JPH0339484A - Formation of insulating film on grain-oriented magnetic steel sheet excellent in workability of iron core and heat resistance - Google Patents
Formation of insulating film on grain-oriented magnetic steel sheet excellent in workability of iron core and heat resistanceInfo
- Publication number
- JPH0339484A JPH0339484A JP1173180A JP17318089A JPH0339484A JP H0339484 A JPH0339484 A JP H0339484A JP 1173180 A JP1173180 A JP 1173180A JP 17318089 A JP17318089 A JP 17318089A JP H0339484 A JPH0339484 A JP H0339484A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- annealing
- colloidal silica
- grain
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 15
- 229910000831 Steel Inorganic materials 0.000 title abstract description 17
- 239000010959 steel Substances 0.000 title abstract description 17
- 230000015572 biosynthetic process Effects 0.000 title description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000008119 colloidal silica Substances 0.000 claims abstract description 34
- 238000000137 annealing Methods 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 28
- 239000011248 coating agent Substances 0.000 claims abstract description 25
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 17
- 235000021317 phosphate Nutrition 0.000 claims abstract description 17
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000007787 solid Substances 0.000 claims abstract description 10
- 229910000976 Electrical steel Inorganic materials 0.000 claims abstract description 7
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims abstract description 7
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims abstract description 7
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 24
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000005098 hot rolling Methods 0.000 claims description 2
- 238000005097 cold rolling Methods 0.000 abstract description 3
- 238000005187 foaming Methods 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 13
- 239000011162 core material Substances 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 10
- 239000010452 phosphate Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000009413 insulation Methods 0.000 description 8
- 239000011362 coarse particle Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000005261 decarburization Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- -1 one or more of kl Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/74—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/24—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
- C23C22/33—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、方向性電磁鋼板の絶縁皮膜形成方法に係わり
、特に鋼板表面皮膜のすべり性と耐熱性が良好で、変圧
器製造における鉄心の加工性が優れているとともに変圧
器製品の磁気特性を良好ならしめる方向性電磁鋼板の絶
縁皮膜形成方法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for forming an insulating film on a grain-oriented electrical steel sheet. The present invention relates to a method for forming an insulating film on a grain-oriented electrical steel sheet that has excellent workability and improves the magnetic properties of transformer products.
(従来の技術)
方向性電磁鋼板は、Siを、たとえば2〜4%含有する
珪素鋼スラブを熱間圧延し、焼鈍した後、1回或は中間
焼鈍を挟む2回以上の冷間圧延を施して最終板厚とし、
次いで脱炭焼鈍した後MgOを主成分とする焼鈍分離剤
を塗布し、最終仕上焼鈍を施してゴス方位をもつ2次再
結晶粒を発達させ、さらにS、N等の不純物を除去する
とともにグラス皮膜を形成し、次いで絶縁皮膜用のコー
テイング液を塗布し、焼付は処理を施して絶縁皮膜を形
威して最終製品とするプロセスによって製造される。(Prior Art) Grain-oriented electrical steel sheets are produced by hot rolling a silicon steel slab containing, for example, 2 to 4% Si, annealing it, and then cold rolling it once or twice or more with intermediate annealing in between. to obtain the final plate thickness.
Next, after decarburization annealing, an annealing separator containing MgO as the main component is applied, and final annealing is performed to develop secondary recrystallized grains with Goss orientation. Furthermore, impurities such as S and N are removed, and glass It is manufactured by a process in which a film is formed, then a coating liquid for the insulation film is applied, and a baking process is performed to form the insulation film into a final product.
こうして得られる方向性電磁鋼板は、主として電気機器
、トランス等の鉄心材料として使用され、磁束密度が高
く鉄損値が低いものであることが要請される。The grain-oriented electrical steel sheets obtained in this way are mainly used as iron core materials for electrical equipment, transformers, etc., and are required to have high magnetic flux density and low iron loss values.
一方、方向性1を磁鋼板がトランスの鉄心として用いら
れる場合、方向性電磁鋼板のフープは連続的に巻き解か
れながら剪断機で所定長さに切断された後、鉄心加工機
によって順次巻き重ね或は積み重ねられて巻鉄心や積み
鉄心とされる。巻鉄心の場合には圧縮成型、歪取焼鈍を
経てレーシングと呼ばれる巻線作業を行ってトランスと
される。On the other hand, when a magnetic steel sheet with orientation 1 is used as the core of a transformer, the hoop of the grain-oriented magnetic steel sheet is continuously unwound and cut into a predetermined length with a shearing machine, and then sequentially wound and rolled up with a core processing machine. Alternatively, they may be stacked to form wound cores or stacked cores. In the case of wound cores, they are made into transformers by compression molding, strain relief annealing, and winding work called lacing.
この鉄心製造過程においては、たとえば巻鉄心の場合、
巻加工、成型作業が円滑に行え、成型後の鋼板端面やラ
ップ部に凹凸を生ぜず、形状が優れていることならびに
、鋼板表面の潤滑性が良好であることが必要である。In this core manufacturing process, for example, in the case of a wound core,
It is necessary that the winding and forming operations can be carried out smoothly, that the end face of the steel sheet or the lap portion after forming has no unevenness, that the shape is excellent, and that the surface of the steel sheet has good lubricity.
