[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0337552A - Method and apparatus for multiple-inner-reflection type component analysis - Google Patents

Method and apparatus for multiple-inner-reflection type component analysis

Info

Publication number
JPH0337552A
JPH0337552A JP17157489A JP17157489A JPH0337552A JP H0337552 A JPH0337552 A JP H0337552A JP 17157489 A JP17157489 A JP 17157489A JP 17157489 A JP17157489 A JP 17157489A JP H0337552 A JPH0337552 A JP H0337552A
Authority
JP
Japan
Prior art keywords
high refractive
sample
light
light rays
refractive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17157489A
Other languages
Japanese (ja)
Inventor
Masaaki Tsuchimoto
土本 正明
Masataka Shichiri
雅隆 七里
Ryoji Suzuki
良治 鈴木
Hitoshi Ishibashi
石橋 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP17157489A priority Critical patent/JPH0337552A/en
Publication of JPH0337552A publication Critical patent/JPH0337552A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure a plurality of samples with one high refractive material by containing the samples in a container so that the samples are brought into contact tightly with a pair of facing surfaces, inserting the high refractive material into another sample, and bringing the samples into contact with the other pair of facing surfaces tightly. CONSTITUTION:A light source 1 is lit, and only the light rays having the specified wavelength region are made to pass through an interference filter 2. The light rays are equally split through a half mirror 3. The light rays are sent in to light input surfaces 12A and 12B through light emitting fibers 4A and 4B, respectively, and inputted into a prism 9 which is manufac tured with a high refractive material. The light rays are reflected with facing surfaces 11A, 11A, 11B and 11B internally in a multiple pattern. The light rays radiate downward. The light rays are totally reflected from a reflecting surface 14 and reflected internally in a multiple pattern again. The light rays radiate upward and are emitted from the light emitting surfaces 13A and 13B. The spectrums of the wavelengths inherent to the materials are absorbed with materials which are contained in a reference sample S0 and the material to be measured S which are in contact tightly when the reflections occur on the facing surfaces 11A, 11A, 11B and 11B. The outputs of photodetectors 6A and 6B are operated, and the components can be analyzed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高屈折材に平行に向き合う対向面を備えさせ
、この対向面の外側に試料を密着させるとともに、前記
高屈折材に入射されて前記対向面内側にて多重内部反射
して前記高屈折材から出射する光線を測定する多重内部
反射式の成分分析法及びその装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a high refractive index material with opposing surfaces facing parallel to each other, a sample is brought into close contact with the outside of this opposing surface, and a sample is placed in close contact with the outside of this opposing surface, and the light beam incident on the high refractive index material is The present invention relates to a multiple internal reflection type component analysis method and an apparatus thereof, in which a light ray that is multiple internally reflected on the inner side of the opposing surface and then emitted from the high refractive material is measured.

〔従来の技術〕[Conventional technology]

先ず、多重内部反射式の成分分析法について簡単に説明
する。
First, the multiple internal reflection type component analysis method will be briefly explained.

第8図に示すように、高屈折材(9)(一般にはプリズ
ムが用いられる)に平行に向き合う対向面(11A)、
 (11A)を形成し、この対向面(11A)。
As shown in FIG. 8, an opposing surface (11A) facing parallel to the high refractive material (9) (generally a prism is used);
(11A) and this opposing surface (11A).

(11A)に試料(S)を密着させる。そして、対向面
(11A)、 (11A)の界面に全反射角で光線を入
射させ、多重内部反射させて出射した反射スペクトルを
測定する。高屈折材(9)に接する試料(S)に吸収が
ない場合、多重内部反射による出射光の光量ロス(減光
)はないが、試料(S)に吸収がある場合、出射光に光
量ロスを生ずる。光量ロスの程度は、試料(S)の吸収
係数が大きいほど著しい。
The sample (S) is brought into close contact with (11A). Then, a light beam is made incident on the interface between the opposing surfaces (11A) and (11A) at a total reflection angle, and the reflected spectrum of the emitted light after multiple internal reflections is measured. If there is no absorption in the sample (S) in contact with the high refractive material (9), there will be no light intensity loss (attenuation) of the emitted light due to multiple internal reflections, but if there is absorption in the sample (S), there will be a light intensity loss in the emitted light. will occur. The degree of light loss becomes more significant as the absorption coefficient of the sample (S) increases.

