JPH0348528A - A/d converter - Google Patents
A/d converterInfo
- Publication number
- JPH0348528A JPH0348528A JP18397589A JP18397589A JPH0348528A JP H0348528 A JPH0348528 A JP H0348528A JP 18397589 A JP18397589 A JP 18397589A JP 18397589 A JP18397589 A JP 18397589A JP H0348528 A JPH0348528 A JP H0348528A
- Authority
- JP
- Japan
- Prior art keywords
- potential
- reference potential
- electrode side
- array
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims description 51
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 8
- 238000005070 sampling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 206010000060 Abdominal distension Diseases 0.000 description 1
- 208000024330 bloating Diseases 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Analogue/Digital Conversion (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、2進の重み付けされた容量アレイを備えた電
荷再分配型A/D変換器に関する.(ロ)従来の技術
第3図は、従来の電荷再分配型A/D変換器の回路図で
あり、4ビット構成の場合を示している.
2進の重み付けされた容量アレイ・(1〉は、4ビット
構成の場合、容量が夫々8C,4C,2C.C及びCの
5つのコンデンサ(1a〉〜(1e〉で構成されており
、各コンデンサ(1a)〜(1e)の第1電極が共通に
接続され、スイッチ(2〉を介して接地されると共に、
第2電極が夫々切換スイッチ(3a〉〜(3e〉に接続
される。各切換スイッチ(3a〉〜(3e)は一寅が接
地されると共に他方が切換スイッチ(4〉に接続される
。この切換スイッチ(4)は、一方に基準電圧v6が入
力され、他方にアナログ信号v,、が入力される。これ
ら各スイッチ(3a)〜(3e),(4)及び(2〉は
、後述する制御ロジック(5)からの切換制御信号SC
に従って切換制御される。DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a charge redistribution type A/D converter with a binary weighted capacitor array. (b) Prior Art FIG. 3 is a circuit diagram of a conventional charge redistribution type A/D converter, and shows the case of a 4-bit configuration. Binary weighted capacitor array (1) is composed of five capacitors (1a) to (1e) with capacitances of 8C, 4C, 2C, and C, respectively, in the case of a 4-bit configuration. The first electrodes of the capacitors (1a) to (1e) are connected in common and grounded via the switch (2>),
The second electrodes are connected to the changeover switches (3a> to (3e)). One end of each changeover switch (3a> to (3e)) is grounded, and the other end is connected to the changeover switch (4>). The changeover switch (4) receives the reference voltage v6 on one side and receives the analog signal v, on the other side.These switches (3a) to (3e), (4), and (2) will be described later. Switching control signal SC from control logic (5)
The switching is controlled according to the following.
容量アレイ<1)の第1電極側は、スイッチ(2〉に接
続されると共に差動アンプ(6〉の反転入力側に接続さ
れる。差動アンプ(6)の非反転入力側は接地されてお
り、従って容量アレイ(1)の第1電極側の電位vxが
負であれば差動アンプ(6)の出力が「1ハ正であれば
r′0」となる.そして、差動アンブ(6)の出力が制
御ロジック(5)に入力され、デジタルデータD。U7
が作成される。さらに制御ロジック(5〉では差動アン
ブ(6〉の出力状態に基づいて切換制御信号SC.〜S
C.が作成され、各スイッチ(3a)〜(3e) ,
(4)及び(2〉に供給される。The first electrode side of the capacitor array <1) is connected to the switch (2>) and to the inverting input side of the differential amplifier (6>).The non-inverting input side of the differential amplifier (6) is grounded. Therefore, if the potential vx on the first electrode side of the capacitor array (1) is negative, the output of the differential amplifier (6) becomes r'0 if 1 is positive. The output of (6) is input to the control logic (5), and the digital data D.U7
is created. Furthermore, in the control logic (5>, the switching control signal SC.~S based on the output state of the differential amplifier (6>)
C. is created, and each switch (3a) to (3e),
(4) and (2>).
次に回路の動作について説明する。Next, the operation of the circuit will be explained.
第4図は第3図のスイッチ動作のタイミング図である。FIG. 4 is a timing diagram of the switch operation of FIG. 3.
ここで、各スイッチ(3a〉〜(3e〉及び(4)の切
換は、各切換制御信号SC,〜SC.が「1,のとき第
3図に示すH側、′0」のときL側になり、スイッチ(
2〉は切換制御信号SC,が「1,のときにオンするも
のとする。Here, each switch (3a> to (3e> and (4)) is switched to the H side shown in FIG. 3 when each switching control signal SC, to SC. and switch (
2> is turned on when the switching control signal SC is "1".
