JPH0347958B2 - - Google Patents
Info
- Publication number
- JPH0347958B2 JPH0347958B2 JP57213211A JP21321182A JPH0347958B2 JP H0347958 B2 JPH0347958 B2 JP H0347958B2 JP 57213211 A JP57213211 A JP 57213211A JP 21321182 A JP21321182 A JP 21321182A JP H0347958 B2 JPH0347958 B2 JP H0347958B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- nozzle
- gas
- laser beam
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005520 cutting process Methods 0.000 claims description 54
- 239000007789 gas Substances 0.000 claims description 39
- 229910000831 Steel Inorganic materials 0.000 claims description 25
- 239000010959 steel Substances 0.000 claims description 25
- 239000011261 inert gas Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 11
- 229910001882 dioxygen Inorganic materials 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 101100008047 Caenorhabditis elegans cut-3 gene Proteins 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- -1 nitrogen Chemical compound 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/1462—Nozzles; Features related to nozzles
- B23K26/1464—Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
- B23K26/147—Features outside the nozzle for feeding the fluid stream towards the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/1462—Nozzles; Features related to nozzles
- B23K26/1464—Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
- B23K26/1476—Features inside the nozzle for feeding the fluid stream through the nozzle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Description
【発明の詳細な説明】
本発明は、レーザビームおよびアシストガスを
用いた物体の切断方法および装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for cutting an object using a laser beam and an assist gas.
一般にレーザビームを用いて例えば鋼板を切断
する場合には、第1図に示すように、レーザビー
ム1をレンズ3で集光し、被加工物7(物体)に
照射すると同時に、レーザビーム1と同軸のノズ
ル4から酸素ガス(第1のガス)を被加工物7に
吹き付け、酸化発熱作用を利用して被加工物を溶
断するようにしている。このようにレーザ切断方
法は、非接触加工であり、切断方向が自由で、切
断幅が狭く、しかも被加工物に与える熱影響が少
ないという多くの利点がある。 Generally, when cutting, for example, a steel plate using a laser beam, as shown in FIG. Oxygen gas (first gas) is blown onto the workpiece 7 from the coaxial nozzle 4, and the workpiece is melted and cut using the oxidation heat generation effect. As described above, the laser cutting method has many advantages such as non-contact processing, free cutting direction, narrow cutting width, and less thermal influence on the workpiece.
しかしながらこの方法でも次のような不都合を
有する。すなわち、溶断の際に生ずる溶融酸化物
9が切断面8に沿つて下降し、第2図aおよびd
に示すように、被加工物7の切断部8の下面に垂
れ下がつたり、第2図bおよびeに示すように、
切断後、その切断部の下部が溶融酸化物9によつ
て再び閉塞されることが生じうる。このような現
象が生ずると、切断加工精度が低下することがあ
るし、切断後の研削等の、余分な製造工程が必要
になりコスト高となる。 However, this method also has the following disadvantages. That is, the molten oxide 9 produced during the cutting process descends along the cut surface 8, as shown in FIGS. 2a and d.
As shown in FIG. 2, the lower surface of the cut portion 8 of the workpiece 7 is drooped, and as shown in FIGS. 2b and 2e,
After the cut, it may occur that the lower part of the cut is again blocked by the molten oxide 9. When such a phenomenon occurs, cutting accuracy may be reduced, and additional manufacturing steps such as grinding after cutting are required, resulting in increased costs.
第4図は被加工物が高温状態のときに切断ノズ
ルから酸素100%のガスを噴射した場合の切断面
の断面形状を示したものであり、第4図の左端の
図は被加工物の温度が常温の場合を、中央の図は
400℃の場合を、また右端の図は800℃の場合を示
す。第4図において7′が試験片である。これら
の図から明らかなように、400℃,800℃と被加工
物の温度が高温化するに従つてノズルからの酸素
ガスによる酸化発熱反応が高まり、切断速度は速
くなるが、切断幅も広く、また切断面が均一では
なくなり、溶融酸化物の発生も多くなる。 Figure 4 shows the cross-sectional shape of the cut surface when 100% oxygen gas is injected from the cutting nozzle when the workpiece is in a high temperature state. The middle diagram shows when the temperature is room temperature.
