JPH0340453A - High frequency high output transistor package - Google Patents
High frequency high output transistor packageInfo
- Publication number
- JPH0340453A JPH0340453A JP458190A JP458190A JPH0340453A JP H0340453 A JPH0340453 A JP H0340453A JP 458190 A JP458190 A JP 458190A JP 458190 A JP458190 A JP 458190A JP H0340453 A JPH0340453 A JP H0340453A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- copper
- semiconductor element
- package
- tungsten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 claims description 36
- 239000004065 semiconductor Substances 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 13
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 239000010937 tungsten Substances 0.000 claims description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- 238000005219 brazing Methods 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000011162 core material Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 8
- 239000007769 metal material Substances 0.000 description 7
- 229910052573 porcelain Inorganic materials 0.000 description 6
- 229910052790 beryllium Inorganic materials 0.000 description 5
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 229910000833 kovar Inorganic materials 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- WUUZKBJEUBFVMV-UHFFFAOYSA-N copper molybdenum Chemical compound [Cu].[Mo] WUUZKBJEUBFVMV-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 241000366880 Quadrans Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000973887 Takayama Species 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000004018 waxing Methods 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、高周波高出カドランシスターパッケージに関
するもので、更に詳しくは高周波高出カドランシスター
パッケージの半導体素子搭載部兼放熱板として、銅−タ
ングステンあるいは銅−モリブデンよりなる非合金組成
体を用いたものである。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a high-frequency, high-output quadrant sister package, and more specifically, the present invention relates to a high-frequency, high-output quadrant sister package, and more specifically, a copper-tungsten material is used as a semiconductor element mounting portion and a heat sink of a high-frequency, high-output quadrant sister package. Alternatively, a non-alloyed composition made of copper-molybdenum is used.
[従来の技術]
従来、半導体用セラミックパッケージはグリーンセラミ
ックシートに必要金属層をスクリーンプリント法により
印刷しこれを積層し焼結−体化して、このセラミック体
の金属層に必要な金属部材をろう付けにより取りつける
方法か、又はプレス法によってセラミック枠体を成形し
、これにメタライズを施して、このメタライズ部を介し
て金属部材とろう付性により接着しパッケージとしてき
た。[Conventional technology] Conventionally, ceramic packages for semiconductors have been produced by printing the necessary metal layers on green ceramic sheets using a screen printing method, laminating them and sintering them, and then waxing the necessary metal members for the metal layers of the ceramic body. A ceramic frame is formed by attaching by attaching or by pressing, metallized, and bonded to a metal member through the metallized portion to form a package.
しかし、積層パッケージの中でも、半導体素子を接着す
る部分、いわゆる半導体素子搭載部がセラミック上のメ
タライズ部によって構成されているパッケージでは、セ
ラミックを焼結−体化する際に起るシート自身の歪或い
は積層時の外的な力によって生ずる歪により半導体素子
搭載部のセラミックに反りや、うねりを生ずることがあ
るという欠点があり、半導体素子の接着強度が弱いとか
又半導体素子が水平に搭載されない等の欠点が生じ、半
導体素子搭載部の平坦ナパッケージを製作するためにす
でに特願昭5B−214141号として提案された発明
等がなされてきた。However, among laminated packages, in packages where the part to which the semiconductor element is bonded, the so-called semiconductor element mounting part, is composed of a metallized part on the ceramic, distortion of the sheet itself that occurs when the ceramic is sintered, or Distortion caused by external forces during lamination may cause warping or waviness in the ceramic of the semiconductor element mounting area, which may cause problems such as weak bonding strength of the semiconductor element or the semiconductor element not being mounted horizontally. Due to these drawbacks, an invention proposed in Japanese Patent Application No. 5B-214141 has already been made in order to manufacture a flat package for a semiconductor element mounting portion.
第2図は従来法による高周波高出カドランシスターパッ
ケージの要部断面図であり、セラミックと無酸素銅との
熱膨脹係数の差を吸収せしめる金属体としてコバールか
又は無酸素素鋼等によって形成された介在金属枠体3を
利用し、セラミック枠体lと無酸素銅製半導体素子搭載
部兼放熱板2の間に前記介在金属枠体3をろう付した構
成である。Figure 2 is a cross-sectional view of the main parts of a high-frequency, high-output quadratic sister package made by a conventional method.The metal body is made of Kovar or oxygen-free steel to absorb the difference in coefficient of thermal expansion between ceramic and oxygen-free copper. The structure is such that an intervening metal frame 3 is used and the intervening metal frame 3 is brazed between the ceramic frame l and the oxygen-free copper semiconductor element mounting portion/heat dissipation plate 2.