先ずサンプリング期間に切換制御信号SC.〜SC.が
l″1」となって各スイッチ(3a)〜(3e)(4)
がH側に切換えられ、スイッチ(2)がオンされると、
各コンデンサ(1a〉〜(1e〉の第2電極側にアナロ
グ信号v4が印加され、各コンデンサ〈1a)〜(1e
〉に夫/r8CV,.,4CV,.,2CV,N.CV
IN.C V I Nの電荷量が蓄積される。そして、
ホールド期間に切換制御信号S″C.〜SC,がrO」
となって各スイッチ(3a〉〜(3e〉がL側に切換え
られ、スイッチ(2)が才ブすると、各コンデンサ(1
a〉〜(1e)の第2電極側が接地電位にまで引き下げ
られ、フローティング状態にある第1電極側の電位が=
■、となる。このとき、コンデンサ(la)〜〈1e)
に蓄積されている総電荷量は16CV+sとなり、この
電荷量がホールドされる。First, during the sampling period, the switching control signal SC. ~SC. becomes l″1” and each switch (3a) to (3e) (4)
is switched to the H side and switch (2) is turned on,
An analog signal v4 is applied to the second electrode side of each capacitor (1a) to (1e), and an analog signal v4 is applied to the second electrode side of each capacitor (1a) to (1e).
> husband/r8CV,. ,4CV,. , 2CV, N. CV
IN. The amount of charge of C V I N is accumulated. and,
During the hold period, the switching control signal S''C.~SC, is rO''
When each switch (3a> to (3e) is switched to the L side and the switch (2) is turned off, each capacitor (1
The second electrode side of a> to (1e) is lowered to the ground potential, and the potential of the first electrode side in the floating state is =
■, becomes. At this time, capacitor (la) ~ <1e)
The total amount of charge stored in is 16CV+s, and this amount of charge is held.
次に、MSB判定期間でスイッチ(3a)が再びH側に
切換えられると、コンデンサ(1a〉の第2電極にvl
が印加され、ホールド期間中にホールドされた電荷量が
各コンデンサ(1a)〜(1e)に分配される。この電
荷の分配は、コンデンサ(1a〉〜(1e)の両電極間
の電位が夫々等しくなり、コンデンサ〈1a)の第2電
極の電位がコンデンサ《1b)〜(1e〉の第2電極の
電位に対してV,たけ高くなるように行われる。従って
、コンデンサ〈1a〉の容量とコンデンサ(1b)〜(
1e)の総容量とが互いに等しいことから、第1電極側
の電位V xハV IN+ V */ 2となり、この
v8が差動アンプ〈6〉で接地電位と比較される。そこ
で、アナログ信号VINがv8/2に対して高ければ、
v8が負となって差動アンプ(6)の出力は「1」とな
り制御ロジック(5)がMSBを「1」と判定する。逆
にアナログ信号■1,lがV,/2に対して低ければ、
v8が正となってMSBが「OJと判定される。制御ロ
ジック(5)はMSBの判定と共に、切換制御信号SC
Iを発生するもので、MSBがr1」のときには切換制
御信号SC1をr1」のまま維持し、「0」のときには
次の期間(B2判定期間)に「0,とする。Next, when the switch (3a) is switched to the H side again during the MSB determination period, the second electrode of the capacitor (1a)
is applied, and the amount of charge held during the hold period is distributed to each capacitor (1a) to (1e). This charge distribution is such that the potentials between the two electrodes of the capacitors (1a) to (1e) are equal, and the potential of the second electrode of the capacitor (1a) is equal to the potential of the second electrode of the capacitors (1b) to (1e). Therefore, the capacitance of capacitor <1a> and capacitors (1b) to (
1e) are equal to each other, the potential V x on the first electrode side becomes V IN + V */2, and this v8 is compared with the ground potential in the differential amplifier <6>. Therefore, if the analog signal VIN is higher than v8/2,
v8 becomes negative, the output of the differential amplifier (6) becomes "1", and the control logic (5) determines the MSB to be "1". Conversely, if the analog signal ■1,l is lower than V,/2, then
v8 becomes positive and the MSB is determined to be OJ.The control logic (5) determines the MSB and also outputs the switching control signal SC.
When the MSB is "r1", the switching control signal SC1 is maintained at "r1", and when it is "0", it is set to "0" in the next period (B2 determination period).