The figure on the far right shows the case at 400℃, and the figure on the right shows the case at 800℃. In FIG. 4, 7' is the test piece. As is clear from these figures, as the temperature of the workpiece increases to 400℃ and 800℃, the oxidation exothermic reaction due to oxygen gas from the nozzle increases, and the cutting speed becomes faster, but the cutting width also becomes wider. In addition, the cut surface becomes less uniform and more molten oxides are generated.
本発明は、高精度で切断でき、切断後の研削等
の後工程が不要なレーザビームによる物体の切断
方法を提供することを目的とするもので、
予熱加熱源を用いて、被加工物の切断部を高温
化することにより、ノズルから噴射させるガスの
酸素混合比を低下させ、酸素ガスによる酸化発熱
反応の減少を図り、溶融酸化物の発生を抑制し、
切断幅が狭く、かつ切断面の均一な切断加工を行
なうようにしたものである。 An object of the present invention is to provide a method for cutting an object using a laser beam, which can cut with high precision and does not require post-processes such as grinding after cutting. By increasing the temperature of the cutting part, the oxygen mixing ratio of the gas injected from the nozzle is lowered, reducing the oxidative exothermic reaction caused by oxygen gas, and suppressing the generation of molten oxide.
The cutting width is narrow and the cutting surface is uniform.
また予備加熱を行なうことによつてレーザ光の
鋼板面での波長吸収性を高め、レーザによるキー
ホール(被加工物の蒸発により発生する穴)の発
生を小エネルギーで行なうことができるようにし
たものである。また切断部近傍に表裏から、それ
ぞれ不活性ガスを噴射することにより、発生した
溶融酸化物が切断部に付着することを防止するよ
うにしたものである。 In addition, preheating increases the wavelength absorption of the laser beam on the steel plate surface, making it possible to generate keyholes (holes created by evaporation of the workpiece) using the laser with less energy. It is something. In addition, inert gas is injected into the vicinity of the cut portion from the front and back, respectively, to prevent the generated molten oxide from adhering to the cut portion.
以下図面により本発明について説明する。 The present invention will be explained below with reference to the drawings.
第3図は本発明を実施する切断ヘツドと被加工
物の縦断面を示す説明図で、1はレーザビームで
あり、切断ヘツド2に上方から入射する。 FIG. 3 is an explanatory diagram showing a vertical cross section of a cutting head and a workpiece in which the present invention is practiced. Reference numeral 1 denotes a laser beam, which is incident on the cutting head 2 from above.
切断ヘツド2の内部には、集光レンズ3、アシ
ストガス流入口6等を設けてある。レーザビーム
1は、切断ヘツド2の内部を通り、集光レンズ3
で集光されて被加工物7に照射される。アシスト
ガス流入口6からの酸素ガス等は、切断ヘツド2
内部を通り、切断ヘツド2の下部に設けた切断ノ
ズル4および切断ノズル4先端の主ノズル孔5を
通つて、被加工物7の、レーザビームの照射位置
と同一部分に吹き付けられる。この位置が切断位
置である。 Inside the cutting head 2, a condensing lens 3, an assist gas inlet 6, etc. are provided. The laser beam 1 passes through the cutting head 2 and passes through the condensing lens 3.
The light is focused and irradiated onto the workpiece 7. Oxygen gas etc. from the assist gas inlet 6 is transferred to the cutting head 2.
The laser beam passes through the interior of the cutting head 2, passes through the cutting nozzle 4 provided at the bottom of the cutting head 2, and the main nozzle hole 5 at the tip of the cutting nozzle 4, and is sprayed onto the same portion of the workpiece 7 as the laser beam irradiation position. This position is the cutting position.
10は第1副ノズルであり、その先端(下方)
に第1副ノズル孔11が形成されており、レーザ
ビーム照射位置より距離L1後方の位置にガスが
噴射されるように被加工物7の表面に対してθ1の
角度をもたせてある。また20は第2副ノズル
で、被加工物7の裏面にガスを噴射するために被
加工物7の裏面に対しθ2の角度をもたせ、ガスが
被加工物の裏面で第1副ノズル10のガス吹き付
け位置より距離L2後方に吹き付けるようにして
ある。またこの第2副ノズル20は切断線に対し
て角度をもたせるようにしてもよい。21は第2
副ノズル孔である。 10 is the first sub-nozzle, its tip (lower)
A first sub-nozzle hole 11 is formed at , and is oriented at an angle θ 1 with respect to the surface of the workpiece 7 so that the gas is injected to a position L 1 behind the laser beam irradiation position. Further, 20 is a second sub-nozzle, which has an angle of θ 2 with respect to the back surface of the workpiece 7 in order to inject gas onto the back surface of the workpiece 7. The gas is sprayed a distance L 2 behind the gas spray position. Further, the second sub-nozzle 20 may be formed at an angle with respect to the cutting line. 21 is the second
It is a sub nozzle hole.
