[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0343160A - Constant speed fastening method for bolt-unit - Google Patents

Constant speed fastening method for bolt-unit

Info

Publication number
JPH0343160A
JPH0343160A JP17879689A JP17879689A JPH0343160A JP H0343160 A JPH0343160 A JP H0343160A JP 17879689 A JP17879689 A JP 17879689A JP 17879689 A JP17879689 A JP 17879689A JP H0343160 A JPH0343160 A JP H0343160A
Authority
JP
Japan
Prior art keywords
speed
nut runner
tightening
rotation number
constant speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17879689A
Other languages
Japanese (ja)
Inventor
Tetsuo Abe
哲男 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Machine Works Ltd
Original Assignee
Sanyo Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Machine Works Ltd filed Critical Sanyo Machine Works Ltd
Priority to JP17879689A priority Critical patent/JPH0343160A/en
Publication of JPH0343160A publication Critical patent/JPH0343160A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

PURPOSE:To remarkably reduce the dispersion of an axial tension and to perform a screw fastening work of good accuracy by fastening with the maintenance of the rotation speed of a nut runner at a constant speed irrespective of the fluctuation in a fastening load. CONSTITUTION:A set rotation number set on a speed setter 1 is fed out to a nut runner driving motor 5 via a comparator 2, speed deviation amplifier 3 and servoamplifier 4. A pulse signal corresponding to the actual rotation number of the nut runner is then transmitted from a pulse generator 6 and fed out to the comparator 2 via a feedback circuit 7. The pulse signal is compared with the set rotation number of the speed setter 1 by the comparator 2 and based on the comparison arithmetic result the converting signal of the voltage or current for correcting the rotation number is fed out to the control circuit 5A of the motor 5. By maintaining the rotation number of the nut runner at a constant speed irrespective of the fluctuation in the fastening load, the effect of the dispersion of a friction coefficient on a screw face and seating face is eliminated and the fluctuation range of the axial tension can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボルト・ナットの定速締付方法に関するもので
あり、詳しくはナツトランナによるボルト・ナットの締
付作業に於ける軸力の変動の防止手段に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a constant-speed tightening method for bolts and nuts, and more specifically, to a method for controlling axial force fluctuations during bolt and nut tightening work using a nut runner. It concerns preventive measures.

〔従来の技術〕[Conventional technology]

自動車のエンジン組立工程等に於いてす7トランナによ
るボルト・ナットの自動締付作業が行われている。エン
ジン構成部材、例えばシリンダヘッドとシリンダブロッ
クとを所定の締付トルクでボルト止めする手段として、
ナツトランナに予め最終締付トルクを設定しておき、ボ
ルト締め時の実トルクを検出し、最終締付トルクと実ト
ルクが一致した時点でナンドランチによるボルト締付動
作を終了させる方法(トルク法〉や第4図に示すように
ナツトランナに最終締付トルクの約Hの大きさのスナツ
グトルクを予め、設定しておき、スナツグポイントを過
ぎた後は一定角度だけ回転させて停止させる方法(トル
ク−角度法〉が使用されている。
BACKGROUND OF THE INVENTION Automatic tightening of bolts and nuts using a Su7 runner is carried out in the automobile engine assembly process. As a means for bolting engine components, such as a cylinder head and a cylinder block, with a predetermined tightening torque,
A method (torque method) in which the final tightening torque is set in advance on the nut runner, the actual torque during bolt tightening is detected, and the bolt tightening operation by the nut runner is terminated when the final tightening torque and the actual torque match. As shown in Figure 4, the nut runner is set in advance with a snug torque of approximately H of the final tightening torque, and after passing the snug point, the nut runner is rotated by a certain angle and then stopped (torque - angle). law is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記トルク法は、ボルト・ナットの締付力をナツトラン
ナの締付トルクで把握し、これを制御することによって
ボルト・ナットに所定の締付強度を付与しようとしてい
る。ところが、ボルト・ナットの締付強度は、実際には
ボルト・ナットに伝達される軸力(以下、軸力と称呼)
の大きさによって決まるものであり、この軸力がネジ面
や座着面の摩擦係数によって変化することによって締付
トルクと軸力とは多くの場合同−値とならない、このた
め、第5図に示すように締付トルクを一定になるように
制御しても軸力には100%にも及ぶバラツキが発生す
ることがある。より定量的に説明すると、締付トルク(
T)と軸力(F)との間には、 T−KDF□■ 〔ただし、(D)はボルトの直径、(K)はトルク係数
〕なる関係が成立している。ここに於いてトルク係数(
K)のうち主要な要素である摩擦係数(μ)°は、ボル
トの座着面やネジ面の特性によって大きく変化するだけ
でなく、ボルト・ナフト締付時の回転速度の影響も受け
る。
The above torque method attempts to provide a predetermined tightening strength to the bolts and nuts by grasping the tightening force of the bolts and nuts using the tightening torque of a nut runner and controlling this. However, the tightening strength of bolts and nuts is actually the axial force transmitted to the bolts and nuts (hereinafter referred to as axial force).
The tightening torque and the axial force are often not the same value because this axial force changes depending on the friction coefficient of the threaded surface and the seating surface. As shown in the figure, even if the tightening torque is controlled to be constant, the axial force may vary by as much as 100%. To explain it more quantitatively, the tightening torque (
The relationship T-KDF□■ [where (D) is the diameter of the bolt and (K) is the torque coefficient] is established between T) and the axial force (F). Here, the torque coefficient (
The coefficient of friction (μ)°, which is the main element of K), not only varies greatly depending on the characteristics of the bolt seating surface and threaded surface, but is also affected by the rotational speed when tightening the bolt/naft.