MSBが「1」と判定された場合、続<B2判定期間で
はスイッチ(3a〉がH側のままでスイッチ(3b〉が
H側に切換えられる.するとvxは−v1N+ V *
/ 2 + V */ 4となり、このvxの正負に依
りMSHの判定と同様に第2ビット(B2)が判定され
る.即ち、Vxが3V./4より高ければVxが負とな
りB2はr1,と判定され、V.が3vll/4より低
ければv8が正となりB2は「0,となる。If the MSB is determined to be "1", in the continuation<B2 determination period, the switch (3a) remains on the H side and the switch (3b> is switched to the H side. Then, vx becomes -v1N+V*
/ 2 + V */ 4, and the second bit (B2) is determined in the same way as the MSH determination depending on the sign of vx. That is, Vx is 3V. If it is higher than /4, Vx is negative and B2 is determined to be r1, and V. If is lower than 3vll/4, v8 becomes positive and B2 becomes 0.
一方、MSBが「0」と判定された場合、続くB2判定
期間ではスイッチ(3a〉はL側に切換えられ、スイッ
チ(3b〉がH側に切換えられる.従って、Vxは−V
IN+ V */ 4 トナり、コ・(7) V x
(7)正負に依ってB2が判定される.
以下、B3判定期間及びLSB判定期間で第3ビット(
B3)及びLSBがB2と同様にして判定される.従っ
て、各スイッチ《3a)〜(3e)を順に切換えること
で、vxが接地電位に近づけられ、最終的なスイッチ(
3a〉〜(3e)の状態がデジタルデータD。u.rを
表わすことになる。そこで制御ロジック(5〉は、各判
定期間にシリアルに得られるMSB−LSBをまとめ、
4ビットのデジタルデータD。(1?として出力する。On the other hand, if the MSB is determined to be "0", in the subsequent B2 determination period, the switch (3a) is switched to the L side, and the switch (3b) is switched to the H side. Therefore, Vx is -V
IN+ V */ 4 Tonari, Ko・(7) V x
(7) B2 is determined depending on whether it is positive or negative. Hereinafter, the third bit (
B3) and LSB are determined in the same manner as B2. Therefore, by switching each switch (3a) to (3e) in sequence, vx is brought close to the ground potential, and the final switch (
The states 3a> to (3e) are digital data D. u. It will represent r. Therefore, the control logic (5) summarizes the MSB-LSB obtained serially in each determination period,
4-bit digital data D. (Output as 1?
このような電荷再分配型A/D変換器は、例えばI E
E E J.Solid State Circui
ts , Vol.SC−LO , Na6 , ’A
ll−MOS Charge Redistribut
ionAnalog−to−Digital Conv
ersion Technigues−Part1”に
詳述されている。Such a charge redistribution type A/D converter is, for example, IE
E E J. Solid State Circuit
ts, Vol. SC-LO, Na6, 'A
ll-MOS Charge Redistribution
ionAnalog-to-Digital Conv
The detailed explanation is given in ``Ersion Techniques-Part 1''.
くハ〉発明が解決しようとする課題
上述の如きA/D変換器では、差動アンブ(6)に於い
てーv,/2〜v,/2の範囲で電位の比較が行われる
ことになるため、差動アンプ(6)を動作させるには十
側と一側との2つの電源を必要とする.このようなA/
D変換器は通常IC化されるものであり、複数の電源を
必要とすることはIC化の際の障害となる.
また、差動アンプ(6〉を単電源で動作させることも可
能であるが、差動アンプ(6)の入力レンジが2単源動
作の場合の1/2となるためにアナログ信号の入力レン
ジが1/2となるという問題がある.
そこで本発明は、アナログ信号の入力レンジを小さくす
ることなく、単電源で動作可能なA/D変換器の提供を
目的とする。(c) Problems to be Solved by the Invention In the A/D converter as described above, comparison of potentials is performed in the differential amplifier (6) in the range of -v,/2 to v,/2. Therefore, in order to operate the differential amplifier (6), two power supplies are required, one for the first side and one for the first side. A/ like this
D converters are usually integrated into ICs, and the need for multiple power sources is an obstacle when integrated into ICs. It is also possible to operate the differential amplifier (6) with a single power supply, but since the input range of the differential amplifier (6) is 1/2 of that in the case of two single-source operation, the input range of the analog signal is limited. There is a problem in that the input range is reduced to 1/2.Therefore, an object of the present invention is to provide an A/D converter that can be operated with a single power supply without reducing the input range of analog signals.