また、歪取焼鈍時に鋼板の表面皮膜相互間で焼付きがな
く、レーシング作業がスムーズに行えることが、鉄心加
工能率の向上或は焼付きによる歪の誘起や皮膜性能の劣
化を防止するという観点から重要である。これらの問題
に対しては、方向性電磁鋼板表面の絶縁皮膜の性状が大
きく影響する処から、歪取焼鈍時に鋼板の表面皮膜相互
間で焼付きがなく、レーシング作業がスムーズに行える
絶縁皮膜を開発することが、加工性の観点からのみなら
ず、トランスの磁気特性を向上せしめる上からも強く望
まれている。In addition, the fact that there is no seizure between the surface coatings of the steel sheets during strain relief annealing, and the lacing work can be performed smoothly, improves core processing efficiency and prevents the induction of distortion and deterioration of coating performance due to seizure. It is important because To solve these problems, since the properties of the insulation coating on the surface of grain-oriented electrical steel sheets have a large effect, we developed an insulation coating that does not cause seizure between the surface coatings of the steel sheet during strain relief annealing and allows smooth racing work. The development of such a material is strongly desired not only from the viewpoint of processability but also from the standpoint of improving the magnetic properties of transformers.
このようなトランス鉄心加工性を向上させるための手段
として、絶縁皮膜形成時の塗布剤の改良がなされている
。特開昭61−4773号公報には、コーティング剤と
して第1燐酸塩に粒子径8mμ以下の超微粒子コロイド
状シリカ、クロム酸、クロム酸塩の1種または2種以上
からなる混合液を仕上焼鈍後の鋼板(ストリップ)に塗
布し、焼付は処理することにより、鋼板表面に形成する
絶縁皮膜のすべり性を改善する技術が開示されている。As a means to improve the workability of such transformer cores, improvements have been made to the coating agents used when forming the insulation film. JP-A No. 61-4773 discloses that a mixture of one or more of primary phosphate, ultrafine colloidal silica with a particle diameter of 8 mμ or less, chromic acid, and chromate is used as a coating agent for finishing annealing. A technique has been disclosed that improves the slipperiness of an insulating film formed on the surface of a steel plate by applying it to a subsequent steel plate (strip) and treating the baking process.
近年、これらの絶縁皮膜の改善によって、方向性電磁鋼
板の鉄損、磁気歪み、絶縁特性とともに皮膜潤滑性が改
善されてきており、それなりの効果が得られている。In recent years, improvements in these insulating films have improved the iron loss, magnetostriction, and insulation properties of grain-oriented electrical steel sheets, as well as the film lubricity, and some effects have been obtained.
しかし、方向性電磁鋼板を用いてトランス等を製造する
メーカーにおいては、鉄心に加工する際の加工成型機の
自動化や高速化が進み、前記改善された絶縁皮膜用コー
ティング剤を以てする以上に加工上のトラブルの排除や
磁気特性面で一層改善された絶縁皮膜が望まれている実
情にある。However, manufacturers who manufacture transformers and other products using grain-oriented electrical steel sheets are increasingly automating and speeding up the processing and forming machines used to process them into iron cores, making processing easier than using the improved insulating film coating agent mentioned above. The current situation is that there is a demand for an insulating film that eliminates the troubles associated with magnetic fields and has further improved magnetic properties.
(発明が解決しようとする課題)
本発明は、方向性電磁鋼板表面の絶縁皮膜のすべり性な
らびに、歪取焼鈍を行う際の耐熱性が良好で、鉄心の加
工性が優れた方向性型m鋼板の絶縁皮膜形成方法を提供
することを目的としてなされた。(Problems to be Solved by the Invention) The present invention provides a oriented type magnetic steel plate which has good slip properties of an insulating film on the surface of a grain-oriented electrical steel sheet, good heat resistance during strain relief annealing, and excellent workability of an iron core. The purpose was to provide a method for forming an insulating film on steel plates.
(課題を解決するための手段)
本発明の要旨とする処は、珪素鋼スラブを熱間圧延し焼
鈍した後、1回或は中間焼鈍を挟む2回以上の冷間圧延
を行って最終板厚とし、この材料を脱炭焼鈍し焼鈍分離
剤を塗布した後最終仕上焼鈍を施し、次いで絶縁皮膜形
成用塗布剤を塗布し焼付は処理した後ヒートフラットニ
ングを施す方向性電磁鋼板の製造方法において、20m
−以下の粒子径を有するコロイド状シリカが固形分重量
で50〜95%、80〜2000murrtの粒子径を
有するコロイド状シリカが固形分重量で5〜50%から
なるコロイド溶液1001(1部(SiO2とじて)に
対し、AL Mgl Ca、 Znの燐酸塩の1種また
は2種以上を130〜250重量部、無水クロム酸、ク
ロム酸塩、重クロム酸塩の1種または2種以上を10〜
40重量部加えた絶縁皮膜形成用塗布剤を塗布し焼付は
処理することを特徴とする鉄心の加工性および耐熱性の
優れる方向性電磁鋼板の絶縁皮膜形成方法にある。(Means for Solving the Problems) The gist of the present invention is to hot-roll a silicon steel slab and annealing it, then cold-roll it once or twice or more with intermediate annealing in between to form a final plate. A method for producing a grain-oriented electrical steel sheet, in which the material is decarburized, annealed for decarburization, coated with an annealing separator, then final annealed, coated with a coating agent for forming an insulating film, baked, and then heat flattened. 20m at
- Colloidal solution 1001 (1 part (SiO2 130 to 250 parts by weight of one or more phosphates of AL Mgl Ca, Zn, and 10 to 250 parts by weight of one or more of chromic anhydride, chromate, and dichromate.
A method for forming an insulating film on a grain-oriented electrical steel sheet having excellent workability and heat resistance of an iron core, which comprises applying an insulating film-forming coating agent containing 40 parts by weight and performing baking.
以下に、本発明の詳細な説明する。The present invention will be explained in detail below.