また第5図に示す本発明の説明図において、3
0は予熱源で、レーザビーム照射点P0より距離
L3だけ前方の位置P3点を予熱する。また図の場
合はTIGトーチを示す。31はアークである。な
おこの予熱源は例えばTIGアーク,アーク,ガス
バーナ,直接通電、高周波加熱、レーザビーム
等、任意の熱源を使用することができる。 In addition, in the explanatory diagram of the present invention shown in FIG.
0 is the preheating source, distance from the laser beam irradiation point P 0
Preheat the position P 3 points forward by L 3 . The figure also shows a TIG torch. 31 is an arc. Note that any heat source can be used as this preheating source, such as a TIG arc, an electric arc, a gas burner, direct energization, high frequency heating, and a laser beam.
本発明により被加工物(以下鋼板という)7を
切断するには第5図に示すように鋼板7の切断部
位を本発明装置にセツトし、先ず予熱源30によ
つて切断ノズル4の前方P3点を予熱する。然る
後、鋼板7を移動させ、予熱点が切断ノズル4の
勧下に至ると、切断ノズル4の主ノズル孔5から
レーザビーム1とセンターガスG1とが放射され、
その結果鋼板7は切断される。 To cut a workpiece (hereinafter referred to as a steel plate) 7 according to the present invention, the cutting portion of the steel plate 7 is set in the apparatus of the present invention as shown in FIG. Preheat 3 points. After that, when the steel plate 7 is moved and the preheating point reaches the position below the cutting nozzle 4, the laser beam 1 and the center gas G1 are emitted from the main nozzle hole 5 of the cutting nozzle 4.
As a result, the steel plate 7 is cut.
鋼板の移動に伴なつてこの動作は連続的に行な
われるので、長尺の鋼板を切断できる。このとき
センターガスG1の組成を酸素と窒素等の不活性
ガスとの合成ガスとすれば、切断効率を低下させ
ず、しかも酸素による酸化発熱作用による溶融酸
化物の発生も少なく、効率的な切断を行なうこと
ができる。 Since this operation is performed continuously as the steel plate moves, long steel plates can be cut. At this time, if the composition of the center gas G 1 is a synthetic gas of oxygen and an inert gas such as nitrogen, the cutting efficiency will not be reduced, and there will be less generation of molten oxide due to the oxidation exothermic action of oxygen, resulting in an efficient Cutting can be done.
また本発明は上記の切断に際し、副ノズルから
切断部近傍の非凝固域に不活性ガスG2,G3を噴
射するとさらに効果的である。 Further, the present invention is more effective when the inert gases G 2 and G 3 are injected into the non-solidified region near the cut portion from the sub-nozzle during the above-mentioned cutting.
すなわち第3図に示すように切断ノズル4には
第1副1ノズル10が斜めに取付けられ、また該
第1副ノズル10の下方には第2副ノズル20が
設けられており、第1副ノズル10から噴射され
る不活性ガスG2は第5図P1点に吹付けられ、ま
た第2副ノズル20から噴射される不活性ガス
G3は同じくP2点に吹付けられるように構成され
ている。 That is, as shown in FIG. 3, a first sub-nozzle 10 is obliquely attached to the cutting nozzle 4, and a second sub-nozzle 20 is provided below the first sub-nozzle 10. The inert gas G 2 injected from the nozzle 10 is sprayed at one point P in FIG.
G 3 is also configured to be sprayed at two points P.