(二)課題を解決するための手段
本発明は上述の課題を解決するために成されたもので、
2進の重み付けされた複数の容量が並列に配列された容
量アレイと、この容量アレイの第1電極側に第1の基準
電位を与えると共にデジタル変換されるアナログ信号値
を上記容量アレイの第2電極に与える手段と、上記容量
アレイの第2電極側に上記第1の基準電位を与える手段
と、上記容量アレイの各容量の上記第2電極側に上記第
1の基準電位より高電位の第2の基準電位或いは低電位
の第3の基準電位を与える手段と、上記第1電極側の電
位を上記第1の基準電位と比較する比較回路と、この比
較回路の比較結果に基づいてデジタルデータを作成する
と共に上記各手段から上記容量アレイへの各基準電位の
供給を切換制御する制御回路と、を備えて成るものであ
る.(*)作用
本発明に依れば、第2の基準電位と第3の基準軍位との
中間の電位である第1の基準電位を中心にして第3の基
準電位から第2の基準電位の間でアナログ信号値の比較
が行われ、第2の基準電位を電源電位、第3の基準電位
を接地電位とすることで、比較回路を単電源で動作させ
ることができ、アナログ信号値の比較範囲が接地電位か
ら電源電位までとなる.
(へ)実施例
本発明の一実施例を図面に従って説明する。(2) Means for solving the problems The present invention has been made to solve the above problems,
A capacitor array in which a plurality of binary weighted capacitors are arranged in parallel, and a first reference potential is applied to the first electrode side of the capacitor array, and an analog signal value to be digitally converted is applied to the second electrode of the capacitor array. means for applying the first reference potential to the second electrode side of the capacitor array; means for providing a second reference potential or a third low potential reference potential, a comparison circuit for comparing the potential on the first electrode side with the first reference potential, and digital data based on the comparison result of the comparison circuit. and a control circuit for switching and controlling the supply of each reference potential from each of the means to the capacitor array. (*) Effect According to the present invention, the second reference potential is changed from the third reference potential to the first reference potential which is the intermediate potential between the second reference potential and the third reference potential. By setting the second reference potential to the power supply potential and the third reference potential to the ground potential, the comparison circuit can be operated with a single power supply, and the analog signal value The comparison range is from ground potential to power supply potential. (F) Embodiment An embodiment of the present invention will be described with reference to the drawings.
第1図は本発明A/D変換器の回路図であり、4ビット
構成の場合を示している.
容量アレイ(10〉は、4C,2C,C及びCの容量の
4つのコンデンサ(10a)〜(10d)で構成されて
おり、第1電極が共通接続され、この第F電極にスイッ
チ〈11)を介して基準電圧vllの1/2の電圧(V
*/2)が印加される。各コンデンサ(10a)〜(1
0c)の第2電極は、夫々切換スイッチ(13a)〜(
13c)に接続され、これら切換スイッチ(13a)〜
(13c)の一方が切換スイッチ(14)に接続され、
他方が切換スイッチ(15〉に接続される。また、フン
デンサ(13d)の第2電極は切換スイッチ(14〉に
直接接続される.切換スイッチ<14)にはアナログ信
号VINとv l/ 2とが印加され、何れか一方が切
換スイッチ(1 3a )〜(13c)を介してコンデ
ンサに供給される.そして、切換スイッチ(15〉の一
方にはVRが印加され、他方は接地されている。これら
各スイッチ(13a)〜(13c)(14>(15)及
び(11)は、第3図と同一構成の制御ロジック(16
)からの切換制御信号SCに従って切換制御される。FIG. 1 is a circuit diagram of the A/D converter of the present invention, showing the case of a 4-bit configuration. The capacitor array (10) is composed of four capacitors (10a) to (10d) with capacities of 4C, 2C, C, and C, the first electrodes of which are commonly connected, and a switch (11) to this F-th electrode. 1/2 voltage (V
*/2) is applied. Each capacitor (10a) to (1
The second electrode of 0c) is connected to the changeover switches (13a) to (13a), respectively.
13c), and these changeover switches (13a) to
(13c) is connected to the selector switch (14),
The other side is connected to the changeover switch (15>).The second electrode of the fundensor (13d) is directly connected to the changeover switch (14>).The changeover switch <14> is connected to the analog signals VIN, v l/2 and is applied, and one of them is supplied to the capacitor via the changeover switches (13a) to (13c).VR is applied to one of the changeover switches (15>), and the other is grounded. Each of these switches (13a) to (13c) (14>(15) and (11) has a control logic (16) with the same configuration as in FIG.