発明者等は、上記課題を解決すべく、方向性電磁鋼板の
絶縁皮膜形成方法について種々検討した。In order to solve the above problems, the inventors have conducted various studies on methods of forming an insulating film on grain-oriented electrical steel sheets.
その結果、絶縁皮膜形成用塗布剤の塗布、焼付は処理の
過程において、絶縁皮膜形成用塗布剤におけるコロイド
状シリカの粒径をコントロールすることにより著しく絶
縁皮膜の潤滑性(すべり性)が向上しさらに、歪取焼鈍
時のスティッキングと呼ばれる皮膜の焼付き現象を大幅
に改善できることを見出した。As a result, by controlling the particle size of colloidal silica in the coating agent for forming an insulation film during the coating and baking process, the lubricity (slip property) of the insulation film can be significantly improved. Furthermore, it has been found that the phenomenon of film sticking, which occurs during stress relief annealing, can be significantly improved.
以下、実験データに基づき、本発明をさらに詳細に説明
する。Hereinafter, the present invention will be explained in more detail based on experimental data.
公知の方法で製造した板厚0.23mmの方向性電磁鋼
板の最終仕上焼鈍後のストリップコイルからサンプルを
切り出し、850℃X 4 hrsの歪取焼鈍を施して
コイルセットを除去した後、2%ToSOiで80″C
×10秒間の軽酸洗を施したものをサンプルとした。こ
のサンプルに対し、第1表に示すように、80m5以上
の粗大な粒径を有するコロイド状シリカを15mll1
1の粒径を有する微粒コロイド状シリカに配合した溶液
をベースとした絶縁皮膜形成用塗布剤を、焼付は処理後
に 4.5g/m2となるように塗布しN2雰囲気中で
850℃×30秒間の焼付は処理を施した。A sample was cut from a strip coil after final finish annealing of a grain-oriented electrical steel sheet with a thickness of 0.23 mm manufactured by a known method, and strain relief annealing was performed at 850°C for 4 hrs to remove the coil set. 80″C at ToSOi
The sample was subjected to light pickling for 10 seconds. For this sample, as shown in Table 1, 15ml1 of colloidal silica having a coarse particle size of 80m5 or more was added.
A coating agent for forming an insulating film based on a solution mixed with fine colloidal silica having a particle size of 1 is applied at a coating density of 4.5 g/m2 after baking, and baked at 850°C for 30 seconds in a N2 atmosphere. The burning has been treated.
こうして得られた製品板から試料を切り出し、第1図に
示す方法(A法)で絶縁皮膜のすべり摩擦係数(FF値
)を測定した。即ち、挟み板1−1.1−2間に試料2
を置き、重錘3にて荷重を加え、試料2を引き出すカビ
をバネ計り4で測定し、すべり摩擦係数μを、μ(FF
)−F’により求めた。A sample was cut out from the product board thus obtained, and the sliding friction coefficient (FF value) of the insulating film was measured by the method shown in FIG. 1 (Method A). That is, the sample 2 is placed between the sandwich plates 1-1 and 1-2.
, apply a load with a weight 3, pull out the sample 2, measure the mold with a spring weigher 4, and calculate the sliding friction coefficient μ as μ(FF
)-F'.
さらに、絶縁皮膜上を一定荷重を加えた鋼球をすべらせ
、そのときの鋼球が絶縁皮膜表面から受ける抵抗値を測
定した(B法)。Furthermore, a steel ball with a constant load was slid on the insulating film, and the resistance value that the steel ball received from the surface of the insulating film was measured (Method B).
また、別に切り出した3CIX4C11の板を積層し、
これを80Kg/c+s”の締付は圧力で結束してN2
雰囲気中で850℃X 4 hrsの歪取焼鈍を施し、
第2図に示す方法によって鋼板の剥離荷重を測定し、ス
ティッキング性について調査を行った。In addition, separately cut out 3CIX4C11 boards were stacked,
To tighten this to 80Kg/c+s, bind it with pressure and use N2
Strain relief annealing was performed at 850°C for 4 hrs in an atmosphere.
The peeling load of the steel plate was measured by the method shown in FIG. 2, and the sticking property was investigated.
結果を、第1表に示す。The results are shown in Table 1.
第1表に示すように、粒径15mQのコロイド状シリカ
に80〜10100Oのコロイド状シリカを重量で10
%配合した本発明の絶縁皮膜形成剤を塗布し焼付は処理
したものは、何れもA法によるFF値、B法による潤滑
性および歪取焼鈍時の耐ステイツキング性の何れにおい
ても著しい向上が見られた。As shown in Table 1, colloidal silica of 80 to 10100O was added to colloidal silica of particle size 15 mQ by weight.
% compounded insulating film forming agent of the present invention and treated with baking, there was a significant improvement in both the FF value by method A, the lubricity by method B, and the staking resistance during strain relief annealing. It was seen.
次に、本発明における絶縁皮膜形成方法について述べる
。Next, a method for forming an insulating film according to the present invention will be described.
本発明においては、絶縁皮膜形成用塗布剤として、20
m、n以下の粒子径を有するコロイド状シリカが固形分
重量で50〜95%、80〜2000 m trmの粒
子径を有するコロイド状シリカが固形分重量で5〜50
%からなるコロイド溶液を5iOzとして100重量部
に対し、AZ、Mg 、 Ca、 Znの燐酸塩の1種
または2種以上を130〜250重量部、無水クロム酸
、クロム酸塩、重クロム酸塩の1種または2種以上を1
0〜40重量部加えた絶縁皮膜形成用塗布剤を塗布し焼
付は処理する。In the present invention, as a coating agent for forming an insulating film, 20
Colloidal silica with a particle size of m, n or less is 50 to 95% by solid weight, and colloidal silica with a particle size of 80 to 2000 m trm is 5 to 50% by solid weight.
