[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0339453A - Production of cast aluminum alloy bar for vtr cylinder - Google Patents

Production of cast aluminum alloy bar for vtr cylinder

Info

Publication number
JPH0339453A
JPH0339453A JP17293989A JP17293989A JPH0339453A JP H0339453 A JPH0339453 A JP H0339453A JP 17293989 A JP17293989 A JP 17293989A JP 17293989 A JP17293989 A JP 17293989A JP H0339453 A JPH0339453 A JP H0339453A
Authority
JP
Japan
Prior art keywords
weight
forgeability
aluminum alloy
forging
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17293989A
Other languages
Japanese (ja)
Inventor
Teruo Uno
宇野 照生
Yoshio Watanabe
良夫 渡辺
Kazuyoshi Oka
岡 一嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP17293989A priority Critical patent/JPH0339453A/en
Publication of JPH0339453A publication Critical patent/JPH0339453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、VRTシリンダー用アルアルミニウム合金鋳
造棒造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for making an aluminum alloy cast rod for a VRT cylinder.

[従来の技術] 従来、vRTシリンダーにはアルミニウム合金押出棒を
素材とした鍛造品が多く使用されているが、低コスト化
のため押出工程のない鋳造棒への切替えが望まれ、実施
されつつある。しかし、鋳造棒は押出棒のように押出加
工によって素材の加工性向上を図ることができないため
、鍛造の際に割れ、亀裂を生じやすいという問題を有す
る。また、素材を冷間鍛造して製品形状とする際、従来
は2回鍛造、すなわち、−度鍛造して素材を製品形状に
近づけた後、鍛造時に加工硬化した素材を焼鈍し、鍛造
しやすい状態にしてから再鍛造を行ない、製品形状に仕
上げるという方法がとられていたが、工程合理化のため
、1回鍛造化が望まれており、さらにVTRシリンダー
の軽量化、低コスト化にともなって、製品形状が薄肉化
、複雑化し、素材に求められる鍛造性はより厳しいもの
になっている。
[Conventional technology] Conventionally, forged products made from extruded aluminum alloy rods have often been used for vRT cylinders, but in order to reduce costs, it has been desired to switch to cast rods that do not require an extrusion process, and this is currently being implemented. be. However, unlike extruded rods, cast rods cannot improve the workability of the material through extrusion processing, and therefore have the problem of being susceptible to cracking and cracking during forging. In addition, when cold forging a material into a product shape, conventionally, the material is forged twice, that is, forged twice to bring the material closer to the product shape, and then the work-hardened material during forging is annealed, making it easier to forge. Previously, a method was used in which the forging was re-forged and finished into the product shape, but in order to streamline the process, single-step forging was desired, and as VTR cylinders were becoming lighter and cheaper, , product shapes are becoming thinner and more complex, and the forgeability required of materials is becoming more demanding.

このため、鋳造棒を鍛造すると、割れや亀裂が生じやす
く、鋳造棒を使用する上での大きな問題になっている。
For this reason, when a cast bar is forged, cracks and cracks are likely to occur, which is a major problem in using the cast bar.

このため、鋳造棒を鍛造すると、割れや亀裂が生じやす
く、鋳造棒を使用する上での大きな問題になっている。
For this reason, when a cast bar is forged, cracks and cracks are likely to occur, which is a major problem in using the cast bar.

[発明がM決しようとする課題] 本発明は、こうした実情の下に鍛造の際に割れ、亀裂の
生じにくいVTRシリンダー用アルミニウム合金鋳造棒
の製造方法を提供することを目的とする。
[Problems to be Solved by the Invention] Under these circumstances, an object of the present invention is to provide a method for manufacturing an aluminum alloy cast rod for a VTR cylinder that is less likely to crack or break during forging.