即ち、第6図に示すようにナツトランナの回転数が低い
静摩擦領域(通常3PPM以下)では摩擦係数が大きく
、ナフトランナの回転数が高い動摩擦領域では摩擦係数
が小さい、この観点から、軸力(F)のバラツキを小さ
くするためには、摩擦係数(μ)の影響の少ない動摩擦
領域でしかも一定速度でナフトランナによるボルト・ナ
ットの締付を行なうことが好ましい訳であるが、従来の
トルク法によるボルト・ナット締付方法では、上記軸力
(F)と摩擦係数(μ)の関係を無視して最終締付トル
ク(T)を設定しているだけであるため、スナツグポイ
ントを過ぎたボルト締めの終期では回転数が順次減少し
て最終締付トルクに到達していた。詳しく説明すると、
従来方式ではナツトランナの駆動モータは一定の電圧で
駆動されて特に速度制御をしていないため、実締着トル
クが増大するとナンドランチの回転数は漸時減少する。
That is, as shown in Fig. 6, the friction coefficient is large in the static friction region where the rotation speed of the nut runner is low (usually 3 PPM or less), and the friction coefficient is small in the dynamic friction region where the rotation speed of the nut runner is high.From this viewpoint, the axial force (F ), it is preferable to tighten bolts and nuts with a naph runner at a constant speed in the dynamic friction region where the friction coefficient (μ) has little effect.・The nut tightening method simply sets the final tightening torque (T) while ignoring the relationship between the above-mentioned axial force (F) and friction coefficient (μ), so the bolt may not be tightened past the snug point. At the end of the process, the rotational speed decreased gradually and reached the final tightening torque. To explain in detail,
In the conventional system, the drive motor of the nut runner is driven with a constant voltage and the speed is not particularly controlled, so as the actual tightening torque increases, the number of rotations of the nut runner gradually decreases.

これをDCモータの直巻特性で、直巻モータや整流モー
タで速度制御していないモータは全てこのような特性を
示す、このように回転数の制御をしていないナツトラン
ナは回転数の変化が起り、この回転数の変化が摩擦係数
に影響を与え軸力のバラツキの原因となる。第6図に示
すように、ナフトランナの回転数が動摩擦領域と静摩擦
領域との境界付近迷子がると、摩擦係数(μ)の変化が
急に増大し、これによって軸力(F)に大きなバラツキ
が発生する。
This is the series-wound characteristic of a DC motor, and all motors whose speed is not controlled by a series-wound motor or a commutator motor exhibit this kind of characteristic.Natsurunners, which do not control the rotational speed in this way, do not change the rotational speed. This change in rotational speed affects the coefficient of friction and causes variations in the axial force. As shown in Fig. 6, when the rotational speed of the naph runner strays near the boundary between the dynamic friction region and the static friction region, the change in the friction coefficient (μ) suddenly increases, resulting in large variations in the axial force (F). occurs.

また、トルク−角度法ではスナツグポイントをトルクで
設定しているため、上記と同様な問題がある。
Furthermore, in the torque-angle method, since the snug point is set by torque, there is a problem similar to the above.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決手段として本発明は、ボルト・ナットの
最終締付状態を締付トルクで設定するナフトランナに於
いて、ナツトランナの回転速度を締付負荷の変動とは無
関係に一定速度に維持して締付けることを特徴とするボ
ルト・ナットの定速締付方法を提供するものである。
As a means for solving the above problems, the present invention provides a nap runner that sets the final tightening state of bolts and nuts using tightening torque, and maintains the rotation speed of the nut runner at a constant speed regardless of fluctuations in the tightening load. The present invention provides a constant speed tightening method for bolts and nuts.

〔作用〕[Effect]

ナフトランナの回転速度を、一定の速度に維持して締付
けることによって摩擦係数のバラツキの影響が少なくな
り、軸力の変動幅が従来法に比較して著減する。
By maintaining the rotational speed of the naph runner at a constant speed and tightening, the influence of variations in the friction coefficient is reduced, and the range of variation in axial force is significantly reduced compared to the conventional method.