従って、多重内部反射による反射率Rは、近似的には、
反射回数をn、高屈折材(9)から吸収係数kを有する
試料(S)へ入射する光の反射率をR4とすると R” Rh ’ で表わせる。
Therefore, the reflectance R due to multiple internal reflections is approximately:
If the number of reflections is n and the reflectance of light incident on the sample (S) having an absorption coefficient k from the high refractive material (9) is R4, it can be expressed as R''Rh'.

一般に、試料(S)の吸収は、波長依存性がある為、波
長λによる反射率をR(λ)とすれば、上式は R(λ)−[Rk(λ)°) となる。従って、波長を走査させ、この反射スペクトル
から物質の成分を調べることができる。
In general, the absorption of the sample (S) is wavelength dependent, so if the reflectance at wavelength λ is R(λ), the above equation becomes R(λ)−[Rk(λ)°). Therefore, by scanning the wavelength, it is possible to investigate the components of the substance from this reflection spectrum.

そしてこの成分分析法により、試料中に含まれる含有物
質の成分の割合を測定する場合は、第9図に示すように
、光源から発せられる光線をハーフミラ−(3)で等し
く分光し、それぞれの光線を、基準となる試料(S0)
が密着されている第1高屈折材(9A)と、測定対象の
試料(S)が密着された第2高屈折材(9B)に入射さ
せて多重内部反射させ、第1・第2高屈折材(9A)、
 (9B)から出射した光線の差を演算する。こうする
と、含有物質に吸収された分のスペクトルが得られ、含
有物質を特定するとともにその成分割合を分析すること
ができる。
When using this component analysis method to measure the proportion of components of substances contained in a sample, as shown in Figure 9, the light rays emitted from the light source are divided into equal parts by a half mirror (3), and each The light beam is connected to the reference sample (S0)
The sample (S) to be measured is made to enter the first high refractive material (9A) in close contact with the second high refractive material (9B) in close contact with each other for multiple internal reflections. Material (9A),
Calculate the difference between the light rays emitted from (9B). In this way, a spectrum of the amount absorbed by the contained substance can be obtained, and it is possible to specify the contained substance and analyze its component ratio.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

かかる成分分析法で使用される高屈折材(9)は、第8
図に示すように対向面(11A)、 (11A)を1組
しか備えていないため、−度に1つの試料のスペクトル
しか測定することができない。したがって、上記のよう
に2つの試料のスペクトルを同時に測定して差をとり、
成分分析を行おうとする場合には、第9図に示すように
高価な高屈折材(9)が2個必要になってコスト高とな
る難点があった。
The high refractive material (9) used in this component analysis method is the 8th
As shown in the figure, since there is only one set of opposing surfaces (11A) and (11A), it is possible to measure the spectrum of only one sample at a time. Therefore, as mentioned above, the spectra of two samples are measured simultaneously and the difference is taken.
When attempting to perform component analysis, two expensive high refractive materials (9) are required, as shown in FIG. 9, resulting in high costs.

本発明は、1個の高屈折材で複数の試料を同時に測定で
きるようにすることで、このような難点を解消すること
を目的としている。
The present invention aims to solve these difficulties by making it possible to simultaneously measure a plurality of samples using one high refractive index material.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明の方法にあっては、
前記高屈折材に前記対向面とは別の第2対向面を備えさ
せ、この第2対向面に前記試料とは別の第2試料を密着
させるとともに、前記高屈折材に前記光線とは別に入射
されて前記第2対向面内側にて多重内部反射して前記高
屈折材から出射する第2光線を測定する点を特徴として
いる。
In order to achieve the above object, the method of the present invention includes:
The high refractive material is provided with a second opposing surface different from the opposing surface, and a second sample different from the sample is brought into close contact with the second opposing surface, and the high refractive material is provided with a second opposing surface different from the opposing surface. The method is characterized in that a second light beam that is incident, undergoes multiple internal reflections inside the second opposing surface, and then exits from the high refractive material is measured.