[課題を解決するための手段] 本発明は前記の問題点を解消し、鍛造性の良好なVTR
シリンダー用アルミニウム合金鋳造棒の製造方法を提供
するものであり、その要旨とするところは、Cu  3
〜4.5重量%、MgO03〜Il1重量%、NiO,
5〜2.5重量%、SLo、1〜0.9重量%、F e
  O,1〜0.7 ffl量%を含み、残りアルミニ
ウムと不純物とからなるアルミニウム合金を平均冷却速
度50℃/sec以上でφ80m5+以下に鋳造するこ
とを特徴とするVTRシリンダー用アルミニウム合金鋳
造棒の製造方法にある。
[Means for Solving the Problems] The present invention solves the above problems and provides a VTR with good forgeability.
The present invention provides a method for manufacturing an aluminum alloy cast rod for cylinders, and its gist is that Cu 3
~4.5% by weight, MgO03~Il1% by weight, NiO,
5-2.5% by weight, SLo, 1-0.9% by weight, Fe
An aluminum alloy cast rod for a VTR cylinder, characterized in that an aluminum alloy containing 0,1 to 0.7 ffl amount% and the remaining aluminum and impurities is cast to a diameter of 80 m5+ or less at an average cooling rate of 50 ° C / sec or more. It's in the manufacturing method.

本発明における上記合金成分、および製造方法の限定理
由は下記の通りである。
The reasons for limiting the alloy components and manufacturing method in the present invention are as follows.

Cu : Cuは本来、鍛造後に実施される(T6焼入
れ、焼戻し)処理によってVTRシリンダーの強度を高
めるために添加される元素であるが、鍛造の際は次のよ
うな影響を及ぼす。
Cu: Cu is an element originally added to increase the strength of the VTR cylinder through processing (T6 quenching, tempering) performed after forging, but it has the following effects during forging.

すなわち、AI中に存在するCuは主に品出物や析出物
を形成し、一部はAI中に固溶する。このうち、晶出物
は鋳造時の他の元素と共に形成される粗大な化合物であ
り、鍛造割れの起点となる。したがって、鋳造後には晶
出物を均質化処理によってできるだけ多く溶入(固溶)
させることが望ましい。析出物はその働きによって大き
く2つに分けられる。
That is, Cu present in AI mainly forms particles and precipitates, and a portion is dissolved in solid solution in AI. Among these, crystallized substances are coarse compounds formed together with other elements during casting, and become the starting point of forging cracks. Therefore, after casting, as much crystallized material as possible is injected (solid solution) through homogenization treatment.
It is desirable to Precipitates can be broadly divided into two types depending on their function.

一つは素材の硬さを低下させる安定相(θ:A12 C
u、S :A12 CuMg)であり、一つは硬さや強
度を向上させる準安定相やG。
One is the stable phase (θ: A12 C
u, S: A12 CuMg), and one is a metastable phase or G that improves hardness and strength.

P帯である。このうち、G、P帯は鋳造や均質化処理後
に過飽和に固溶しているCuによって自然に放置された
状態でも短期間のうちに形成され、素材の硬さを高める
。素材の鍛造性は硬さが低いほど向上するから、鍛造前
には軟化処理によって、鋳造や均質化処理で過飽和に固
溶したCuをG、P帯や準安定相ではなく安定相の形で
多量に析出させることが望ましい。従って、晶出物量を
少なくし、安定相を多くすることが鍛造性の向上には望
ましい。
It is P band. Among these, the G and P bands are formed in a short period of time even when the material is left naturally due to the supersaturated solid solution of Cu after casting or homogenization treatment, increasing the hardness of the material. The forgeability of the material improves as the hardness decreases, so before forging, a softening treatment is used to convert Cu, which was supersaturated as a solid solution during casting and homogenization, into a stable phase rather than a G, P band or metastable phase. It is desirable to precipitate a large amount. Therefore, it is desirable to reduce the amount of crystallized substances and increase the number of stable phases in order to improve forgeability.