100 parts by weight of a colloidal solution consisting of 5iOz, 130 to 250 parts by weight of one or more phosphates of AZ, Mg, Ca, Zn, chromic anhydride, chromate, dichromate. 1 type or 2 or more types of
A coating agent for forming an insulating film is applied in an amount of 0 to 40 parts by weight, and baking is performed.
本発明を実施するに際しては、20m−以下の粒子径を
有するコロイド状シリカが固形分重量で50〜95%、
80〜2000mn1の粒子径を有するコロイド状シリ
カが固形分重量で5〜50%からなるコロイド溶液を得
るのに、粒度分布を上記規定を満足する範囲で有する1
種類のコロイド溶液を準備してもよいし或は、粒子径を
均一に調整した2種類以上のコロイド状シリカを混合し
て上記規定を満足せしめるようにしてもよい。When carrying out the present invention, colloidal silica having a particle size of 20 m or less is 50 to 95% by solid weight,
In order to obtain a colloidal solution consisting of 5 to 50% solid content of colloidal silica having a particle size of 80 to 2000 mn1, a particle size distribution of 1 which satisfies the above regulations is required.
Different types of colloidal solutions may be prepared, or two or more types of colloidal silica having uniform particle sizes may be mixed to satisfy the above requirements.
次に、本発明における諸条件の限定理由を説明する。Next, the reasons for limiting the conditions in the present invention will be explained.
本発明においては、絶縁皮膜形成用塗布剤の塗布、焼付
は処理の段階で、絶縁皮膜形成用塗布剤として、20m
n以下の粒子径を有するコロイド状シリカが固形分重量
で50〜95%、80〜2000m−の粒子径を有する
コロイド状シリカが固形分重量で5〜50%からなるコ
ロイド溶液をStowとして100重量部に対し、’+
F’g+ Ca。In the present invention, the application and baking of the coating agent for forming an insulating film is carried out at the processing stage, and the coating agent for forming an insulating film is
A colloidal solution consisting of 50 to 95% by solid weight of colloidal silica having a particle size of n or less and 5 to 50% by weight of solid content of colloidal silica having a particle size of 80 to 2000 m is 100 weight as Stow. '+
F'g+ Ca.
Znの燐酸塩の1種または2種以上を130〜250重
量部、無水クロム酸、クロム酸塩、重クロム酸塩の1種
または2種以上を10〜40重量部加えたものを用いる
ようにしている。Use a mixture containing 130 to 250 parts by weight of one or more Zn phosphates and 10 to 40 parts by weight of one or more of chromic anhydride, chromate, and dichromate. ing.
このように、微粒子のコロイド状シリカ中に粗粒子のコ
ロイド状シリカを適当量配合し分散させることがポイン
トである。Thus, the key is to mix and disperse an appropriate amount of coarse particles of colloidal silica into fine particles of colloidal silica.
20mfa以下の粒子径を有するコロイド状シリカが固
形分重量で50〜95%、80〜2000 m pmの
粒子径を有するコロイド状シリカが固形分重量で5〜5
0%の範囲で絶縁皮膜における著しいすべり性改善効果
が現れる。ベースとなる微粒子のコロイド状シリカは、
20mn以下の粒子径であることが重要であり、20m
nを超えると絶縁皮膜の基本的な特性である鉄損、磁歪
の改善効果を小さくしたり、皮膜の不透明化を生じ外観
を損なう等の問題を惹起するとともに、全体の粒子径が
粗くなることにより、逆に皮膜のすべり性も劣化してく
る。Colloidal silica with a particle size of 20 mfa or less is 50-95% by solid weight, and colloidal silica with a particle size of 80-2000 mpm is 5-5% by solid weight.
In the range of 0%, a remarkable effect of improving the slipperiness of the insulating film appears. The base fine particle colloidal silica is
It is important that the particle size is 20 m or less;
If it exceeds n, the effect of improving iron loss and magnetostriction, which are the basic characteristics of an insulating film, will be reduced, the film will become opaque, and the appearance will be impaired, and other problems will occur, as well as the overall particle size will become coarser. On the contrary, the slipperiness of the film deteriorates.
微粒子のコロイド状シリカに対し配合される粗粒子のコ
ロイド状シリカの粒子径は、80〜2000mirmで
ある。粒子径が80mμmに満たないと、潤滑性の改善
効果が得られない、一方、粒子径が2000m−を超え
ると、すべり性および耐熱性(耐ステイツキング性)は
あっても、製品を積層するときに占積率の低下をもたら
すから好ましくない。The particle size of the coarse particles of colloidal silica blended with the fine particles of colloidal silica is 80 to 2000 mirm. If the particle size is less than 80 mμm, the effect of improving lubricity cannot be obtained.On the other hand, if the particle size exceeds 2000 m-, the product may not be laminated even though it has slip properties and heat resistance (state king resistance). This is not preferable because it sometimes causes a decrease in the space factor.