) The switching is controlled according to the switching control signal SC from ).
容量アレイ(10〉の第1電極側は差動アンプ(17)
の反転入力側に接続され、その電位v8が非反転入力側
に印加される■,/2と比較される。従って容量アレイ
〈10〉の第F電極側の電位■、が■II/2より低け
れば差動アンブ(17〉の出力が「1」、高ければ「0
,となる.制御ロジック(16)は、第3図の制御ロジ
ック(5)と同一であり説明は省略する.
次に回路の動作について説明する.
第2図は第1図のスイッチ動作のタイミング図である。The first electrode side of the capacitor array (10) is a differential amplifier (17)
It is connected to the inverting input side of , and its potential v8 is compared with 2, /2 applied to the non-inverting input side. Therefore, if the potential ■ on the F-th electrode side of the capacitor array <10> is lower than ■II/2, the output of the differential amplifier (17>) is "1", and if it is higher, it is "0".
, becomes. The control logic (16) is the same as the control logic (5) in FIG. 3, and its explanation will be omitted. Next, we will explain the operation of the circuit. FIG. 2 is a timing diagram of the switch operation of FIG. 1.
各スイッチ(13a)〜(13c)(14)(15)及
び(l1)の動作は第3図の場合と同様に切換制御信号
SC +〜S Cs7!l” I J (7)ト8 H
側、rO」のときL側に切換えられ、切換制御信号SC
.が「1」のときに才ンするものとする。The operation of each switch (13a) to (13c), (14), (15), and (l1) is the same as in the case of FIG. 3, using switching control signals SC+ to SCs7! l” I J (7) 8 H
side, rO”, it is switched to the L side, and the switching control signal SC
.. Suppose that it is activated when is "1".
サンプリング期間には、切換制御信号SC,〜SC,が
r1,となりスイッチ(11〉が才ンして各スイッチ(
13a)〜(13c)がH側に切換えられて各コンデン
サ(10a)〜(10d)に■,/2とVINとが印加
され、各コンデンサ(10a)〜(10d)に夫々4C
(VIN VR/2),2C(V+N v./2),
C(VsN−Vl/2 ) , c ( VIN− V
ll/2 ) ノ!荷カ蓄積される.
続いてMSB判定期間では、スイッチ(11)が才フし
てスイッチ(U)がL側に切換えられ、容量アレイ(1
0〉の第2電極にV./2が印加される。この期間では
、スイッチ(11)がオフして容量アレイ(10)の第
1電極側がブローティング状態にあることから、サンプ
リング期間に容量アレイ(10)に蓄積された電荷量が
保持されこの電荷量が各コンデンサ(10a)〜(10
d)ニ分配サレルタメ、■!はvll/2+(Vl/2
−VIN)となる。そこで、とのV8がv,/2と比較
されてMSBが判定される。即ち、v,Nがv3/2よ
り高ければV.liV./2より低くなり、差動アンプ
(17)の出力が11」となって制御ロジック(l5)
がMSBを「1,と判定し、逆にV,,lがV./2よ
り低ctrtばv!はvl/2より高くなり、差動アン
ブ(17)の出力がrO,となってMSBを1″0」と
判定する.?換制御信号SC,は、MSBが「1」と判
定されると「1」となりMSBが「0」となると「0,
となる.このMSBが判定されるまで社切換制御信号S
C6はどちらでも良い.(第2図に破線で示す期間)
次に、B2判定期間ではスイッチ(13a)がL側に切
換えられ、MSBが「1,であればコンデンサ(10a
)の第2電極にV,が印加され、MSBが「0」であれ
ばコンデンサ(10a>の第2電極が接地サレル。M
S B h” I J (7) トキV tハV t/
2 +( V */ 2 +V */ 4 V I
N )となり、差動アンプ(17〉の出力から、第2ビ
ット(B2)が判定されル.即チ、V I Hカ3 V
*/ 4 ヨり高ければv8はv./2より低くなり
差動アンプ(l7)の出力が『1」となってB2が「1
」と判定され、■,Hが3V./4より低ければv8は
v,/2より高くなって差動アンブ(17)の出力が「
0』となってB2が「0」と判定サレル.一方、MSB
がrO」のときvxはv*/ 2 + ( v+t/
4 VIN)となり、VINがV./4より高ければ
v8がV■/2より低くなってB2が11」、逆にVI
NがV./4より低ければVxがv,/2より高くなっ
てB2が『0」と判定される。During the sampling period, the switching control signal SC, ~SC, becomes r1, and the switch (11) turns on and each switch (
13a) to (13c) are switched to the H side, ■, /2 and VIN are applied to each capacitor (10a) to (10d), and 4C is applied to each capacitor (10a) to (10d), respectively.