しかし、4.5wt%を超えると鍛造割れの起点となる
晶出物が著しく多くなり、均質化処理でこれを溶入化さ
せると、過飽和に固溶するCuが著しく多くなる。この
ため、軟化処理でそのほとんどを安定相の形で析出させ
ることが困難となり、硬さの低下が不十分となる。また
、3vt%未満では(T6焼入れ、焼戻し)処理におい
て析出する準安定相やG。
However, when the content exceeds 4.5 wt%, the amount of crystallized substances that become the starting point of forging cracks increases significantly, and when this is infiltrated by homogenization treatment, the amount of Cu dissolved in supersaturated solid solution increases significantly. For this reason, it becomes difficult to precipitate most of it in the form of a stable phase during the softening treatment, resulting in insufficient reduction in hardness. In addition, if it is less than 3vt%, metastable phases and G precipitate during processing (T6 quenching, tempering).

P帯が少ないため十分な強度が得られない。Due to the small amount of P band, sufficient strength cannot be obtained.

従って、3〜4.5vL%の範囲とする。Therefore, the range is 3 to 4.5 vL%.

Mg : MgもCu同様にT6処理でVTRシリンダ
ーの強度を高めるために添加される元素であるが、鍛造
前には軟化処理によって安定相を多量に析出させて素材
の硬さを低下させ、鍛造性を向上させることができる。
Mg: Like Cu, Mg is an element added to increase the strength of VTR cylinders during the T6 process, but before forging, a softening process precipitates a large amount of stable phase to reduce the hardness of the material. can improve sex.

しかし、l、8重量%を超えると硬さの低下が不十分と
なり、又0.3ffi量%未満ではT6処理後に十分な
強度が得られない。従って、0.3〜1.8重量%の範
囲とする。
However, if it exceeds 8% by weight, the reduction in hardness will be insufficient, and if it is less than 0.3% by weight, sufficient strength will not be obtained after T6 treatment. Therefore, the content should be in the range of 0.3 to 1.8% by weight.

St :SlもCu5Mg同様にT6処理でVTRシリ
ンダーの強度を高めるために添加される元素であるが、
鍛造前には軟化処理によって安定相を多量に析出させて
素材の硬さを低下させ、鍛造性を向上させることができ
る。
St: Like Cu5Mg, Sl is also an element added to increase the strength of VTR cylinders during T6 treatment.
Before forging, a softening treatment is performed to precipitate a large amount of stable phase, thereby reducing the hardness of the material and improving forgeability.

しかし、0.9重量%を超えると硬さの低下が不十分と
なり、また0、1重量%未満ではT6処理後に十分な強
度が得られない。従って、0.1〜0.9 ffi量%
の範囲とする。
However, if it exceeds 0.9% by weight, the reduction in hardness will be insufficient, and if it is less than 0.1% by weight, sufficient strength will not be obtained after T6 treatment. Therefore, 0.1-0.9 ffi amount%
The range shall be .

Ni :NiはAI中への固溶量が極めて少なく、添加
量のほとんどが晶出物としてAI中に残存し、均質化処
理でも溶入させることはほとんど不可能である。この晶
出物はVTRシリンダーの耐摩耗性や鍛造した素材をV
TRシリンダーに切削加工する際の切削性の向上に寄与
するが、鍛造の際は割れの起点として働き、鍛造性の低
下を招く。0.5重量%未満では耐摩耗性、切削性への
寄与が小さく、2,5重量%を超えると鍛造性が著しく
低下スル。
Ni: The amount of Ni dissolved in solid solution in AI is extremely small, and most of the added amount remains in AI as a crystallized substance, making it almost impossible to dissolve it even in a homogenization treatment. This crystallized material improves the wear resistance of VTR cylinders and the forged materials.
Although it contributes to improving the machinability when cutting the TR cylinder, it acts as a starting point for cracks during forging, leading to a decrease in forgeability. If it is less than 0.5% by weight, its contribution to wear resistance and machinability is small, and if it exceeds 2.5% by weight, forgeability is significantly reduced.

従って、0.5〜2.5重量%の範囲とする。Therefore, the content should be in the range of 0.5 to 2.5% by weight.