次に、コロイド状シリカと燐酸塩の配合は、コロイド状
シリカをSiO2として100重量部に対し、/V、
Mg、 Ca、 Znの燐酸塩の1種または2種以上を
130〜250重量部である。これは、絶縁皮膜による
張力効果や皮膜の耐熱性を考える場合、重要である。コ
ロイド状シリカ100重量部に対する燐酸塩の配合割合
が130重量部より少ないと、コロイド状シリカに対す
るバインダーの不足から形成後の絶縁皮膜に亀裂を生じ
、絶縁皮膜による張力効果を喪失するから好ましくない
。一方、配合割合が250重量部を超えると、皮膜の外
観の白濁化或は張力効果の減少を招きさらには歪取り焼
鈍での耐熱性の劣化が急激に進むから上限を250fi
’量部に限定する。Next, the composition of colloidal silica and phosphate is /V, with respect to 100 parts by weight of colloidal silica as SiO2,
The amount of one or more phosphates of Mg, Ca, and Zn is 130 to 250 parts by weight. This is important when considering the tension effect of the insulating film and the heat resistance of the film. If the blending ratio of phosphate to 100 parts by weight of colloidal silica is less than 130 parts by weight, cracks will occur in the insulating film after formation due to insufficient binder for colloidal silica, and the tensile effect of the insulating film will be lost, which is not preferable. On the other hand, if the blending ratio exceeds 250 parts by weight, the appearance of the film becomes cloudy or the tension effect decreases, and furthermore, the heat resistance during strain relief annealing rapidly deteriorates, so the upper limit is set at 250 parts by weight.
'Limited to quantity.
燐酸塩としては、kl、 Mg、 Ca、 Znの燐酸
塩の1種または2種以上が用いられる。As the phosphate, one or more of kl, Mg, Ca, and Zn phosphates are used.
燐酸塩としては市販の50%溶液でよい、燐酸Caは、
溶解度が小さく50%溶液が得られないから、計算上5
0%溶液にバランスするよう添加される。As the phosphate, a commercially available 50% solution may be used.
Since the solubility is low and a 50% solution cannot be obtained, the calculated value is 5.
Added to balance 0% solution.
ベース皮膜の潤滑性を向上させる意味からは、最も好ま
しい燐酸塩の組合せは、At−Mg−Ca、 Af−C
a、 Mg−Caである。From the perspective of improving the lubricity of the base film, the most preferred phosphate combinations are At-Mg-Ca and Af-C.
a, Mg-Ca.
無水クロム酸、クロム酸塩、重クロム酸塩は、燐酸塩の
量に応じて配合される。Chromic anhydride, chromate, and dichromate are blended according to the amount of phosphate.
燐酸塩130〜250重量部に対し、10重量部未満で
は、皮膜成分中のフリー燐酸をCrPOa生戒等の生成
によって安定化させるために必要な量とならず、ベタツ
キ発生の原因となる。一方、40!!ii部を超えると
、フリーのクロム酸が過剰となり、この場合もベタツキ
を生じる。If the amount is less than 10 parts by weight relative to 130 to 250 parts by weight of phosphate, it will not be the amount necessary to stabilize the free phosphoric acid in the film component by forming CrPOa, etc., and will cause stickiness. On the other hand, 40! ! When the amount exceeds part ii, free chromic acid becomes excessive, and stickiness also occurs in this case.
本発明においては、コロイド状シリカの製造段階で適度
に粒子径を分散させるように製造したものを使用するか
或は、微粒子、粗粒子のコロイド状シリカをそれぞれ別
々に製造したものを2種以上混合して、本発明に規定す
る粒子径を組合せとなるようにするか何れの手段も適用
できる。In the present invention, colloidal silica manufactured in such a way that the particle size is appropriately dispersed at the manufacturing stage is used, or two or more types of fine particle and coarse particle colloidal silica each manufactured separately are used. Any means of mixing to obtain a combination of particle sizes defined in the present invention can be applied.
次に、本発明によって形成される絶縁皮膜が、潤滑性、
耐熱性に優れる理由を述べる。電磁鋼板表面の潤滑性を
向上させるメカニズムとしては、1)皮膜表面がスムー
ズであること
2)皮膜自体の潤滑性が良好であることの他に、3)表
面形状効果という観点から、点接触の方がスムーズにす
べるという機構が考えられる。Next, the insulating film formed by the present invention has lubricity,
The reason for its excellent heat resistance will be explained. Mechanisms for improving the lubricity of the surface of electrical steel sheets include 1) smoothness of the film surface, 2) good lubricity of the film itself, and 3) improvement of point contact from the viewpoint of surface shape effects. It is conceivable that there is a mechanism that allows for smoother sliding.
本発明者等が提案した特開昭61−4773号公報に開
示されている方法は、l)の効果によるものである。The method proposed by the present inventors and disclosed in Japanese Unexamined Patent Publication No. 61-4773 is based on the effect 1).
本発明は、3)の形状効果によってもたらされる点接触
によるものであり、特に本発明では、コロイド状シリカ
の粒子径の組合せを利用するため、絶縁皮膜表面でのコ
ロイドの球面形状により、著しい効果がもたらされるも
のと推察される。The present invention is based on the point contact brought about by the shape effect in 3). In particular, in the present invention, since a combination of particle sizes of colloidal silica is utilized, the spherical shape of the colloid on the surface of the insulating film produces a remarkable effect. It is assumed that this will result in
第3図(a)、 (b)は、本発明の適用によって得ら
れた製品の表面形状と潤滑性の関係を示す図であり、本
発明により、FF値(A法)、潤滑性(B法)ともに著
しく改善されている。FIGS. 3(a) and 3(b) are diagrams showing the relationship between the surface shape and lubricity of a product obtained by applying the present invention. (Act) have been significantly improved.
第4図に、絶縁皮膜形成用塗布剤組成(第4表参照)と
、製品表面の潤滑性の関係を示す。FIG. 4 shows the relationship between the composition of the coating agent for forming an insulating film (see Table 4) and the lubricity of the product surface.