(VIN VR/2), 2C (V+N v./2),
C(VsN-Vl/2), c(VIN-V
ll/2) No! Load is accumulated. Subsequently, during the MSB determination period, the switch (11) is turned off, the switch (U) is switched to the L side, and the capacitor array (1
0> to the second electrode. /2 is applied. During this period, the switch (11) is turned off and the first electrode side of the capacitor array (10) is in a bloating state, so the amount of charge accumulated in the capacitor array (10) during the sampling period is retained. is each capacitor (10a) to (10
d) Bi-distribution salertame,■! is vll/2+(Vl/2
-VIN). Then, V8 is compared with v,/2 to determine the MSB. That is, if v,N is higher than v3/2, V. liV. /2, the output of the differential amplifier (17) becomes 11'', and the control logic (l5)
determines the MSB as “1,” and conversely, if V,,l is lower than V./2, then v! becomes higher than vl/2, and the output of the differential amplifier (17) becomes rO, and the MSB is determined to be 1″0″. ? The switching control signal SC becomes "1" when the MSB is determined to be "1", and becomes "0," when the MSB becomes "0".
becomes. Until this MSB is determined, the company switching control signal S
Either is fine for C6. (Period indicated by a broken line in FIG. 2) Next, in the B2 determination period, the switch (13a) is switched to the L side, and if the MSB is "1", the capacitor (10a) is switched to the L side.
) is applied to the second electrode of the capacitor (10a), and if the MSB is "0", the second electrode of the capacitor (10a) is connected to the ground.
S B h" I J (7) TokiVthaVt/
2 + (V */ 2 +V */ 4 V I
N), and the second bit (B2) is determined from the output of the differential amplifier (17).
*/ 4 If it is higher, v8 is v. /2, the output of the differential amplifier (l7) becomes "1", and B2 becomes "1".
”, ■, H is 3V. If it is lower than /4, v8 will be higher than v, /2 and the output of the differential amplifier (17) will be "
0'' and B2 is determined to be ``0''. On the other hand, MSB
When is rO'', vx is v*/2 + (v+t/
4 VIN), and VIN becomes V. If it is higher than /4, v8 will be lower than V■/2 and B2 will be 11'', and conversely VI
N is V. If it is lower than /4, Vx is higher than v,/2 and B2 is determined to be "0".
切換制御信号SCIは、B2の判定に従い、B2が「1
」であれば次のB3判定期間以後11」に維持され、B
2が10」であれば「0」に維持される。The switching control signal SCI indicates that B2 is "1" according to the determination of B2.
”, it will be maintained at “11” after the next B3 judgment period, and B
If 2 is 10, it is maintained at 0.
B3判定期間及びLSB判定期間に於いても、スイッチ
(13a)( 13c)がB2判定期間のスイッチ(1
2a)と同様に動作し、第3ビット(B3)及びLSB
が判定される。即ち、MSBがr1」のときニハコンデ
ン? ( 10b)(10c)ノ第2電極ニvR/2と
V,とを交互に印加してV,とv1/2との大小が判定
され、MSBがrO」のときにはコンデンサ(10b)
(10c)にv,/2と接地電位とを交互に印加してV
xとv wi / 2との大小が判定される。従って、
各スイッチ(10a)〜(10c)を順に切換えてv8
をV./2に近づけ、最終的な各スイッチ(10a)〜
(10c)及び(15)の状態がデジタルデータD。I
Jrの各ピットを表わすことになる。Also in the B3 judgment period and the LSB judgment period, the switch (13a) (13c) is the switch (13c) in the B2 judgment period.
2a), the third bit (B3) and LSB
is determined. In other words, when the MSB is r1, Nihaconden? (10b) (10c) The magnitude of V and v1/2 is determined by alternately applying vR/2 and V to the second electrode, and when the MSB is rO, the capacitor (10b)
By applying v,/2 and the ground potential alternately to (10c),
The magnitude of x and v wi / 2 is determined. Therefore,
Switch each switch (10a) to (10c) in order to v8
V. /2, each final switch (10a) ~
The states (10c) and (15) are digital data D. I
This will represent each pit of Jr.
