗料組成物の製法。[Claims] 1 Specific surface area of 150 m 2 /g or more and 14 or less
Zeolite solid particles with a molar ratio of SiO 2 /Al 2 O 3 are impregnated with a silver salt solution with a concentration of 0.1 mol/or less.
A method for producing a preservative and anti-mold coating composition, which comprises mixing in a coating material zeolite solid particles on which 0.001 to 5% by weight (based on anhydrous zeolite) of silver ions are supported by ion exchange. 2 Zeolite solid particles are A-type zeolite,
2. A method for producing a coating composition according to claim 1, which comprises Y-type zeolite, Y-type zeolite, or mordenite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5834984A JPS60202162A (en) | 1984-03-28 | 1984-03-28 | Antiseptic and mildewproofing paint composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5834984A JPS60202162A (en) | 1984-03-28 | 1984-03-28 | Antiseptic and mildewproofing paint composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60202162A JPS60202162A (en) | 1985-10-12 |
JPH0348230B2 true JPH0348230B2 (en) | 1991-07-23 |
Family
ID=13081837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5834984A Granted JPS60202162A (en) | 1984-03-28 | 1984-03-28 | Antiseptic and mildewproofing paint composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60202162A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4938958A (en) * | 1986-12-05 | 1990-07-03 | Shinagawa Fuel Co., Ltd. | Antibiotic zeolite |
JPS63194730A (en) * | 1987-02-09 | 1988-08-11 | Toshiyuki Ota | Special zeolite |
JPS63265958A (en) * | 1987-04-22 | 1988-11-02 | Shinagawa Nenryo Kk | Antibacterial resin composition |
JPH0618899B2 (en) * | 1987-06-30 | 1994-03-16 | 品川燃料株式会社 | Film containing antibacterial zeolite |
JPH0688885B2 (en) * | 1987-12-26 | 1994-11-09 | 品川燃料株式会社 | Method for producing dispersion containing antibacterial powder |
JP2732094B2 (en) * | 1988-11-12 | 1998-03-25 | 日本製箔株式会社 | Antibacterial paint |
JP3300406B2 (en) * | 1992-05-08 | 2002-07-08 | 松下電器産業株式会社 | Antibacterial metal plate material, metal plate |
KR20000050252A (en) * | 2000-05-30 | 2000-08-05 | 안정오 | Antibacterial paint manufacturing method |
DE60120997T2 (en) * | 2000-09-01 | 2007-02-08 | Milliken & Co. | ANTIMICROBIAL CLAWS, METHOD FOR THE PRODUCTION THEREOF AND THESE CARPETS CONTAINING THEREOF |
US6929705B2 (en) | 2001-04-30 | 2005-08-16 | Ak Steel Corporation | Antimicrobial coated metal sheet |
JP4599476B2 (en) * | 2009-06-08 | 2010-12-15 | 香川県 | Paper with antibacterial function |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54138030A (en) * | 1978-04-19 | 1979-10-26 | Toyo Soda Mfg Co Ltd | Coating composition |
JPS54139640A (en) * | 1978-04-21 | 1979-10-30 | Toyo Soda Mfg Co Ltd | Coating composition |
JPS55164236A (en) * | 1979-06-07 | 1980-12-20 | Nippon Chem Ind Co Ltd:The | Halogen-containing resin composition |
JPS5777022A (en) * | 1980-10-27 | 1982-05-14 | Nippon Chem Ind Co Ltd:The | Metal-substituted a-type zeolite and its manufacture |
JPS57209969A (en) * | 1981-06-19 | 1982-12-23 | Fujii Minoru | Coating composition |
-
1984
- 1984-03-28 JP JP5834984A patent/JPS60202162A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54138030A (en) * | 1978-04-19 | 1979-10-26 | Toyo Soda Mfg Co Ltd | Coating composition |
JPS54139640A (en) * | 1978-04-21 | 1979-10-30 | Toyo Soda Mfg Co Ltd | Coating composition |
JPS55164236A (en) * | 1979-06-07 | 1980-12-20 | Nippon Chem Ind Co Ltd:The | Halogen-containing resin composition |
JPS5777022A (en) * | 1980-10-27 | 1982-05-14 | Nippon Chem Ind Co Ltd:The | Metal-substituted a-type zeolite and its manufacture |
JPS57209969A (en) * | 1981-06-19 | 1982-12-23 | Fujii Minoru | Coating composition |
Also Published As
Publication number | Publication date |
---|---|
JPS60202162A (en) | 1985-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105494429B (en) | Antibacterial mildew preventive, preparation method thereof and antibacterial mildew preventive method | |
JPH0428646B2 (en) | ||
DE4425278A1 (en) | Mixtures containing silver on non-zeolitic carrier oxides | |
JPH0348230B2 (en) | ||
JPS6270221A (en) | Amorphous aluminosilicate having antimicrobial and/or germicidal action | |
JPH06256689A (en) | Fungiproof and waterproof coating composition | |
JPH06239713A (en) | Antimicrobial zeolite and its production | |
JPH0586983B2 (en) | ||
JPH07116008B2 (en) | Antibacterial agent | |
JPS61138795A (en) | Antibacterial wallpaper | |
JPH11246212A (en) | Antibacterial zeolite | |
JP3061663B2 (en) | Antibacterial / antifungal material and method for producing the same | |
JP3085750B2 (en) | Antibacterial resin or antibacterial paint | |
JP2559125B2 (en) | Method for producing antibacterial zeolite | |
JPH01153514A (en) | Submicron a type zeolite and production thereof | |
JPH0625561A (en) | Antimicrobial powder coating composition | |
JP2598956B2 (en) | Antibacterial aluminosilicate | |
JP2802712B2 (en) | Anti-mold sealant | |
JPH01172309A (en) | Treating agent for natural leather | |
JP4052526B2 (en) | Antibacterial resin | |
JP3085682B2 (en) | Antimicrobial composition | |
KR0120566B1 (en) | Cosmetics containing antimicrobial zeolite | |
JPH03294373A (en) | Coating composition having antimicrobial and fungiproof property | |
KR0154964B1 (en) | Antibacterial resin composition comprising proton-containing antibacterial zeolite having high absorbing power | |
JPH04210606A (en) | Inorganic antibacterial agent and its production |