また、本発明装置にあっては、高屈折材に平行に向き合
う2組以上の対向面が備えられ、つの組の対向面側には
、この対向面に密着した状態で試料を収容するための容
器が設けられるとともに、前記高屈折材に入射させて各
組の対向面にて多重内部反射させる光線を発する発光手
段と、多重内部反射して前記高屈折材から出射した前記
光線を受光する受光手段とが備えられ、前記高屈折材、
前記容器、前記発光手段、前記受光手段のそれぞれが、
1つのユニット状に組み付けられている点を特徴として
いる。
In addition, the apparatus of the present invention is provided with two or more sets of opposing surfaces facing parallel to the high refractive index material, and the opposing surfaces of the two sets have a structure for accommodating the sample in close contact with the opposing surfaces. A light emitting means for emitting a light beam that is incident on the high refractive material and subjected to multiple internal reflections on opposing surfaces of each set; and a light receiving means for receiving the light beam that has been multiple internally reflected and exits from the high refractive material. means, the high refractive material;
Each of the container, the light emitting means, and the light receiving means,
It is characterized by being assembled into one unit.

〔作 用〕[For production]

本発明の方法では、高屈折材に備えられた対向面に試料
を密着させるとともに、この対向面とは別の第2対向面
には第2試料を密着させる。
In the method of the present invention, a sample is brought into close contact with an opposing surface provided on a high refractive index material, and a second sample is brought into close contact with a second opposing surface that is different from this opposing surface.

そして前記高屈折材に入射した光線を対向面内側にて多
重内部反射させ、高屈折材から出射した光線を測定する
とともに、前記光線とは別の第2光線を第2対向面内側
にて多重内部反射させ、高屈折材から出射した第2光線
を測定する。
Then, the light beam incident on the high refractive material is subjected to multiple internal reflections on the inside of the opposing surface, the light rays emitted from the high refractive material are measured, and a second light beam different from the above light beam is multiplexed on the inside of the second opposing surface. The second light beam that is internally reflected and emitted from the high refractive material is measured.

本発明の装置では、容器内に試料を収容して1組の対向
面に密着させるとともに、高屈折材を別な試料の中に挿
入して別の組の対向面にも試料が密着するようにする。
In the apparatus of the present invention, a sample is housed in a container and brought into close contact with one set of opposing surfaces, and a high refractive material is inserted into another sample so that the sample also comes into close contact with another set of opposing surfaces. Make it.

そして次に発光手段を発光させ、2本以上の光線が各組
の対向面にてそれぞれ多重内部反射した後、高屈折材か
ら出射して受光手段で受光される。
Then, the light emitting means is caused to emit light, and after two or more light beams undergo multiple internal reflections on each set of opposing surfaces, they are emitted from the high refractive material and are received by the light receiving means.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、1個の高屈折材で複数の試料を
同時に測定できるので、基準の試料と比較して含有物質
の成分を分析する場合であっても安価に行うことが可能
になる。しかも、それぞれの測定に際して高屈折材の特
性が同じになるので、2個の高屈折材を用いる場合に比
較して精密な測定を行えるようになる。
According to the method of the present invention, multiple samples can be measured simultaneously using one high refractive index material, so even when analyzing the components of contained substances in comparison with a reference sample, it can be done at low cost. Become. Moreover, since the characteristics of the high refractive materials are the same for each measurement, more precise measurements can be made than when two high refractive materials are used.

本発明の装置によれば、高屈折材を試料の中に挿入する
だけで試料中の含有物質の成分を簡単に分析でき、しか
もコンパクトで取扱いが容易な成分分析装置を提供でき
るようになる。
According to the device of the present invention, it is possible to easily analyze the components of substances contained in a sample by simply inserting a high refractive material into the sample, and it is possible to provide a component analyzer that is compact and easy to handle.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第2図に示されているのは多重内部反射式の成分分析装
置である。この成分分析装置は、各種の部品を内蔵した
本体(A)の下部に検出部(B)を設けて、携帯可能に
ユニット化したもので、検出部(B)を液状の測定試料
(S)内に投入して本体(A)でその分析を行えるよう
になっている。
What is shown in FIG. 2 is a component analyzer of multiple internal reflection type. This component analyzer is a portable unit with a detection section (B) installed at the bottom of a main body (A) containing various parts. It is designed so that it can be inserted into the main body (A) and analyzed in the main body (A).