〔実施例〕〔Example〕

第1図は本発明の実施態様を示す締付トルク・時間線図
、及び回転速度・時間線図である。
FIG. 1 is a tightening torque/time diagram and a rotational speed/time diagram showing an embodiment of the present invention.

また、第2図はナツトランナの定速駆動装置の一具体例
を示すブロック線図である。ナツトランナの定速駆動装
置は、第2図に例示するように、速度設定器(1)、比
較器(2)、速度偏差アンプ(3)、サーボアンプ(4
)、ナツトランナ駆動モータ(5)、及びパルス発生器
(6)を直列接続し、パルス発生器(6)と比較器(2
)の間にフィードバック回路(7〉を設けることによっ
て構成されている。
Further, FIG. 2 is a block diagram showing a specific example of a constant speed drive device for a nut runner. As illustrated in Fig. 2, the constant speed drive device of the Natsu runner consists of a speed setter (1), a comparator (2), a speed deviation amplifier (3), and a servo amplifier (4).
), nut runner drive motor (5), and pulse generator (6) are connected in series, and the pulse generator (6) and comparator (2) are connected in series.
) by providing a feedback circuit (7>) between them.

速度設定器(1)に図示しないナツトランナの回転数が
設定されており、この設定回転数は比較器(2)、速度
偏差アンプ(3)、サーボアンプ(4)を経由してナツ
トランナ駆動モータ(5)に送出される。パルス発生器
(6)からはナツトランナの実回転数に対応したパルス
信号が発信され、このパルス信号はフィードバック回路
(7)を経由して比較器(2〉に送出される。比較器(
2)でパルス信号は速度設定!(1)から送出された設
定回転数と比較され、この比較演算結果に基いて速度偏
差アンプ(3)及びサーボアンプ(4〉からす7トラン
ナ駆動モータ(5)の制御回路(5A)に回転数を補正
するための電圧又は電流の変換信号が送出される。速度
設定器(1)に設定するナツトランナの回転数は、ボル
ト・ナットに動摩擦領域で最終締付トルクが伝達され得
る範囲で出来る限り低速に(例えば10rp−程度に)
設定する、ナツトランナの回転数は第1図に示すように
ボルト・ナットの締付初期から締付終期迄略−定の値に
維持することも可能であるが、少なくともスナツグポイ
ント通過時から締付終期迄を定速回転状態を接続して締
付ける方が、全体の締付所要時間を短縮できる。要する
に、本発明は、ナツトランナの回転数を締付負荷の変動
とは無関係に一定速度に維持することによって、ネジ面
や座着面に於ける摩擦係数のバラツキの影響が排除され
、軸力変動の少ないボルト・ナット締付条件が確保され
る。
The rotation speed of the nut runner (not shown) is set in the speed setting device (1), and this set rotation speed is applied to the nut runner drive motor (not shown) via the comparator (2), speed deviation amplifier (3), and servo amplifier (4). 5). A pulse signal corresponding to the actual rotation speed of the nut runner is transmitted from the pulse generator (6), and this pulse signal is sent to the comparator (2>) via the feedback circuit (7).
2) Set the speed of the pulse signal! (1) is compared with the set rotation speed sent from A voltage or current conversion signal is sent to correct the number.The rotation speed of the nut runner set in the speed setting device (1) can be set within the range where the final tightening torque can be transmitted to the bolts and nuts in the dynamic friction region. As low as possible (e.g. around 10 rpm)
The rotation speed of the nut runner can be maintained at a constant value from the beginning of bolt/nut tightening to the end of tightening, as shown in Fig. The overall time required for tightening can be shortened by connecting and tightening in a constant speed rotation state until the end of tightening. In short, the present invention maintains the rotational speed of the nut runner at a constant speed regardless of fluctuations in the tightening load, thereby eliminating the influence of variations in the coefficient of friction on the threaded surfaces and seating surfaces, thereby eliminating fluctuations in axial force. This ensures bolt and nut tightening conditions with less friction.