従つて予熱源30により予熱され、さらにレー
ザビーム1によつて切断された鋼板7の切断溝に
は、第1副ノズル10からの不活性ガスG2が吹
付けられ、その結果溝内に存在する凝固前の溶融
酸化物は溝外に除去される。一方、第2副ノズル
20から噴射される不活性ガスG3は鋼板7の裏
面のP2点に吹付けられているので、第1副ノズ
ル10からのガスG2によつて接断溝外へ排出さ
れた溶融酸化物は、前記不活性ガスG3により飛
散し、鋼板裏面に付着しない。従つて切断部は第
2図cおよびfに示すようになり、従つて研削等
の手入れは不用になる。 Therefore, the inert gas G 2 from the first sub-nozzle 10 is blown into the cutting groove of the steel plate 7 which has been preheated by the preheating source 30 and further cut by the laser beam 1. The molten oxide before solidification is removed outside the groove. On the other hand, since the inert gas G 3 injected from the second sub-nozzle 20 is sprayed at the point P 2 on the back surface of the steel plate 7, the gas G 2 from the first sub-nozzle 10 is applied to the outside of the cutting groove. The molten oxide discharged to the inert gas G3 is scattered by the inert gas G3 and does not adhere to the back surface of the steel plate. Therefore, the cut portion becomes as shown in FIGS. 2c and 2f, and maintenance such as grinding is therefore unnecessary.
ここで本発明の実施に好適な条件を示すと次の
とおりである。 Here, conditions suitable for carrying out the present invention are as follows.
試料:電磁鋼板(Si3%)、厚さ2mmの場合;
TIGアークとレーザ照射位置の間隔(L3):10
〜20mm
TIGアーク:10V、100〜300A
レーザ出力:2Kw、50〜150mm/S
切断ノズルからのガスの混合ガス成分比:酸素
ガス60〜80%、窒素ガス20〜40%
第1副ノズルの角度(θ1):30〜60°
第1副ノズルからのガス流量(Q1):60〜120
/分
第1副ノズルのガス吹付け位置(切断点からの
距離)L1:2〜7mm
第2副ノズルの角度(θ2):5〜20°
第2副ノズルからのガス流量(Q2):80〜140
/分
第2副ノズルのガス吹付け位置(第1副ノズル
のガス吹付け位置からの距離)L2:3〜10mm
被加工物が電磁鋼板以外の場合も上記条件は充
分に適合する。Sample: Electrical steel plate (Si3%), thickness 2mm; Distance between TIG arc and laser irradiation position (L 3 ): 10
~20mm TIG arc: 10V, 100~300A Laser output: 2Kw, 50~150mm/S Mixed gas component ratio of gas from the cutting nozzle: Oxygen gas 60~80%, Nitrogen gas 20~40% Angle of 1st sub nozzle (θ 1 ): 30 to 60° Gas flow rate from the first sub-nozzle (Q 1 ): 60 to 120
/min Gas spraying position of the first sub-nozzle (distance from the cutting point) L 1 : 2 to 7 mm Angle of the second sub-nozzle (θ 2 ): 5 to 20° Gas flow rate from the second sub-nozzle (Q 2 ):80~140
/min Gas spraying position of the second sub-nozzle (distance from the gas spraying position of the first sub-nozzle) L2 : 3 to 10 mm The above conditions are fully applicable even when the workpiece is other than an electromagnetic steel plate.
次に本発明の実施例を示す。 Next, examples of the present invention will be shown.
実施例 1
レーザビーム源として出力2.0KwのCO2レーザ
装置を用い、板厚2.0mmの3%Si鋼を80mm/秒の
速度で切断した。予備加熱源としてTIGアークを
用い、10V、150Aに設定し、主ノズル4からは
酸素ガス70%、窒素ガス30%の混合ガスを噴射し
た。その結果切断面のシヤープな切断を行なうこ
とができた。これに対し、予熱なしで、他の条件
を同一とした場合には切断ができなかつた。Example 1 A CO 2 laser device with an output of 2.0 Kw was used as a laser beam source to cut 3% Si steel with a thickness of 2.0 mm at a speed of 80 mm/sec. A TIG arc was used as a preliminary heating source, set at 10 V and 150 A, and a mixed gas of 70% oxygen gas and 30% nitrogen gas was injected from the main nozzle 4. As a result, it was possible to cut the cut surface sharply. On the other hand, when other conditions were the same without preheating, cutting could not be performed.
また主ノズルから酸素ガス100%を噴射したと
ころ切断はできたがTIGアークによる予熱の場合
に比べて溶融酸化物が多く、切断面がシヤープに
ならず、後工程として手入れを必要とした。 In addition, when 100% oxygen gas was injected from the main nozzle, cutting was possible, but there was more molten oxide than in the case of preheating with a TIG arc, and the cut surface was not sharp, requiring maintenance as a post-process.