このようなA/D変換器に於いては、1つのデジタルデ
ータを得るのに5つのステップ(4ピットの場合)を要
することから、直列型や直並列型のA/D変換器に比し
て変換速度は遅くなるものの、直列型等より回路構成が
極めて簡単になることから、回路規模の大幅な縮小が図
れると共に、コンデンサ及び切換スイッチの付加に依っ
てビット数の増設ができるため、多ビット化が容易にで
きる。In this type of A/D converter, it takes five steps (in the case of 4 pits) to obtain one digital data, so it is more difficult to use than a series or series/parallel type A/D converter. Although the conversion speed is slower, the circuit configuration is much simpler than a series type, so the circuit scale can be significantly reduced, and the number of bits can be increased by adding a capacitor and a changeover switch, making it possible to increase the number of bits. Can be easily converted into bits.
(ト〉発明の効果
本発明に依れば、差動アンプの比較動作を接地電位から
基準電位の範囲で行わせることができるため、単一電源
での動作が可能であると共に、差動アンブの入カレンジ
が十分にとれ、回路のダイナミックレンジの縮小が防I
Eできる。(G) Effects of the Invention According to the present invention, since the comparison operation of the differential amplifier can be performed in the range from the ground potential to the reference potential, it is possible to operate with a single power supply, and the differential amplifier The input current range is sufficient and the reduction in the dynamic range of the circuit is prevented.
E I can do it.
第1図は本発明A/D変換器の回路図、第2図は第1図
の動作タイミング図、第3図は従来のA/D変換器の回
路図、第4図は第3図の動作タイミング図である.
(1) , (lo)・・・容量アレイ、 (la)〜
(le) , (10a)〜(10d)・・・コンデン
サ、(2).(11)・・・スイッチ、(3a) 〜(
3e) , (4) , (13a) 〜(13c)
, (14) , <15)・・・切換スイッチ、 (
5) , (16)・・・制御ロジック、(6)(17
)・・・差動アンブ。Figure 1 is a circuit diagram of the A/D converter of the present invention, Figure 2 is an operation timing diagram of Figure 1, Figure 3 is a circuit diagram of a conventional A/D converter, and Figure 4 is the same as Figure 3. This is an operation timing diagram. (1), (lo)...capacitance array, (la)~
(le), (10a) to (10d)... capacitor, (2). (11)...Switch, (3a) ~(
3e), (4), (13a) ~ (13c)
, (14), <15)...changeover switch, (
5) , (16)...control logic, (6) (17
)...Differential amplifier.
Claims (2)
された容量アレイと、 この容量アレイの第1電極側に第1の基準電位を与える
と共にデジタル変換されるアナログ信号値を上記容量ア
レイの第2電極側に与える手段と、上記容量アレイの第
2電極側に上記第1の基準電位を与える手段と、 上記容量アレイの各容量の上記第2電極側に上記第1の
基準電位より高電位の第2の基準電位或いは低電位の第
3の基準電位を与える手段と、上記第1電極側の電位を
上記第1の基準電位と比較する比較回路と、 この比較回路の比較結果に基づいてデジタルデータを作
成すると共に上記各手段から上記容量アレイへの各基準
電位の供給を切換制御する制御回路と、 を備え、 上記第1及び第2電極側に上記第1の基準電位及びアナ
ログ信号値を印加して上記容量アレイに上記アナログ信
号値に応じた電荷量を蓄積した後に上記第1電極側を浮
遊状態とすると共に上記第2電極側に上記第1の基準電
位を印加したとき、上記第1電極側が上記第1の基準電
位より低電位となれば上記第2の基準電位、高電位とな
れば上記第3の基準電位を上記第1の基準電位と交互に
上記容量アレイの各容量に順次供給することを特徴とす
るA/D変換器。(1) A capacitor array in which a plurality of binary-weighted capacitors are arranged in parallel, and a first reference potential is applied to the first electrode side of this capacitor array, and an analog signal value to be digitally converted is transferred to the capacitor. means for applying the first reference potential to the second electrode side of the array; and means for applying the first reference potential to the second electrode side of each capacitor of the capacitor array. means for providing a second reference potential with a higher potential or a third reference potential with a lower potential; a comparison circuit for comparing the potential on the first electrode side with the first reference potential; and a comparison result of the comparison circuit. a control circuit that creates digital data based on the data and switches and controls the supply of each reference potential from each of the means to the capacitor array; After applying an analog signal value and accumulating a charge amount corresponding to the analog signal value in the capacitor array, the first electrode side was brought into a floating state, and the first reference potential was applied to the second electrode side. When the potential on the first electrode side is lower than the first reference potential, the second reference potential is applied, and if the potential is higher than the first reference potential, the third reference potential is alternately applied to the capacitor array. An A/D converter characterized in that it sequentially supplies data to each capacitor.