Fe:Feは鋳造の際Ntと結合してFe−Ni系化合
物を形成し、VTRシリンダーの耐摩耗性に寄与するる
。しかし、Fe−N1系化合物は均質化処理でほとんど
溶入しないため、鍛造の際には、割れの起点となる。
Fe: Fe combines with Nt during casting to form a Fe-Ni compound, which contributes to the wear resistance of the VTR cylinder. However, since the Fe-N1-based compound hardly dissolves in the homogenization process, it becomes a starting point for cracks during forging.

Q、1重量%未満では十分な耐摩耗性が得られず、0.
7重量%を超えると鍛造性が著しく低下する。従って、
0.1−0.7111ffi%の範囲とする。
Q: If it is less than 1% by weight, sufficient wear resistance cannot be obtained;
If it exceeds 7% by weight, forgeability will be significantly reduced. Therefore,
The range is 0.1-0.7111ffi%.

冷却速度二本系合金が凝固する際は、初晶A1が樹枝状
に成長した後、樹枝間に主に合金元素からなる化合物が
晶出する。この化合物は非常に脆く、また樹枝間隔(D
AS)に比例して大きくなるため、DASが大きい程鍛
造性は低下する。特にDASの平均値が15μmを超え
ると鍛造性が著しく低下する。ところで、DASは冷却
速度と次式の関係にあり、C−に/D膳 C:冷却速度(”C/ 5ee) D:DAS(μm) m、に:定数 本系合金の場合は、K−7,8X 10’ 、m−2−
7である。従って、DASの平均値を15μm以下にす
るには、平均50℃/SOC以上の冷却速度を必要とす
る。
When the cooling rate binary alloy solidifies, the primary crystal A1 grows in a dendritic shape, and then a compound mainly consisting of alloying elements crystallizes between the dendrites. This compound is very brittle and the dendritic spacing (D
AS), so the larger the DAS, the lower the forgeability. In particular, when the average value of DAS exceeds 15 μm, forgeability is significantly reduced. By the way, DAS has a relationship with the cooling rate as shown in the following formula. 7,8X 10', m-2-
It is 7. Therefore, in order to make the average DAS value 15 μm or less, a cooling rate of 50° C./SOC or more is required on average.

鋳造サイズ:平均冷却速度を50@C/sec以上にす
るには、φ80mm以下であることが必要である。
Casting size: In order to achieve an average cooling rate of 50@C/sec or more, the casting size must be φ80 mm or less.

φ80mmを超えると、平均冷却速度を50℃/sec
以上とすることが困難になるからである。
If the diameter exceeds φ80mm, the average cooling rate should be reduced to 50℃/sec.
This is because it becomes difficult to do so.

上記の鋳造棒から鍛造用素材を得るためには、次のよう
な製造工程をとることが望ましい。
In order to obtain a forging material from the above-mentioned cast rod, it is desirable to use the following manufacturing process.

A、溶湯処理、鋳造 前記組成のアルミニウム合金を溶解、鋳造するに際し、
溶湯ろ過、脱ガス処理を行なうとともに、結晶粒を細か
くするための微細化剤を添加して鋳塊を作製する。粗大
な介在物が鋳塊に混入したり、鋳塊のH2ガス量が多い
場合、鍛造性が低下するため、溶湯ろ過により10μm
以上の介在物を除去し、H2ガス量が0.25cc/1
00g以下となるように脱ガスすることが望ましい。
A. Molten metal treatment and casting When melting and casting the aluminum alloy having the above composition,
The molten metal is filtered and degassed, and a refining agent is added to make the crystal grains finer to produce an ingot. If coarse inclusions are mixed into the ingot or the amount of H2 gas in the ingot is large, forgeability will decrease, so molten metal filtration is performed to reduce the thickness to 10 μm.
After removing the above inclusions, the amount of H2 gas is 0.25cc/1
It is desirable to degas so that the amount is 00g or less.