本発明に規定する組成条件を満足しない(a)は、数回
のテストでテスト不能に陥っている。粗粒子として80
mgのコロイド状シリカを用いた(口)は、抵抗値が漸
次大きくなったが良好な潤滑性を示した。Sample (a), which does not satisfy the compositional conditions stipulated in the present invention, has become untestable after several tests. 80 as coarse particles
(2) using mg of colloidal silica showed good lubricity although the resistance value gradually increased.
粗粒子として300m5或は2000m、nのコロイド
状シリカを用いた(C)および(d)は、抵抗値が経時
変化することなく低い値を示しており、良好な潤滑性を
有する。In cases (C) and (d) in which colloidal silica of 300 m5 or 2000 m, n was used as coarse particles, the resistance value showed a low value without changing over time, and had good lubricity.
(実施例)
重量%でC; 0.078%、 St ; 3.22%
、MrBo、068%、 S ;0.024%、酸可溶
1’j ; 0.032%。(Example) C: 0.078%, St: 3.22% in weight%
, MrBo, 068%, S; 0.024%, acid soluble 1'j; 0.032%.
残部Fe及び不可避的不純物からなる珪素鋼スラブを公
知の方法で熱延し、焼鈍後冷延し、最終板厚0.295
鵬とした。 次いで脱炭焼鈍、焼鈍分離剤塗布の後、1
200℃×20時間の最終仕上焼鈍を行い、グラス皮膜
を形成した0次に余剰の焼鈍分離剤を水洗により除去し
、軽酸洗の後、第2表に示すようにコロイド状シリカの
粒子径と燐酸塩を調整した絶縁皮膜剤を焼付後の重量で
4.5 gets”になるように塗布し、830″C×
30秒間NZ中で焼付は処理を行った。この製品板から
サンプルを切り出し、FF値(A法)、潤滑性(B法)
、耐ステイツキング性等について調査した。結果を第3
表に示す。A silicon steel slab consisting of the remainder Fe and unavoidable impurities is hot rolled by a known method, annealed and then cold rolled to a final thickness of 0.295.
It was Peng. Then, after decarburization annealing and application of an annealing separator, 1
Final annealing was performed at 200°C for 20 hours, and the excess zero-order annealing separating agent that had formed a glass film was removed by water washing. After light pickling, the particle size of colloidal silica was adjusted as shown in Table 2. An insulating coating agent containing phosphate and phosphate was applied so that the weight after baking was 4.5 gets”, and 830”C×
The baking process was carried out in NZ for 30 seconds. A sample was cut out from this product board, and the FF value (method A) and lubricity (method B) were measured.
, state king resistance, etc. were investigated. 3rd result
Shown in the table.
(発明の効果)
本発明によれば、鋼板表面の滑り性と耐熱性が良好で、
変圧器製造における鉄心の加工性が優れていると共に変
圧器製品の磁気特性を良好ならしめる方向性電磁鋼板を
得ることができる。(Effects of the invention) According to the invention, the surface of the steel plate has good slipperiness and heat resistance,
It is possible to obtain a grain-oriented electromagnetic steel sheet which has excellent workability of the iron core in transformer manufacture and which also improves the magnetic properties of transformer products.
第1図は絶縁皮膜のすべり摩擦係数を測定する手段(A
法)を示す図、第2図(a)、(b)は電磁鋼板を鉄心
へ加工後、歪取焼鈍するときのスティッキング性を調査
する方法を示す図で、(a)は歪取焼鈍時におけるステ
ィッキング性調査に際し、歪取焼鈍でのサンプルの積層
状態を示す図、(b)は歪取焼鈍終了後、層間の焼付き
状態を測定するときの態様を示す図、第3図(aL (
b)は、本発明によって得られた製品の表面形状と潤滑
性の関係を示す図、第4図(a)〜(d)は、絶縁皮膜
形成用塗布剤組成と製品の潤滑性の関係を示す図である
。
第1図
第2図
第3図
Cb)
Ra値
呻
機Figure 1 shows a means for measuring the sliding friction coefficient of an insulating film (A
Figure 2 (a) and (b) are diagrams showing a method for investigating the sticking property when strain relief annealing is performed after processing an electrical steel sheet into an iron core; Figure 3 (aL
b) is a diagram showing the relationship between the surface shape and lubricity of the product obtained by the present invention, and Figures 4 (a) to (d) are diagrams showing the relationship between the composition of the coating agent for forming an insulating film and the lubricity of the product. FIG. Figure 1 Figure 2 Figure 3 Cb) Ra value calculator
Claims (1)
鈍を挟む2回以上の冷間圧延を行って最終板厚とし、こ
の材料を脱炭焼鈍し焼鈍分離剤を塗布した後最終仕上焼
鈍を施し、次いで絶縁皮膜形成用塗布剤を塗布し焼付け
処理した後ヒートフラットニングを施す方向性電磁鋼板
の製造方法において、20mμm以下の粒子径を有する
コロイド状シリカが固形分重量で50〜95%、80〜
2000mμmの粒子径を有するコロイド状シリカが固
形分重量で5〜50%からなるコロイド溶液100重量
部(SiO_2として)に対し、Al、Mg、Ca、Z
nの燐酸塩の1種または2種以上を130〜250重量
部、無水クロム酸、クロム酸塩、重クロム酸塩の1種ま
たは2種以上を10〜40重量部加えた絶縁皮膜形成用
塗布剤を塗布し焼付け処理することを特徴とする鉄心の
加工性および耐熱性の優れる方向性電磁鋼板の絶縁皮膜
形成方法。After hot rolling and annealing a silicon steel slab, it is cold rolled once or twice or more with intermediate annealing in between to achieve the final thickness, and this material is decarburized and annealed, coated with an annealing separator, and then final rolled. In a method for producing a grain-oriented electrical steel sheet in which finish annealing is applied, a coating agent for forming an insulating film is applied, a baking treatment is performed, and then heat flattening is performed, colloidal silica having a particle size of 20 mm or less is solid content of 50 to 95%, 80~
Al, Mg, Ca, Z
A coating for forming an insulating film containing 130 to 250 parts by weight of one or more phosphates of n and 10 to 40 parts by weight of one or more of chromic anhydride, chromate, and dichromate. A method for forming an insulating film on a grain-oriented electrical steel sheet, which has excellent workability and heat resistance of an iron core, and is characterized by applying an agent and baking it.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1173180A JP2709515B2 (en) | 1989-07-05 | 1989-07-05 | Method for forming insulating film on grain-oriented electrical steel sheet with excellent workability and heat resistance of iron core |
CN90103252A CN1039915C (en) | 1989-07-05 | 1990-06-27 | Production of grain-oriented silicon steel sheets having insulating film formed thereon |