第3の基準電位との中間の電位であることを特徴とする
請求項第1項記載のA/D変換器。(2) The A/D converter according to claim 1, wherein the first reference potential is an intermediate potential between the second reference potential and the third reference potential.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1183975A JPH0744457B2 (en) | 1989-07-17 | 1989-07-17 | A / D converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1183975A JPH0744457B2 (en) | 1989-07-17 | 1989-07-17 | A / D converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0348528A true JPH0348528A (en) | 1991-03-01 |
JPH0744457B2 JPH0744457B2 (en) | 1995-05-15 |
Family
ID=16145111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1183975A Expired - Lifetime JPH0744457B2 (en) | 1989-07-17 | 1989-07-17 | A / D converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0744457B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006512861A (en) * | 2002-12-27 | 2006-04-13 | アナログ・デバイシズ・インコーポレーテッド | SARADC (successive approximation analog-digital converter) with programmable input range |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5741032A (en) * | 1980-08-25 | 1982-03-06 | Oki Electric Ind Co Ltd | Analog-to-digital converter |
JPS6177430A (en) * | 1984-09-25 | 1986-04-21 | Oki Electric Ind Co Ltd | Analog-digital converter |
JPH01202925A (en) * | 1988-02-09 | 1989-08-15 | Oki Electric Ind Co Ltd | Converter commonly used for analog/digital-digital/ analog conversion |
-
1989
- 1989-07-17 JP JP1183975A patent/JPH0744457B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5741032A (en) * | 1980-08-25 | 1982-03-06 | Oki Electric Ind Co Ltd | Analog-to-digital converter |
JPS6177430A (en) * | 1984-09-25 | 1986-04-21 | Oki Electric Ind Co Ltd | Analog-digital converter |
JPH01202925A (en) * | 1988-02-09 | 1989-08-15 | Oki Electric Ind Co Ltd | Converter commonly used for analog/digital-digital/ analog conversion |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006512861A (en) * | 2002-12-27 | 2006-04-13 | アナログ・デバイシズ・インコーポレーテッド | SARADC (successive approximation analog-digital converter) with programmable input range |
JP4707396B2 (en) * | 2002-12-27 | 2011-06-22 | アナログ・デバイシズ・インコーポレーテッド | SARADC (successive approximation analog-digital converter) with programmable input range |
Also Published As
Publication number | Publication date |
---|---|
JPH0744457B2 (en) | 1995-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5332997A (en) | Switched capacitor D/A converter | |
JP2804269B2 (en) | Redistribution A / D converter and method for converting analog signal to digital signal | |
US4937578A (en) | D/A converter for digital signals represented by a 2's complement | |
JPH03184424A (en) | Analog-to-digital converter | |
JP6944047B2 (en) | Methods and devices for enabling a wide input common mode range in SAR ADCs without additional active circuitry | |
CN108111171B (en) | Monotonic switching method suitable for differential structure successive approximation type analog-to-digital converter | |
US10727857B2 (en) | Successive approximation register (SAR) analog to digital converter (ADC) with switchable reference voltage | |
JPH0348528A (en) | A/d converter | |
US5686918A (en) | Analog-to-digital converter with digital-to-analog converter and comparator | |
JPH09186594A (en) | Comparator, a/d converter, semiconductor device and voltage comparison method | |
US7683820B2 (en) | Charge-domain pipelined charge-redistribution analog-to-digital converter | |
KR100375203B1 (en) | Method of and circuit for converting digital data to analog signals | |
JP2609239B2 (en) | A / D converter and A / D conversion method | |
JPH03119829A (en) | D/a converter | |
JP3088343B2 (en) | Successive approximation type AD converter | |
JPH06236168A (en) | Data line driver | |
US7283077B2 (en) | Divide-add circuit and high-resolution digital-to-analog converter using the same | |
KR100340053B1 (en) | Analog-Digital Converter with optimized transforming time | |
JPH0344215A (en) | A/d converter | |
JP2533109B2 (en) | Waveform synthesis circuit | |
JP2548207B2 (en) | A / D converter | |
JPH03204231A (en) | D/a conversion circuit | |
JPS61253935A (en) | Digital/analog converting circuit | |
KR19980027527A (en) | Digital to analog converter | |
US20030222806A1 (en) | AD converter circuit and AD conversion method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080515 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090515 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090515 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100515 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100515 Year of fee payment: 15 |