微細化剤としてはAl−TiあるいはAI−Ti−B中
間合金が望ましく、Ti0.005〜0.20重量%、
B  O,001〜0.04重量%をロッド添加するの
が有効である。
As the refining agent, Al-Ti or AI-Ti-B intermediate alloy is preferable, with 0.005 to 0.20% by weight of Ti;
It is effective to add BO,001 to 0.04% by weight.

また、鋳造速度を450+n/s1n以上にし、冷却水
量3017sin以上とするのが望ましい。
Further, it is desirable that the casting speed be 450+n/s1n or more and the amount of cooling water be 3017 sin or more.

B、均質化処理 鋳塊組織を均質化し、鋳塊中の晶出物を溶入化させるた
め、鋳塊を加熱する。450〜520℃で8〜48時間
の処理が望ましい。
B. Homogenization Treatment The ingot is heated in order to homogenize the ingot structure and infiltrate the crystallized substances in the ingot. Treatment at 450-520°C for 8-48 hours is desirable.

C1軟化処理 鋳塊中に固溶している主硬化戊分を多量に粗大に析出さ
せ、鋳塊の硬さを低下させるために均質化処理後の鋳塊
を加熱後徐冷する。330〜390℃に2〜48時間保
持した後、冷却速度20℃/hr以下で徐冷するのが望
ましい。
C1 The homogenized ingot is heated and then gradually cooled in order to coarsely precipitate a large amount of the main hardening fraction dissolved in the softened ingot and reduce the hardness of the ingot. After maintaining the temperature at 330 to 390°C for 2 to 48 hours, it is desirable to gradually cool the mixture at a cooling rate of 20°C/hr or less.

以上の工程を経た後、鋳造材料はVTR用シリンダーと
しての所定の形状に鍛造され、さらに強度、硬度を増大
するためにT6処理に付され、最後に切削加工により製
品に仕上げられる。
After passing through the above steps, the cast material is forged into a predetermined shape for a VTR cylinder, subjected to T6 treatment to increase strength and hardness, and finally finished into a product by cutting.

[実施例] 以下に実施例を挙げて、本発明をさらに詳細に説明する
[Example] The present invention will be explained in more detail by giving examples below.

実施例1 後記表1に示した化学成分を有する合金を溶解後、溶湯
処理をして介在物除去、脱ガスを行ない、Ti5Bをそ
れぞれ0.02ffi量%、0.004ffi量%添加
し、鋳造速度510mm/m1nでφ65關に鋳造した
。この鋳造棒を480℃で16時間均質化処理した後、
軟化処理として380℃に6時間保持し、冷却速度lO
℃/hrで150℃まで徐冷して鋳造棒とした。この軟
化後の素材を用いて鍛造試験を行なった。結果を鋳造棒
の鋳造条件、鋳造後のDASとともに表2に示す。また
、軟化後の素材をT6処理(500℃X1hr−水冷−
175℃X8hr)L、、耐摩耗性と硬さを調べた結果
を表2に併記する。
Example 1 After melting an alloy having the chemical components shown in Table 1 below, the melt was treated to remove inclusions and degas, and 0.02ffi and 0.004ffi of Ti5B were added, respectively, and cast. Casting was performed at a diameter of 65 mm at a speed of 510 mm/m1n. After homogenizing this cast rod at 480°C for 16 hours,
As a softening treatment, the temperature was maintained at 380°C for 6 hours, and the cooling rate was reduced to 10
It was slowly cooled to 150°C at a rate of °C/hr to obtain a cast rod. A forging test was conducted using this softened material. The results are shown in Table 2 together with the casting conditions of the cast bar and the DAS after casting. In addition, the material after softening is subjected to T6 treatment (500°C x 1 hr - water cooling -
175°C x 8hr) L, the results of examining the wear resistance and hardness are also listed in Table 2.