高周波トランジスターでは、その性質上発熱を伴うため
熱伝導性の良いベリリヤ磁器等を用いることもなされた
が、ベリリヤは毒性を有し、ベリリヤ磁器製造の際の労
働衛生上の問題や、それに続く公害問題等のために製造
する事業所が少くなり、又高価であるという欠点があっ
た。Because high-frequency transistors generate heat due to their nature, materials such as Beryllium porcelain, which has good thermal conductivity, have been used. However, Beryllium is toxic, causing occupational health problems during the production of Beryllium porcelain, and subsequent pollution. Due to these problems, the number of establishments that manufacture it has decreased, and it also has the disadvantage of being expensive.
更には高山カドランシスターでは多量の熱を発生するた
めに無酸素銅等の高熱伝導性金属を用いた放熱板を兼ね
た半導体素子搭載部材を取りつけて熱の放散を行わしめ
る構造としているが、使用する無酸素銅とセラミックと
の持つ膨脂係数の差が大きすぎるためろう付後セラミッ
クにクラック等が発生することがしばしばであった。Furthermore, since the Takayama Cadran Sister generates a large amount of heat, it has a structure in which a semiconductor element mounting member that doubles as a heat sink is made of a highly thermally conductive metal such as oxygen-free copper to dissipate the heat. Because the difference in coefficient of swelling between oxygen-free copper and ceramic is too large, cracks often occur in the ceramic after brazing.
又、このクラックの発生を防止するために商品名コバー
ルのようなセラミックと熱膨脹係数の近い金属をセラミ
ックと無酸素銅との間に介在させ、しかも該コバール部
材の形状に工夫をこらした形としてろう付するか又は無
酸素鋼の形状やセラミックの形状に工夫をこらして熱膨
脹率の差の解消に努力してきた。In addition, in order to prevent the occurrence of cracks, a metal such as the product name Kovar, which has a coefficient of thermal expansion similar to that of the ceramic, is interposed between the ceramic and the oxygen-free copper, and the shape of the Kovar member is devised. Efforts have been made to eliminate the difference in coefficient of thermal expansion by brazing or by devising the shape of oxygen-free steel or ceramic.
最近、技術の発展に伴って大型の素子を搭載するパッケ
ージが要求されるようになり、したがってパッケージ自
体も大型化され、セラミックの歪を僅少にとどめたり、
接合する半導体素子搭載部材との膨脹差を解消せしめた
りすることがますます困難さを増してきた。Recently, with the development of technology, there has been a demand for packages that can mount large-sized elements, and the packages themselves have also become larger.
It has become increasingly difficult to eliminate the difference in expansion between the semiconductor element mounting member and the semiconductor element mounting member to be bonded.
一方、シリコン素子と銅を主体とする端子板が接続され
る構造の半導体装置において、両者の中間に、胴中にタ
ングステン又はモリブデンを分散せしめて焼結してなる
電極を介在せしめた装置も知られている(特開昭50−
82776号公報参照)。On the other hand, in a semiconductor device having a structure in which a silicon element and a terminal plate mainly made of copper are connected, a device is also known in which an electrode made of sintered tungsten or molybdenum dispersed in the body is interposed between the two. (Japanese Unexamined Patent Application Publication No. 1973-
(See Publication No. 82776).
[発明が解決しようとする課題]
本発明は前記諸欠点、諸問題を一挙に解決するだけでな
く、大型化を可能にした高周波高出カドランシスターパ
ッケージを提供することを目的とする。又、用いる材質
については、特開昭50−82778号公報記載の技術
では、銅とタングステン又はモリブデンとの混和物が焼
結体であるため、熱膨脹係数、熱伝導率ともW(又はM
o)/Cuの複合剤があてはまらず、実質的には空孔が
存在するもので、メツキ性、気密性や熱伝導性等の基板
に要求される特性の点で問題がある。本発明では、W(
又はMo)/Cuの複合材料におけるこの点の問題も解
決するものである。[Problems to be Solved by the Invention] An object of the present invention is to not only solve the above-mentioned drawbacks and problems all at once, but also to provide a high-frequency, high-output quadrant sister package that can be made larger. Regarding the material used, in the technique described in JP-A-50-82778, since a mixture of copper and tungsten or molybdenum is a sintered body, both the coefficient of thermal expansion and the thermal conductivity are W (or M).
o)/Cu composite is not applicable, and there are substantially pores, which poses problems in terms of properties required of the substrate, such as plating properties, airtightness, and thermal conductivity. In the present invention, W(
This also solves this problem in Mo)/Cu composite materials.