US07/546,908 US5174833A (en) | 1989-07-05 | 1990-07-02 | Production of grain-oriented silicon steel sheets having an insulating film formed thereon |
CA002020285A CA2020285C (en) | 1989-07-05 | 1990-07-03 | Production of grain-oriented silicon steel sheets having an insulating film formed thereon |
EP90112770A EP0406833B1 (en) | 1989-07-05 | 1990-07-04 | Production of grain-oriented silicon steel sheets having an insulating film formed thereon |
DE69006946T DE69006946T2 (en) | 1989-07-05 | 1990-07-04 | Manufacture of grain-oriented silicon alloy thin sheets with an insulating layer produced on them. |
KR1019900010153A KR930007151B1 (en) | 1989-07-05 | 1990-07-05 | Formation of insulating film on grain-oriented magnetic steel sheet excellent in workability of iron core and heat resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1173180A JP2709515B2 (en) | 1989-07-05 | 1989-07-05 | Method for forming insulating film on grain-oriented electrical steel sheet with excellent workability and heat resistance of iron core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0339484A true JPH0339484A (en) | 1991-02-20 |
JP2709515B2 JP2709515B2 (en) | 1998-02-04 |
Family
ID=15955574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1173180A Expired - Lifetime JP2709515B2 (en) | 1989-07-05 | 1989-07-05 | Method for forming insulating film on grain-oriented electrical steel sheet with excellent workability and heat resistance of iron core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2709515B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03207868A (en) * | 1989-12-30 | 1991-09-11 | Nippon Steel Corp | Formation of insulating film for grain-oriented silicon steel sheet excellent in iron core workability, heat resistance, and tension-giving property and grain-oriented silicon steel sheet |
US7850792B2 (en) | 2005-07-14 | 2010-12-14 | Nippon Steel Corporation | Grain-oriented electrical steel sheet having insulating film not containing chromium and insulating film agent of same |
JP2012104573A (en) * | 2010-11-08 | 2012-05-31 | Hitachi Chem Co Ltd | Powder for core, manufacturing method of the same, dust core using the same, and electromagnetic device |
JP2015501389A (en) * | 2011-11-04 | 2015-01-15 | タタ、スティール、ユーケー、リミテッドTata Steel Uk Limited | Coated grain oriented steel |
WO2017038911A1 (en) * | 2015-09-02 | 2017-03-09 | Jfeスチール株式会社 | Insulative coating processing liquid and method for manufacturing metal having insulative coating |
EP3366810A4 (en) * | 2015-10-20 | 2018-12-05 | Posco | Composition for forming insulation film of oriented electrical steel sheet, method for forming insulation film by using same, and oriented electrical steel sheet having insulation film formed therein |
JP2019507242A (en) * | 2015-12-22 | 2019-03-14 | ポスコPosco | INSULATION COATING COMPOSITION FOR DIRECTIONAL ELECTRIC STEEL SHEET |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2727387C1 (en) * | 2019-12-23 | 2020-07-21 | Общество с ограниченной ответственностью "ВИЗ-Сталь" | Electric insulating coating for electro-technical anisotropic steel with high technical and commercial quality |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5225296A (en) * | 1975-08-22 | 1977-02-25 | Kawasaki Steel Corp | Forming method of highly heatproof insulating film on grain oriented s ilicon steel plate |
JPS5328043A (en) * | 1977-07-09 | 1978-03-15 | Nippon Steel Corp | Process for forming insulating coating on directional silicon steel |
JPS6141778A (en) * | 1984-08-02 | 1986-02-28 | Nippon Steel Corp | Formation of insulating film having superior tension giving property and smoothness of grain-oriented electromagnetic steel sheet |
JPS61257483A (en) * | 1985-04-30 | 1986-11-14 | アリゲニ− ラドラム ステイ−ル コ−ポレ−シヨン | Crystal grain oriented silicon steel and stress coating thereto |
-
1989
- 1989-07-05 JP JP1173180A patent/JP2709515B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5225296A (en) * | 1975-08-22 | 1977-02-25 | Kawasaki Steel Corp | Forming method of highly heatproof insulating film on grain oriented s ilicon steel plate |
JPS5328043A (en) * | 1977-07-09 | 1978-03-15 | Nippon Steel Corp | Process for forming insulating coating on directional silicon steel |
JPS6141778A (en) * | 1984-08-02 | 1986-02-28 | Nippon Steel Corp | Formation of insulating film having superior tension giving property and smoothness of grain-oriented electromagnetic steel sheet |
JPS61257483A (en) * | 1985-04-30 | 1986-11-14 | アリゲニ− ラドラム ステイ−ル コ−ポレ−シヨン | Crystal grain oriented silicon steel and stress coating thereto |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03207868A (en) * | 1989-12-30 | 1991-09-11 | Nippon Steel Corp | Formation of insulating film for grain-oriented silicon steel sheet excellent in iron core workability, heat resistance, and tension-giving property and grain-oriented silicon steel sheet |
US7850792B2 (en) | 2005-07-14 | 2010-12-14 | Nippon Steel Corporation | Grain-oriented electrical steel sheet having insulating film not containing chromium and insulating film agent of same |
JP2012104573A (en) * | 2010-11-08 | 2012-05-31 | Hitachi Chem Co Ltd | Powder for core, manufacturing method of the same, dust core using the same, and electromagnetic device |
JP2015501389A (en) * | 2011-11-04 | 2015-01-15 | タタ、スティール、ユーケー、リミテッドTata Steel Uk Limited | Coated grain oriented steel |