実施例 2
レーザビーム源として出力2.0KwのCO2レーザ
装置を用い、板厚2.5mmのSi3.0%含有鋼を80mm/
秒の速度で切断した。予備加熱源としてTIGアー
ク用い10V、150Aに設定し、主ノズルから酸素
ガス70%、窒素ガス30%の混合ガスを噴射し、第
1副ノズルから窒素ガスを80g/分の流量で噴射
し、また第2副ノズルから窒素ガスを120/分
の流量で噴射した。またこのとき第1副ノズルの
傾きθ1を45°、第2副ノズルの傾きθ2を10°とし、
さらに切断位置P0と第1副ノズルからのガス噴
射位置P1との距離L1を5mm、該位置P1と第2副
ノズルからのガス噴射位置P2との距離L2を3mm
に調定した。また切断位置P0と予熱用TIGアー
ムの先端位置(予熱位置)P3との距離L3を10mm
とした。なお、第1副ノズル孔11の孔径を2
mm、第2副ノズル孔21の孔径を3mmにした。Example 2 Using a CO 2 laser device with an output of 2.0 Kw as a laser beam source, a steel plate containing 3.0% Si with a thickness of 2.5 mm was
Cuts at a speed of seconds. Using a TIG arc as a preheating source, set the voltage to 10V and 150A, inject a mixed gas of 70% oxygen gas and 30% nitrogen gas from the main nozzle, and inject nitrogen gas at a flow rate of 80g/min from the first sub-nozzle. Further, nitrogen gas was injected from the second sub-nozzle at a flow rate of 120/min. Also, at this time, the inclination θ 1 of the first sub-nozzle is 45°, the inclination θ 2 of the second sub-nozzle is 10°,
Furthermore, the distance L 1 between the cutting position P 0 and the gas injection position P 1 from the first sub-nozzle is 5 mm, and the distance L 2 between the position P 1 and the gas injection position P 2 from the second sub-nozzle is 3 mm.
It was adjusted to Also, the distance L 3 between the cutting position P 0 and the tip position of the preheating TIG arm (preheating position) P 3 is 10 mm.
And so. Note that the diameter of the first sub-nozzle hole 11 is 2.
mm, and the hole diameter of the second sub-nozzle hole 21 was set to 3 mm.
その結果、溶融酸化物による切断面の閉塞はな
く、鋼板の切断を完全に行なうことができた。し
かも、切断面は主ノズルから酸素ガス100%で噴
射した場合に比べてシヤープであつた。また上記
条件と同一条件で第1副ノズルおよび第2副ノズ
ルからの窒素ガスの供給を止めて切断を行なつた
ところ、上記酸素ガス100%の場合より少ないが
切断面に溶融酸化物の付着がみられた。また第2
副ノズルからの窒素ガスの供給のみを中止したと
ころ、切断面の閉塞は生じないが、切断面および
切断部の下縁に溶融酸化物の付着がみられた。 As a result, the cut surface was not blocked by molten oxide, and the steel plate could be completely cut. Furthermore, the cut surface was sharper than when 100% oxygen gas was injected from the main nozzle. Furthermore, when cutting was performed under the same conditions as above with the supply of nitrogen gas stopped from the first sub-nozzle and the second sub-nozzle, molten oxide adhered to the cut surface, although it was less than when using 100% oxygen gas. was seen. Also the second
When only the supply of nitrogen gas from the sub nozzle was stopped, the cut surface was not blocked, but molten oxide was observed to adhere to the cut surface and the lower edge of the cut portion.
なお、以上の説明においては、予熱源として
TIGアークを使用した例について説明したが、先
に説明したように予熱源としては、TIGアークと
同様に他の予熱源、例えば、アーク、ガスバー
ナ、直接通電、高周波加熱、レーザビーム等任意
の熱源を使用し得る。 In addition, in the above explanation, the preheating source is
Although we have explained an example using a TIG arc, as explained earlier, the preheating source can be any other preheating source as well as the TIG arc, such as an arc, gas burner, direct current, high frequency heating, laser beam, etc. can be used.