第1図に示すように、前記本体(A)には、光源(1)
、干渉フィルタ(2)、ハーフミラ−(3)、2本の発
光用ファイバ(4A)、(4B) 、2本の受光用ファ
イバ(5A)、(5B) 、2個の受光素子(6A)。
As shown in FIG. 1, the main body (A) includes a light source (1).
, an interference filter (2), a half mirror (3), two light emitting fibers (4A), (4B), two light receiving fibers (5A), (5B), and two light receiving elements (6A).

(6B)、演算装置(7)、表示装置(8)などを内蔵
しである。
(6B), an arithmetic unit (7), a display device (8), etc.

前記検出部(B)は、高屈折材料で製作したプリズム(
9)と、このプリズム(9)に設けられた一対の容器(
10)からなる。前記プリズム(9)は、平行に向かい
合う2組の対向面(11A)、 (11A)。
The detection section (B) includes a prism (
9) and a pair of containers (
10). The prism (9) has two sets of opposing surfaces (11A) and (11A) facing each other in parallel.

(11B)、 (11B)を有した四角柱状に形成して
あり、その上端部は2つの入光面(12A)、 (12
B)と2つの出光面(13A)、 (13B)を有する
四角錐状に(第3図参照)、下端部は鏡面処理された4
つの反射面(14)を有する四角錐状に形成しである。
(11B), (11B), and its upper end has two light incident surfaces (12A), (12
B) and two light emitting surfaces (13A) and (13B) in the shape of a square pyramid (see Figure 3), the lower end of which is mirror-finished.
It is formed into a quadrangular pyramid shape with two reflective surfaces (14).

また、前記容器(10)は、1組の対向面(11B)、
 (11B)の全体を囲う状態で付設しである。この容
器(10)の上部には1.基準試料(S0)(第2試料
に相当し、具体的には水)を入れるための開口(10a
)を形成してあり、対向面側の側壁部分は、基準試料(
S0)を収容した際に対向面(11B)、 (11B)
に基準試料(S0)が密着するように取り除いである。
The container (10) also includes a set of opposing surfaces (11B),
(11B) is attached to surround the entire area. The upper part of this container (10) has 1. An opening (10a) for introducing the reference sample (S0) (corresponds to the second sample, specifically water)
), and the side wall portion on the opposite surface side is the reference sample (
When S0) is accommodated, the facing surface (11B), (11B)
The reference sample (S0) was removed so that it was in close contact with the reference sample (S0).

次に、この成分分析装置を用いて測定試料(S)の成分
分析を行う方法を説明する。
Next, a method for performing component analysis of the measurement sample (S) using this component analyzer will be explained.

先ず、容器(10)内に基準試料(S0)を満杯に入れ
たら、開口(10a)から測定試料(S)が浸入しない
ように注意しながら、検出部(B)を測定試料(S)内
に挿入し、測定試料(S)が対向面(11A)。
First, after filling the container (10) with the reference sample (S0), insert the detection part (B) into the measurement sample (S), being careful not to let the measurement sample (S) enter through the opening (10a). The measurement sample (S) is placed on the opposite surface (11A).

(11A)の全体に密着するようにする。そして光源(
1)を点灯して吸収スペクトルの測定を開始する。尚、
基準試料(S0)は、含有している特定物質とその成分
割合が既知の試料であり、これに対して測定試料(S)
は、特定物質の成分割合が未知の試料である。
(11A) so that it is in close contact with the entire surface. And the light source (
1) Turn on the light and start measuring the absorption spectrum. still,
The reference sample (S0) is a sample whose specific substance and its component ratio are known, whereas the measurement sample (S)
is a sample in which the component ratio of a specific substance is unknown.