表1の合金の中でNo、1〜5は本発明の化学成分を有
する合金であり、No、6〜8は比較材である。No、
1〜5は鍛造性、およびT6処理後の耐磨耗性、硬さに
勝れている。
Among the alloys in Table 1, Nos. 1 to 5 are alloys having the chemical components of the present invention, and Nos. 6 to 8 are comparative materials. No,
Nos. 1 to 5 are excellent in forgeability, wear resistance after T6 treatment, and hardness.

しかし、No、6はCu、Mgjlが多いために軟化後
の硬さが高く、さらに鍛造割れの起点となる粗大な品出
物が多くなり鍛造性に劣る。
However, No. 6 has a large amount of Cu and Mgjl, so the hardness after softening is high, and there are also many coarse pieces that become the starting point of forging cracks, resulting in poor forgeability.

No、7はN1mが多いために鍛造割れの起点となる粗
大な品出物が多くなり鍛造性に劣る。また、No、8は
CuSMg、Ni量が少なイタめにT6処理後の硬さ、
耐摩耗性に劣る。
No. 7 has a large amount of N1m, so there are many coarse pieces that become the starting point of forging cracks, and the forgeability is poor. In addition, No. 8 has a small amount of CuSMg and Ni, and the hardness after T6 treatment,
Poor wear resistance.

なお、鍛造性、耐摩耗性はつぎの方法で評価した。In addition, forgeability and wear resistance were evaluated by the following method.

鍛造性:φ20X L 30mmの円柱状試験片の両底
面を拘束したまま圧縮速度10mm/sinで種々の型
圧縮し、側面に割れが発生する際の変形率(限界変形率
)で鍛造性を評価した。限界変形率が50%以上であれ
ばVTRシリンダーへの鍛造は十分可能である。
Forgeability: A 20X L 30mm cylindrical test piece was compressed in various molds at a compression rate of 10mm/sin while both bottoms were restrained, and the forgeability was evaluated based on the deformation rate (critical deformation rate) at which cracks occur on the sides. did. If the critical deformation rate is 50% or more, forging into a VTR cylinder is fully possible.

耐摩耗性:耐摩耗性は大越式摩耗試験で評価した。Abrasion resistance: Abrasion resistance was evaluated by Okoshi type abrasion test.

00m 2、Hm/5ec 2.1kg 850C(Ilv−750) φ30XL3mm 試験条件は、 摩擦距離 摩擦速度 最終荷重 相手材 無潤滑 である。比摩耗量8 mm / kg以下、ビッカース
硬さ 120以上であれば、VTRシリンダーとしての
耐摩耗性、硬さは十分である。
00m2, Hm/5ec 2.1kg 850C (Ilv-750) φ30XL3mm Test conditions are: Friction distance, friction speed, final load, mating material without lubrication. If the specific wear amount is 8 mm/kg or less and the Vickers hardness is 120 or more, the wear resistance and hardness as a VTR cylinder are sufficient.

表1 実施例1に供した合金の化学成分(vL%)表2 実施例1で得られた鋳造棒の特性 実施例2 Cu4.0重ユ%、Mg1.5重量%、Si0.3重ユ
%、Ni1.9重量%、F e O,25重量%を含み
、残りアルミニウムと不純物とからなるアルミニウム合
金を溶解し、溶湯処理をした後、冷却速度を変化させる
ために鋳造速度を変えてφ65+mの鋳造棒を作製した
。この鋳造棒を480℃で18時間均質化処理した後、
軟化処理として380℃に6時間保持し、冷却速度lO
℃/hrで150℃まで徐冷した。この素材を用いて行
なった鍛造試験の結果を素材の鋳造条件、DASと共に
表3に示す。
Table 1 Chemical composition (vL%) of the alloy used in Example 1 Table 2 Characteristics of the cast rod obtained in Example 1 Example 2 Cu 4.0% by weight, Mg 1.5% by weight, Si 0.3% by weight %, 1.9% by weight of Ni, 25% by weight of F e O, and the remaining aluminum and impurities. A cast bar was produced. After homogenizing this cast rod at 480°C for 18 hours,
As a softening treatment, the temperature was maintained at 380°C for 6 hours, and the cooling rate was reduced to 10
The mixture was slowly cooled to 150°C at a rate of °C/hr. The results of a forging test conducted using this material are shown in Table 3 along with the casting conditions and DAS of the material.