第1図はレーザビームにより物体の切断を行な
う場合に従来より用いている装置の概略断面図、
第2図aおよびdは、従来の方法による切断をし
た被加工物を示す正面図および切断部の側面図、
第2図bおよびfは本発明により切断をした被加
工物を示す正面図および切断部の側面図、第3図
は本発明を実施する切断ヘツドと副ノズル、及び
被加工物を示す縦断面図である。第4図は鋼板が
高温状態になつた時の切断状況を示す図である。
第5図は本発明の構成を示す説明図である。
1:レーザビーム、2:切断ヘツド、3:集光
レンズ、4:切断ノズル、5:主ノズル孔、6:
アシストガス供給口、7:被加工物、7′:試験
片、8:切断面、9:溶融酸化物、10:第1副
ノズル、11:第1副ノズル孔、20:第2副ノ
ズル、21:第2副ノズル孔、30:予備加熱
源、G1:主ノズルガス、G2:第1副ノズルガス、
G3:第2副ノズルガス、P0:レーザビーム照射
位置、P1:第1副ノズルガス噴射位置、P2:第
2副ノズルガス噴射位置、P3:予備加熱位置、
L1:P0とP1の間隔、L2:P1とP2の間隔、L3:P0
とP3の間隔。
Figure 1 is a schematic cross-sectional view of a device conventionally used to cut objects with a laser beam.
FIGS. 2a and 2d are a front view and a side view of the cut part showing a workpiece cut by the conventional method,
Figures 2b and f are a front view and a side view of the cutting part of a workpiece cut according to the present invention, and Figure 3 is a longitudinal cross-section showing the cutting head, sub-nozzle, and workpiece according to the present invention. It is a diagram. FIG. 4 is a diagram showing the state of cutting when the steel plate reaches a high temperature state.
FIG. 5 is an explanatory diagram showing the configuration of the present invention. 1: Laser beam, 2: Cutting head, 3: Condensing lens, 4: Cutting nozzle, 5: Main nozzle hole, 6:
Assist gas supply port, 7: Workpiece, 7': Test piece, 8: Cut surface, 9: Molten oxide, 10: First sub nozzle, 11: First sub nozzle hole, 20: Second sub nozzle, 21: second sub-nozzle hole, 30: preliminary heating source, G1 : main nozzle gas, G2 : first sub-nozzle gas,
G 3 : Second sub nozzle gas, P 0 : Laser beam irradiation position, P 1 : First sub nozzle gas injection position, P 2 : Second sub nozzle gas injection position, P 3 : Preheating position,
L 1 : Distance between P 0 and P 1 , L 2 : Distance between P 1 and P 2 , L 3 : P 0
and P 3 interval.
Claims (1)
レーザビームと実質上同一方向に向けて酸素と不
活性ガスよりなる第1のガスを噴射して鋼板を切
断する方法において、切断部を他の熱源によつて
予熱した後、レーザビームを照射し、切断位置近
傍に、レーザビーム入射位置とは異なる鋼板表面
に不活性ガスよりなる第2のガスを、裏面に不活
性ガスよりなる第3のガスを噴射することを特徴
とするレーザビームによる鋼板の切断方法。 2 鋼板にレーザビームを投射する手段と、レー
ザビームの投射に先立つて鋼板を予熱する手段
と、レーザビームに対して実質上同一方向に酸素
と不活性ガスよりなる第1のガスを噴射する切断
ノズルと、切断ノズルに対して角度をもつて配置
され不活性ガスよりなる第2のガスを鋼板表面の
切断部近傍に噴射するための副ノズルと、不活性
ガスよりなる第3のガスを鋼板裏面の切断部近傍
に噴射するためのノズルと、を備えるレーザビー
ムによる鋼板の切断装置。[Claims] 1. A method of cutting a steel plate by irradiating the steel plate with a laser beam and injecting a first gas consisting of oxygen and an inert gas in substantially the same direction as the laser beam, After preheating the part with another heat source, a laser beam is irradiated, and a second gas consisting of an inert gas is applied to the surface of the steel plate, which is different from the laser beam incident position, near the cutting position, and a second gas consisting of an inert gas is applied to the back side. A method for cutting a steel plate using a laser beam, the method comprising injecting a third gas having the following properties. 2. A means for projecting a laser beam onto a steel plate, a means for preheating the steel plate prior to laser beam projection, and a cutting method for injecting a first gas consisting of oxygen and an inert gas in substantially the same direction with respect to the laser beam. a nozzle; a sub-nozzle arranged at an angle with respect to the cutting nozzle for injecting a second gas made of an inert gas to the vicinity of the cut portion on the surface of the steel plate; and a third gas made of the inert gas applied to the steel plate. A device for cutting a steel plate using a laser beam, comprising: a nozzle for spraying a spray near the cutting part on the back surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57213211A JPS59104289A (en) | 1982-12-04 | 1982-12-04 | Method and device for cutting steel plate by laser beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57213211A JPS59104289A (en) | 1982-12-04 | 1982-12-04 | Method and device for cutting steel plate by laser beam |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59104289A JPS59104289A (en) | 1984-06-16 |