[課題を解決するための手段]
本発明は、セラミック枠体と、w、量%で99〜70%
のタングステン又はモリブデン多孔体を芯材としてこれ
に 1〜30%の銅を溶融して充填してなる非合金組成
体からなる半導体素子搭載部兼放熱板とが、ろう付けに
より直接接合された構造である高周波高出カドランシス
ターパッケージである。[Means for Solving the Problems] The present invention provides a ceramic frame and a w ratio of 99 to 70% by weight.
A structure in which a semiconductor element mounting part and a heat dissipation plate made of a non-alloy composition made of a core material of tungsten or molybdenum porous material and filled with 1 to 30% copper by melting are directly joined by brazing. It is a high frequency, high output quadrant sister package.
本発明で使用する非合金組成体は、上記のとおりタング
ステン又はモリブテン多孔体を芯材として、それに鋼材
を溶融して充填せしめた複合材料である。これは溶浸法
と呼ばれる方法であって、この方法によると、毛細管現
象によりタングステン又はモリブデンの多孔体の空隙率
は、溶融した銅によりほぼ完全に充填されるので、非合
金組成体の密度は実質100%になる。As described above, the non-alloy composition used in the present invention is a composite material in which a tungsten or molybdenum porous body is used as a core material and steel is melted and filled therein. This is a method called the infiltration method, and according to this method, the porosity of the tungsten or molybdenum porous body is almost completely filled with molten copper due to capillarity, so the density of the non-alloyed composition is reduced. Actually it becomes 100%.
前記材料の持つ特性のうち熱膨脹係数及び熱伝導率を第
1表で銅−タングステン組戊体について、第2表で銅−
モリブデン組成体について示した。Among the properties of the above materials, the coefficient of thermal expansion and thermal conductivity are shown in Table 1 for the copper-tungsten assembly, and in Table 2 for the copper-tungsten assembly.
The molybdenum composition is shown below.
第1表
第2表
第1表及び第2表から明らかなように、銅−タングステ
ン、銅−モリブデン組成体は、銅の含有量の比較的少い
領域においてはセラミックの持つ熱膨脹係数50〜75
X10−7に適合する熱膨脹係数を有し、しかもその値
はW(又はMo)/ Cuの複合剤に基づく理論値とほ
ぼ一致するため、銅含有率を変えることによって任意に
必要とする熱膨脹係数を有する複合金属材料を得ること
ができる。したがって現在使用されている金属よりも熱
膨脹係数がセラミックのそれに適合する金属材料を得る
ことができる。As is clear from Tables 1 and 2, copper-tungsten and copper-molybdenum compositions have a thermal expansion coefficient of 50 to 75, which is the same as that of ceramics, in areas where the copper content is relatively low.
It has a thermal expansion coefficient that conforms to A composite metal material having the following properties can be obtained. Therefore, it is possible to obtain a metal material whose thermal expansion coefficient matches that of ceramics better than currently used metals.
そして、又、セラミックと対応する熱膨脹係数を有する
組成体はコバール金属やセラミックより1桁上の熱伝導
率を有し、セラミック中で最も熱伝導率が大きいといわ
れているベリリヤ磁器の有する熱膨脹係数(76X 1
0”7 ’)に近い熱膨脹係数を有する組成体では、ベ
リリヤ磁器よりはるかに大きい熱伝導率を有している金
属材料である。Furthermore, a composition with a coefficient of thermal expansion corresponding to that of ceramic has a thermal conductivity one order of magnitude higher than that of Kovar metal or ceramic, and the coefficient of thermal expansion of Beryliya porcelain, which is said to have the highest thermal conductivity among ceramics. (76X 1
For compositions with a coefficient of thermal expansion close to 0"7'), it is a metallic material with a much greater thermal conductivity than Beryllium porcelain.
モして又、セラミックと対応する熱膨脹係数を有する組
成体はコバール金属やセラミックより1桁上の熱伝導率
を有し、セラミック中で最も熱伝導率が大きいといわれ
ているベリリヤ磁器の有する熱膨脹係数(76X10’
)に近い熱膨脹係数を有する組成体では、ベリリヤ磁器
よりはるかに大きい熱伝導率を有している金属材料であ
る。Furthermore, a composition with a coefficient of thermal expansion corresponding to that of ceramic has a thermal conductivity one order of magnitude higher than that of Kovar metal or ceramic, and the thermal expansion of Beryliya porcelain, which is said to have the highest thermal conductivity among ceramics. Coefficient (76X10'
) is a metallic material with a thermal conductivity much greater than Beryllium porcelain.