表3の合金の中でNo、1〜Gは本発明の実施例、No
、7〜9は比較例である。NO,1〜Bと比べてNo。
Among the alloys in Table 3, No. 1 to G are examples of the present invention, No.
, 7 to 9 are comparative examples. No, compared to 1-B.

7〜9は冷却速度が小さいためにDASが大きく、この
ため割れの起点となる粗大な晶出物が多くなり鍛造性が
劣る。
Samples Nos. 7 to 9 have a large DAS due to a low cooling rate, and as a result, there are many coarse crystallized substances that serve as starting points for cracks, resulting in poor forgeability.

なお、鍛造性の評価方法は実施例1の場合と同じである
Note that the evaluation method for forgeability is the same as in Example 1.

表3 実施例2で得られた鋳造棒の特性[発明の効果] 以上説明したように、本発明によれば、鍛造性、耐摩耗
性、硬度に優れ、VTRシリンダー用としてきわめて適
合性のあるアルミニウム合全鋳造棒を得ることができる
Table 3 Characteristics of the cast rod obtained in Example 2 [Effects of the invention] As explained above, according to the present invention, the rod has excellent forgeability, wear resistance, and hardness, and is extremely suitable for use in VTR cylinders. Aluminum alloy cast bars can be obtained.

Claims (1)

【特許請求の範囲】[Claims] Cu;3〜4.5重量%、Mg;0.3〜1.8重量%
、Ni;0.5〜2.5重量%、Si;0.1〜0.9
重量%、Fe;0.1〜0.7重量%を含み、残りアル
ミニウムと不純物とからなるアルミニウム合金を平均冷
却速度50℃/sec以上でφ80mm以下に鋳造する
ことを特徴とするVTRシリンダー用アルミニウム合金
鋳造棒の製造方法。
Cu: 3-4.5% by weight, Mg: 0.3-1.8% by weight
, Ni; 0.5 to 2.5% by weight, Si; 0.1 to 0.9
Aluminum for VTR cylinders, characterized in that an aluminum alloy containing 0.1 to 0.7 wt% Fe and the remainder aluminum and impurities is cast to a diameter of 80 mm or less at an average cooling rate of 50° C./sec or more. Method for manufacturing alloy cast rods.
JP17293989A 1989-07-06 1989-07-06 Production of cast aluminum alloy bar for vtr cylinder Pending JPH0339453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17293989A JPH0339453A (en) 1989-07-06 1989-07-06 Production of cast aluminum alloy bar for vtr cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17293989A JPH0339453A (en) 1989-07-06 1989-07-06 Production of cast aluminum alloy bar for vtr cylinder

Publications (1)

Publication Number Publication Date
JPH0339453A true JPH0339453A (en) 1991-02-20

Family

ID=15951152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17293989A Pending JPH0339453A (en) 1989-07-06 1989-07-06 Production of cast aluminum alloy bar for vtr cylinder

Country Status (1)