JPH0347958B2 true JPH0347958B2 (en) | 1991-07-22 |
Family
ID=16635378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57213211A Granted JPS59104289A (en) | 1982-12-04 | 1982-12-04 | Method and device for cutting steel plate by laser beam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59104289A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02224886A (en) * | 1989-02-28 | 1990-09-06 | Yoshiaki Arata | Double laser cutting nozzle and dross-free cutting method |
JP2616278B2 (en) * | 1991-04-16 | 1997-06-04 | 株式会社大林組 | Cutting method of object by laser beam |
JP3083320B2 (en) * | 1991-11-19 | 2000-09-04 | アドバンスド・テクニック・ゲーエムベーハー | Apparatus for removing material from a metal workpiece that is moved relative to a removal tool |
DE4240190A1 (en) * | 1992-11-30 | 1994-06-01 | Linde Ag | Process for the machining of a workpiece by means of a laser beam and laser nozzle |
JP2810625B2 (en) * | 1994-05-30 | 1998-10-15 | 川崎重工業株式会社 | Laser processing head |
KR100597907B1 (en) | 2005-06-15 | 2006-07-06 | 한국기계연구원 | Method and apparatus for processing object using laser |
JP4720380B2 (en) * | 2005-08-31 | 2011-07-13 | 澁谷工業株式会社 | Laser processing equipment |
JP5031383B2 (en) * | 2007-01-26 | 2012-09-19 | 新日本製鐵株式会社 | Laser welding method for steel plate overlap |
CN104043904A (en) * | 2014-06-09 | 2014-09-17 | 江苏大学 | Back side-blown gas-assisted laser cutting method and device |
JP6582772B2 (en) * | 2015-09-09 | 2019-10-02 | 日本製鉄株式会社 | Laser cutting product manufacturing method and manufacturing apparatus |
CN110497097A (en) * | 2019-08-07 | 2019-11-26 | 浙江锋源氢能科技有限公司 | Laser cutting device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53132930U (en) * | 1977-03-28 | 1978-10-21 | ||
JPS53134278U (en) * | 1977-03-31 | 1978-10-24 | ||
JPS54171639U (en) * | 1978-05-22 | 1979-12-04 |
-
1982
- 1982-12-04 JP JP57213211A patent/JPS59104289A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59104289A (en) | 1984-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3749878A (en) | Gas assisted laser cutting apparatus | |
US6172323B1 (en) | Combined laser and plasma arc welding machine | |
US4167662A (en) | Methods and apparatus for cutting and welding | |
US3569660A (en) | Laser cutting apparatus | |
JP3762676B2 (en) | Work welding method | |
US20080116175A1 (en) | Laser welding process with improved penetration | |
JPH0347958B2 (en) | ||
US20010003697A1 (en) | Laser machining | |
JPH08141764A (en) | Laser beam cutting method | |
JPH11267867A (en) | Method and device for laser processing | |
JP3768368B2 (en) | Laser welding method | |
JP2005501736A (en) | Method for firing an electric arc in hybrid laser-arc welding | |
JPS5987996A (en) | Laser and gas cutter | |
JP3905732B2 (en) | Laser processing head, laser cutting apparatus and laser cutting method using the same | |
JPH0237985A (en) | Method and device for laser beam processing | |
JP2002273588A (en) | Laser cutting processing method | |
CA1091557A (en) | Method and apparatus for making an instantaneous thermochemical start | |
JPH11123583A (en) | Laser cutting device and method therefor | |
JP4394808B2 (en) | Melt processing equipment using laser beam and arc | |
JP3436861B2 (en) | Laser cutting method and apparatus for steel sheet | |
JP3615097B2 (en) | Combined welding method of laser and arc | |
WO2021020398A1 (en) | Corner part shaping device and corner part shaping method | |
JPH08118053A (en) | Workpiece cutting process | |
JPH09216081A (en) | Laser beam cutting machine | |
JP3436862B2 (en) | Laser cutting method and apparatus for thick steel plate |