前記光源(1)が点灯して光線が発せられると、光線の
特定波長領域だけが干渉フィルタ(2)を通過するとと
もに、ハーフミラ−(3)によって等しく2つに分光さ
れる。こうして2本になった光線は2本の発光用ファイ
バ(4A)、 (4B)によってそれぞれの入光面(1
2A)、 (12B)へ送られてプリズム(9)へ入光
する。
When the light source (1) is turned on and a light beam is emitted, only a specific wavelength region of the light passes through the interference filter (2) and is split into two equal parts by the half mirror (3). The two light beams are transmitted through the two light emitting fibers (4A) and (4B) to each light incident surface (1
2A), (12B) and enters the prism (9).

前記プリズム(9)へ入光した2本の光線は、各々の対
向面(11A)、 (11A)、 (11B)、 (1
1B)にて多重内部反射しながら下方へ進み、そして反
射面(14)にて全反射され、各々の対向面(11A)
、 (11A)。
The two light rays entering the prism (9) have respective opposing surfaces (11A), (11A), (11B), (1
1B), travels downward while undergoing multiple internal reflections, is totally reflected at the reflecting surface (14), and is reflected by each opposing surface (11A).
, (11A).

(11B)、 (11B)にて再び多重内部反射しなが
ら上方へ進み、2つの出光面(13A)、 (13B)
から出光する。しかして、対向面(11A)、 (11
A)、 (11B)。
(11B), Proceeds upward while undergoing multiple internal reflections again at (11B), and reaches two light exit surfaces (13A), (13B)
Light is emitted from. Therefore, the facing surface (11A), (11
A), (11B).

(11B)にて反射が行われる際には、密着している基
準試料(S0)や測定試料(S)に含まれる特定0 物質によって、物質固有の波長のスペクトルが吸収され
ることになる。
When reflection is performed at (11B), the spectra of wavelengths specific to the substance are absorbed by the specific substance contained in the reference sample (S0) and measurement sample (S) that are in close contact with each other.

前記プリズム(9)から出光した光線は、2本の受光用
ファイバ(5A)、 (5B)によってそれぞれの受光
素子(6A)、 (6B)へ送られて電気信号に変換さ
れる。これらの電気信号は演算装置(7)へ送られて強
度補正され、差を取って吸収スペクトルの分析がなされ
て表示装置(8)に表示される。この場合、基準試料(
S0)との界面で反射して受光された光線の電気信号か
ら波長と透過率との関係を示すと第4図のグラフとなり
、測定試料(S)との界面で反射された光線の電気信号
から波長と透過率との関係を示すと第5図のグラフとな
り、更に、両者の電気信号の差から波長と透過率との関
係を求めると第6図のグラフとなる。
The light beams emitted from the prism (9) are sent to the respective light receiving elements (6A), (6B) by two light receiving fibers (5A), (5B) and converted into electrical signals. These electrical signals are sent to an arithmetic unit (7) where their intensity is corrected, and the difference is taken to analyze the absorption spectrum and displayed on a display unit (8). In this case, the reference sample (
Figure 4 shows the relationship between wavelength and transmittance based on the electrical signal of the light beam reflected and received at the interface with the measurement sample (S). The relationship between wavelength and transmittance is shown in the graph of FIG. 5, and the relationship between wavelength and transmittance is determined from the difference between the electric signals, as shown in FIG. 6.

したがって、第6図のグラフの波長と透過率を測定すれ
ば、測定試料(S)が基準試料(S0)に比較して特定
物質をどれだけの割合で含有しているかの判断をするこ
とができるのである。
Therefore, by measuring the wavelength and transmittance shown in the graph of Figure 6, it is possible to determine the proportion of a specific substance contained in the measurement sample (S) compared to the reference sample (S0). It can be done.

〔別実施例〕[Another example]

本発明を実施するに、第7図に示すように、プリズム(
9)の下端部に水平面をカットして鏡面処理をすること
で単一の反射面(14)を形成してもよい。
To carry out the present invention, a prism (
A single reflective surface (14) may be formed by cutting a horizontal surface on the lower end of the mirror 9) and applying a mirror finish.