Country Link
JP (1) JPH0339453A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206927A (en) * 2004-01-26 2005-08-04 Furukawa Sky Kk Compressor impeller made of aluminum alloy casting for turbocharger having excellent heat resistant strength
WO2008001758A1 (en) * 2006-06-29 2008-01-03 Hitachi Metals Precision, Ltd. Casting aluminum alloy, cast compressor impeller comprising the alloy, and process for producing the same
CN102349152A (en) * 2009-03-10 2012-02-08 丰田自动车株式会社 Ebullient cooling device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714744A (en) * 1980-07-02 1982-01-26 Hitachi Ltd Apparatus for measuring differential fluorescence
JPS61170537A (en) * 1985-01-23 1986-08-01 Hitachi Ltd Aluminum alloy having high silicon content for cylinder of videotape recorder
JPS6286142A (en) * 1985-10-11 1987-04-20 Kobe Steel Ltd Aluminum alloy material having superior machinability and frictional characteristic for parts contacting with magnetic tape
JPS6416901A (en) * 1987-07-10 1989-01-20 Aisin Aw Co Steering sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714744A (en) * 1980-07-02 1982-01-26 Hitachi Ltd Apparatus for measuring differential fluorescence
JPS61170537A (en) * 1985-01-23 1986-08-01 Hitachi Ltd Aluminum alloy having high silicon content for cylinder of videotape recorder
JPS6286142A (en) * 1985-10-11 1987-04-20 Kobe Steel Ltd Aluminum alloy material having superior machinability and frictional characteristic for parts contacting with magnetic tape
JPS6416901A (en) * 1987-07-10 1989-01-20 Aisin Aw Co Steering sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206927A (en) * 2004-01-26 2005-08-04 Furukawa Sky Kk Compressor impeller made of aluminum alloy casting for turbocharger having excellent heat resistant strength
EP1557567A3 (en) * 2004-01-26 2010-12-29 Furukawa-Sky Aluminum Corporation Cast aluminum alloy compressor wheel for a turbocharger
WO2008001758A1 (en) * 2006-06-29 2008-01-03 Hitachi Metals Precision, Ltd. Casting aluminum alloy, cast compressor impeller comprising the alloy, and process for producing the same
JPWO2008001758A1 (en) * 2006-06-29 2009-11-26 株式会社日立メタルプレシジョン Aluminum cast alloy, cast compressor impeller made of this alloy, and manufacturing method thereof
EP2036993A4 (en) * 2006-06-29 2011-01-26 Hitachi Metals Ltd ALLOY ALLOY FOR CASTING, MOLDED COMPRESSOR ROTOR COMPRISING ALLOY AND PROCESS FOR PRODUCING THE SAME
US8292589B2 (en) 2006-06-29 2012-10-23 Hitachi Metals Precision, Ltd. Casting aluminum alloy, cast compressor impeller comprising the alloy, and process for producing the same
CN102349152A (en) * 2009-03-10 2012-02-08 丰田自动车株式会社 Ebullient cooling device

Similar Documents

Publication Publication Date Title
EP2767608B1 (en) METHOD FOR PRODUCING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND AND PRIMARY CRYSTAL Si ARE FINELY DIVIDED
JPH07109536A (en) Aluminum alloy for forging and its heat treatment
EP1882754B1 (en) Aluminium alloy
JP4328996B2 (en) Al-Mg-Si aluminum alloy cold forging manufacturing method
CN111020303A (en) 4XXX series aluminum alloy and preparation method thereof
JPS61163233A (en) Non-heat treatment type free-cutting aluminum alloy
JPH0790459A (en) Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JP7639269B2 (en) Aluminum alloy forgings and manufacturing method thereof
JPH11286759A (en) Manufacturing method of forged product using extruded aluminum
JP3852915B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP3840400B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
CN118180703A (en) Al-Cu-Mn-Zr alloy welding wire for additive manufacturing and preparation method thereof
JPH07113136B2 (en) Free-Cutting Aluminum Alloy Cast Material and Manufacturing Method Thereof
JPH0339453A (en) Production of cast aluminum alloy bar for vtr cylinder
JPH0457738B2 (en)
JPH08232035A (en) High-strength aluminum alloy material for bumpers with excellent bending workability and method for producing the same
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP4148801B2 (en) Wear-resistant Al-Si alloy having excellent machinability and casting method thereof
JPH0418024B2 (en)
JP2002212692A (en) Method for producing Al-Si alloy material
JPH0366387B2 (en)
JPH02149632A (en) Low thermal expansion aluminum alloy with excellent wear resistance and thermal conductivity
JPH0256416B2 (en)
JPH0339454A (en) Production of cast aluminum alloy bar for vtr cylinder