[実施例]
第1図は本願発明を利用した改良型高周波高山カドラン
シスターパッケージの要部断面図である。第1図におい
てセラミック枠体11を常法のシート積層法により形成
し焼結一体化せしめる、他方半導体素子搭載部兼放熱板
王2を溶浸法により形成した銅25%、タングステン7
5%の組成体及び銅35%、タングステン65%の組成
体により夫々形成し、ニッケルメツキ2μ前後を施し、
前記部材12の中央付近凹部に前記セラミック枠体11
を!を置してろう付性により接合せしめる。このろう付
の際に、リード等必要な金属(図示せず)を同時にろう
付することができる。[Example] FIG. 1 is a sectional view of a main part of an improved high frequency alpine quadran sister package using the present invention. In FIG. 1, a ceramic frame 11 is formed by a conventional sheet lamination method and sintered into one piece, while a semiconductor element mounting portion/heat dissipation plate king 2 is formed by an infiltration method using 25% copper and 7% tungsten.
5% composition, 35% copper, and 65% tungsten, respectively, and applied nickel plating of about 2μ,
The ceramic frame 11 is placed in a recess near the center of the member 12.
of! are placed and joined by brazing properties. During this brazing, necessary metals (not shown) such as leads can be brazed at the same time.
その後必要部分にニッケル又は金等のメツキを施す。こ
れらパッケージのうち、銅35%、タングステン65%
よりなる組成体を使用した場合はセラミックにクラック
が入り、そのセラミックの一部は後日剥離するという現
象を生じた。銅25%、タングステン75%のものは第
2図3に示したごとき介在物を置く構造にせずセラミッ
クと直接ろう付しても前記のようなりラック及1?剥離
現象を生ぜず所定テストに合格した。After that, the necessary parts are plated with nickel or gold. Of these packages, 35% copper and 65% tungsten
When a composition consisting of the following was used, cracks appeared in the ceramic, and a portion of the ceramic peeled off at a later date. Even if the one with 25% copper and 75% tungsten is brazed directly to the ceramic without any inclusions as shown in Fig. 2, the result will be the rack and 1? The specified test was passed without any peeling phenomenon.
なお、本実施例ではシート積層法を利用したセラミック
枠体を使用したが、プレス法によって製作されたセラミ
ック枠体についても同様な好結果が得られている。In this example, a ceramic frame using a sheet lamination method was used, but similar good results have been obtained with a ceramic frame manufactured by a pressing method.
[発明の効果]
以上詳細に説明したごとく、本発明はセラミック材料に
金属材料を半導体素子搭載部材として取りつけたセラミ
ックパッケージであって、用いる金属材料の持つ熱膨脹
係数がセラミック例えばムライトなどにも適合している
ため、この金属材料をセラミック部と容易に置き換える
ことができ反りや歪のない平坦な半導体搭載部を持つパ
ッケージをつくり出せるし、したがって大型化も容易で
ある。更には熱伝導率が大きいため放熱部材として用い
ることもでき大容量化された半導体素子にも高い熱放散
を必要とするパッケージにも最適であり、又本金属材料
にメツキ層を形成することにより直接半導体装置を接着
できるためパッケージの部品点数を減らしたり形状をシ
ンプルにしたりすることができ今後の高周波高出カドラ
ンシスターパッケージとして必須のものとなるものであ
る。[Effects of the Invention] As explained in detail above, the present invention is a ceramic package in which a metal material is attached to a ceramic material as a semiconductor element mounting member, and the thermal expansion coefficient of the metal material used is compatible with ceramics such as mullite. Therefore, this metal material can be easily replaced with a ceramic part, making it possible to create a package with a flat semiconductor mounting part without warping or distortion, and therefore making it easy to increase the size. Furthermore, due to its high thermal conductivity, it can be used as a heat dissipation member, making it ideal for large-capacity semiconductor devices and packages that require high heat dissipation. Since semiconductor devices can be directly bonded, the number of package parts can be reduced and the package can be simplified, making it essential for future high-frequency, high-output quadrant sister packages.
第1図は本発明の実施例の高周波高出カドランシスター
パッケージの要部断面図、第2図は従来技術による高周
波高出カドランシスターパッケージの要部断面図である
。
1・・・セラミック枠体、
2・・・無酸素銅製半導体素子搭載部兼放熱板、3・・
・介在金属枠体、11・・・セラミック枠体、12・・
・半導体素子搭載部兼放熱板。FIG. 1 is a sectional view of a main part of a high frequency, high output quadrant sister package according to an embodiment of the present invention, and FIG. 2 is a sectional view of a main part of a high frequency, high output quadrant sister package according to the prior art. 1... Ceramic frame body, 2... Oxygen-free copper semiconductor element mounting part and heat sink, 3...