KR20180035877A (en) | 2015-09-02 | 2018-04-06 | 제이에프이 스틸 가부시키가이샤 | Insulative coating processing liquid and method for manufacturing metal having insulative coating |
JPWO2017038911A1 (en) * | 2015-09-02 | 2017-10-12 | Jfeスチール株式会社 | Insulating coating solution and method for producing metal with insulating coating |
WO2017038911A1 (en) * | 2015-09-02 | 2017-03-09 | Jfeスチール株式会社 | Insulative coating processing liquid and method for manufacturing metal having insulative coating |
CN107923046A (en) * | 2015-09-02 | 2018-04-17 | 杰富意钢铁株式会社 | The manufacture method of insulating film treatment fluid and metal with insulating film |
EP3346025A4 (en) * | 2015-09-02 | 2018-07-25 | JFE Steel Corporation | Insulative coating processing liquid and method for manufacturing metal having insulative coating |
EP3366810A4 (en) * | 2015-10-20 | 2018-12-05 | Posco | Composition for forming insulation film of oriented electrical steel sheet, method for forming insulation film by using same, and oriented electrical steel sheet having insulation film formed therein |
US11667985B2 (en) | 2015-10-20 | 2023-06-06 | Posco Co., Ltd | Composition for forming insulation film of oriented electrical steel sheet, method for forming insulation film by using same, and oriented electrical steel sheet having insulation film formed therein |
JP2019507242A (en) * | 2015-12-22 | 2019-03-14 | ポスコPosco | INSULATION COATING COMPOSITION FOR DIRECTIONAL ELECTRIC STEEL SHEET |
US11335475B2 (en) | 2015-12-22 | 2022-05-17 | Posco | Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet |
US11848122B2 (en) | 2015-12-22 | 2023-12-19 | Posco Co., Ltd | Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2709515B2 (en) | 1998-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0406833B1 (en) | Production of grain-oriented silicon steel sheets having an insulating film formed thereon | |
JP2791812B2 (en) | Method for forming insulating film of grain-oriented electrical steel sheet with excellent core workability, heat resistance and tension imparting property, and grain-oriented electrical steel sheet | |
JP2654861B2 (en) | Method of forming insulation film on grain-oriented electrical steel sheet with excellent workability and heat resistance of iron core | |
JPH0339484A (en) | Formation of insulating film on grain-oriented magnetic steel sheet excellent in workability of iron core and heat resistance | |
JPS6141778A (en) | Formation of insulating film having superior tension giving property and smoothness of grain-oriented electromagnetic steel sheet | |
JP2654862B2 (en) | Method for forming insulation film on grain-oriented electrical steel sheet with excellent core workability and dust resistance | |
JP3921806B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JPH101779A (en) | High tensile strength insulating coating film forming agent, its formation and grain oriented silicon steel sheet having high tensile strength insulating coating film | |
JP2673767B2 (en) | Grain-oriented electrical steel sheet having excellent iron core workability and good magnetic properties, and method for producing the same | |
JP3336555B2 (en) | Method for producing grain-oriented electrical steel sheet without glass coating with excellent surface properties | |
JP2603107B2 (en) | Method for forming insulating film on grain-oriented electrical steel sheet with excellent core workability and excellent magnetic properties | |
JPH08239771A (en) | Grain-oriented silicon steel sheet having high tensile strength insulating film and formation of the same insulating film | |
JPH0663036B2 (en) | Method for producing grain-oriented electrical steel sheet having metallic luster | |
JP2009209428A (en) | Method for manufacturing grain-oriented electromagnetic steel sheet with remarkably high magnetic flux density | |
JPH0673555A (en) | Production of grain oriented electric steel sheet excellent in magnetic property and surface characteristic | |
JPH08333640A (en) | Grain oriented silicon steel sheet extremely excellent in heat resistance and adhesion and formation of insulating film on it | |
JP2002348613A (en) | Method for manufacturing grain-oriented electromagnetic steel sheet superior in blanking property without needing decarburization annealing | |
JP4075258B2 (en) | Manufacturing method of bi-directional electrical steel sheet | |
JPH0420987B2 (en) | ||
JP2671084B2 (en) | High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same | |
JP3898878B2 (en) | Non-oriented electrical steel sheet for small precision motors | |
JPH02267276A (en) | Treatment of insulating film of grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic | |
JPH0328321A (en) | Formation of insulating film of grain-oriented electrical steel sheet having excellent workability of rolled core | |
JPH02301571A (en) | Production of grain-oriented electrical steel sheet having uniform glassy coating film | |
JP3964964B2 (en) | Method for producing semi-processed non-oriented electrical steel sheet with excellent low magnetic field characteristics B1 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071024 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081024 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 12 |