〔発明の効果〕〔Effect of the invention〕

トルク法によってボルト・ナットを締付けるナツトラン
ナに本発明を採用すれば、軸力のバラツキが従来方法に
比較して著減し、精度の良いネジ締め作業が実施できる
If the present invention is applied to a nut runner that tightens bolts and nuts using the torque method, variations in axial force will be significantly reduced compared to conventional methods, and screw tightening work can be performed with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を示す締付トルク・時間線図
、及び回転速度・時間線図、第2図はす7トランナの定
速駆動装置の一具体例を示すブロック線図である。第3
図は従来法に於ける締付トルク・時間線図及び回転速度
・時間線図、第4図はトルク−角度法のトルク・角度線
図である。また、第5図は従来法に於ける軸力・締付ト
ルク線図、第6図は摩擦係数・回転数線図である。 (1) −速度設定器、  (2) −比較器、(3)
・−速度偏差アンプ、 (4)・−・サーボアンプ、 (5) −ナンドランナ駆動モータ、 (5A)−・−制御回路、 (6)・−・パルス発生器、 (7)−・フィードバック回路。 特 許 出 願 人 三洋機工株式会社 代 理 人 江 原 省 吾 第5 図 4にキー仝8亡 @顧り−
Fig. 1 is a tightening torque/time diagram and a rotational speed/time diagram showing an embodiment of the present invention, and Fig. 2 is a block diagram showing a specific example of a constant speed drive device for a Lotus 7 runner. . Third
The figures are a tightening torque/time diagram and a rotational speed/time diagram for the conventional method, and FIG. 4 is a torque/angle diagram for the torque-angle method. Moreover, FIG. 5 is an axial force/tightening torque diagram in the conventional method, and FIG. 6 is a friction coefficient/rotational speed diagram. (1) -Speed setter, (2) -Comparator, (3)
-Speed deviation amplifier, (4)--Servo amplifier, (5)--Nandrar runner drive motor, (5A)--Control circuit, (6)--Pulse generator, (7)--Feedback circuit. Patent Applicant Sanyo Kiko Co., Ltd. Agent Shogo Ebara No. 5 The key is shown in Figure 4.

Claims (1)

【特許請求の範囲】[Claims] (1)ボルト・ナットの最終締付状態を締付トルクで設
定するナットランナに於いて、ナットランナの回転速度
を締付負荷の変動とは無関係に一定速度に維持して締付
けることを特徴とするボルト・ナットの定速締付方法。
(1) In a nutrunner that sets the final tightening state of bolts and nuts using tightening torque, bolts are tightened while maintaining the rotational speed of the nutrunner at a constant speed regardless of fluctuations in the tightening load.・Constant speed tightening method of nuts.
JP17879689A 1989-07-10 1989-07-10 Constant speed fastening method for bolt-unit Pending JPH0343160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17879689A JPH0343160A (en) 1989-07-10 1989-07-10 Constant speed fastening method for bolt-unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17879689A JPH0343160A (en) 1989-07-10 1989-07-10 Constant speed fastening method for bolt-unit

Publications (1)

Publication Number Publication Date
JPH0343160A true JPH0343160A (en) 1991-02-25

Family

ID=16054798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17879689A Pending JPH0343160A (en) 1989-07-10 1989-07-10 Constant speed fastening method for bolt-unit

Country Status (1)

Country Link
JP (1) JPH0343160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8833329B2 (en) 2009-05-13 2014-09-16 Toyota Jidosha Kabushiki Kaisha Fastening structure of power unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150978A (en) * 1979-05-07 1980-11-25 Nitto Seiko Kk Screw clamping device
JPS58171271A (en) * 1982-03-30 1983-10-07 芝浦メカトロニクス株式会社 Bolt clamping apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150978A (en) * 1979-05-07 1980-11-25 Nitto Seiko Kk Screw clamping device
JPS58171271A (en) * 1982-03-30 1983-10-07 芝浦メカトロニクス株式会社 Bolt clamping apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8833329B2 (en) 2009-05-13 2014-09-16 Toyota Jidosha Kabushiki Kaisha Fastening structure of power unit

Similar Documents

Publication Publication Date Title
JP3452373B2 (en) Screw fastening device and screw fastening method
US5315501A (en) Power tool compensator for torque overshoot
US8089226B2 (en) Torque control device and method for controlling the same
JPH0596429A (en) Nut runner
US5215270A (en) Method for tightening a fastener
WO2012025820A1 (en) Impact tightening tool
US5152046A (en) Fastener tightening method
JPH0343160A (en) Constant speed fastening method for bolt-unit
US20060185146A1 (en) Pulse synchronized load stabilization for fastening torque recovery
JPH07308865A (en) Impact type thread fastening device
EP0271902A2 (en) Method of and apparatus for tightening screw-threaded fasteners
JPH03184775A (en) Method and device fastening threaded joint
JPH0536196B2 (en)
JPH0475879A (en) Motor driven screw driver
JP3707873B2 (en) Tightening device
JP3037288B1 (en) Bolt tightening torque control method
JPH0921712A (en) Method of forming screw bond
SE515974C2 (en) Method of biasing a joint containing two or more threaded fasteners
JPH1034555A (en) Method and device for controlling nut runner
JPH04201022A (en) Screw fastening by multi-nut runner
JPS5988265A (en) Method and device for clamping screw
JPH08281567A (en) Sinusoidal wave drive nut runner
JP2583469Y2 (en) Bolt tightening device
JPS6186142A (en) Screw fastening control
JP2658487B2 (en) Screw tightening method