- Intervening metal frame, 11...Ceramic frame, 12...
・Semiconductor element mounting part and heat sink.
Claims (1)
ン又はモリブデン多孔体を芯材としてこれに1〜30%
の銅を溶融して充填してなる非合金組成体からなる半導
体素子搭載部兼放熱板とが、ろう付けにより直接接合さ
れた構造であることを特徴とする高周波高出力トランジ
スターパッケージ。Ceramic frame and 99-70% by weight tungsten or molybdenum porous body as a core material and 1-30% by weight.
A high-frequency, high-output transistor package characterized in that a semiconductor element mounting portion and a heat sink made of a non-alloy composition made of melted and filled copper are directly joined by brazing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP458190A JPH0340453A (en) | 1990-01-16 | 1990-01-16 | High frequency high output transistor package |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP458190A JPH0340453A (en) | 1990-01-16 | 1990-01-16 | High frequency high output transistor package |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57157684A Division JPS5946050A (en) | 1982-09-09 | 1982-09-09 | Ceramic package for semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0340453A true JPH0340453A (en) | 1991-02-21 |
JPH0465544B2 JPH0465544B2 (en) | 1992-10-20 |
Family
ID=11588006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP458190A Granted JPH0340453A (en) | 1990-01-16 | 1990-01-16 | High frequency high output transistor package |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0340453A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0773739A (en) * | 1993-09-03 | 1995-03-17 | Nippon Kokuen Kogyo Kk | Flexible circuit board and its manufacture |
US9192762B2 (en) | 2011-09-20 | 2015-11-24 | Braun Gmbh | Therapeutic micro-current delivery devices and methods thereof |
CN106876357A (en) * | 2017-01-24 | 2017-06-20 | 东莞市阿甘半导体有限公司 | Electrode for chip package and the chip-packaging structure using the electrode |
-
1990
- 1990-01-16 JP JP458190A patent/JPH0340453A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0773739A (en) * | 1993-09-03 | 1995-03-17 | Nippon Kokuen Kogyo Kk | Flexible circuit board and its manufacture |
US9192762B2 (en) | 2011-09-20 | 2015-11-24 | Braun Gmbh | Therapeutic micro-current delivery devices and methods thereof |
CN106876357A (en) * | 2017-01-24 | 2017-06-20 | 东莞市阿甘半导体有限公司 | Electrode for chip package and the chip-packaging structure using the electrode |
Also Published As
Publication number | Publication date |
---|---|
JPH0465544B2 (en) | 1992-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5050040A (en) | Composite material, a heat-dissipating member using the material in a circuit system, the circuit system | |
JPH0261539B2 (en) | ||
JPS6327860B2 (en) | ||
US20030131476A1 (en) | Heat conduits and terminal radiator for microcircuit packaging and manufacturing process | |
JPH04152642A (en) | adhesive paste | |
JPH0340453A (en) | High frequency high output transistor package | |
US11417575B2 (en) | Board and semiconductor apparatus | |
JPH0613494A (en) | Substrate for semiconductor device | |
JPH04348062A (en) | Manufacturing method of heat dissipation substrate for semiconductor mounting and semiconductor package using the substrate | |
JPH0348448A (en) | Ccd package | |
JP2517024B2 (en) | Ceramic package and its manufacturing method | |
JP4454164B2 (en) | Package for storing semiconductor elements | |
JPH0997865A (en) | Radiation part | |
JPH0340455A (en) | Ceramic chip carrier | |
KR102671539B1 (en) | Electronic component modules, and silicon nitride circuit boards | |
JPH0340454A (en) | Pin grid array package | |
JP2012064616A (en) | Storage package for high heat radiation type electronic component | |
JPH0786444A (en) | Method for manufacturing composite heat dissipation substrate for semiconductor | |
JP2001284509A (en) | Al-SiC COMPOSITE BODY | |
JPH05211248A (en) | Composite heat dissipation substrate for mounting on semiconductor and method for manufacturing the same | |
JP2525232B2 (en) | Ceramic package and method of manufacturing the same | |
JP3850312B2 (en) | Semiconductor element storage package and semiconductor device | |
JPH0255271A (en) | Bond structure consisting of aluminum nitride substrate and metallic plate | |
JPH02146748A (en) | Semiconductor container | |
JP2000349098A (en) | Joint of ceramic substrate and semiconductor element and method of manufacturing the same |