又、高屈折材(9)を六角柱状や八角柱状にして、3組
以上の対向面を備えさせて、3種以上の試料を同時に測
定するようにしてもよい。
Alternatively, the high refractive index material (9) may be shaped into a hexagonal column or an octagonal column, and may be provided with three or more sets of opposing surfaces, so that three or more types of samples can be measured simultaneously.

尚、特許請求の範囲の項に図面との対照を便利にするた
めに符号を記すが、この記入により本発明は添付図面の
構造に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る多重内部反射式の成分分析法及びそ
の装置の実施例を示し、第1図は検出部の斜視図、第2
図は全体構成を示す図、第3図は検出部の平面図、第4
図は基準試料の波長と透過率の関係を示すグラフ、第5
図は測定試料の波長と透過率の関係を示すグラフ、第6
図は基準試料との差をとった場合の測定試料の2 波長と吸光率の関係を示すグラフであり、第7図は反射
面の改良例を示す側面図である。また、第8図は従来の
高屈折材の側面図であり、第9図は従来の高屈折材で測
定する際の使用例を示す概略図である。 (S0)・・・・・・・・・第2試料、(S)・・・・
・・・・・測定試料、(1)・・・・・・発光手段、(
6)・・・・・・・・・受光手段、(9)・・・・・・
・・・高屈折材、(10)・・・・・・・・・容器、(
11A)。 (11A)・・・・・・・・・対向面、(11B)、 
(11B)・・・・・・・・・第2対向面。
The drawings show an embodiment of the multiple internal reflection type component analysis method and its apparatus according to the present invention, and FIG. 1 is a perspective view of the detection section, and FIG.
The figure shows the overall configuration, Figure 3 is a plan view of the detection section, and Figure 4 shows the overall configuration.
The figure is a graph showing the relationship between the wavelength and transmittance of the reference sample.
The figure is a graph showing the relationship between the wavelength and transmittance of the measurement sample.
The figure is a graph showing the relationship between two wavelengths and absorbance of the measurement sample when the difference from the reference sample is taken, and FIG. 7 is a side view showing an example of an improved reflective surface. Moreover, FIG. 8 is a side view of a conventional high refractive index material, and FIG. 9 is a schematic diagram showing an example of use when measuring with the conventional high refractive index material. (S0)... Second sample, (S)...
...Measurement sample, (1) ...Light-emitting means, (
6)......Light receiving means, (9)...
...High refractive index material, (10) ...... Container, (
11A). (11A)...... Opposite surface, (11B),
(11B)...Second opposing surface.

Claims (1)

【特許請求の範囲】 1、高屈折材(9)に平行に向き合う対向面(11A)
、(11A)を備えさせ、この対向面(11A)、(1
1A)の外側に試料(S)を密着させるとともに、前記
高屈折材(9)に入射されて前記対向面(11A)、(
11A)内側にて多重内部反射して前記高屈折材(9)
から出射する光線を測定する多重内部反射式の成分分析
法であって、前記高屈折材(9)に前記対向面(11A
)、(11A)とは別の第2対向面(11B)、(11
B)を備えさせ、この第2対向面(11B)、(11B
)に前記試料(S)とは別の第2試料(S_0)を密着
させるとともに、前記高屈折材(9)に前記光線とは別
に入射されて前記第2対向面(11B)、(11B)内
側にて多重内部反射して前記高屈折材(9)から出射す
る第2光線を測定する多重内部反射式の成分分析法。 2、高屈折材(9)に平行に向き合う2組以上の対向面
(11A)、(11A)、(11B)、(11B)が備
えられ、一つの組の対向面側には、この対向面(11B
)、(11B)に密着した状態で試料(S_0)を収容
するための容器(10)が設けられるとともに、前記高
屈折材(9)に入射させて各組の対向面(11A)、(
11A)、(11B)、(11B)にて多重内部反射さ
せる光線を発する発光手段(1)と、多重内部反射して
前記高屈折材(9)から出射した前記光線を受光する受
光手段(6)とが備えられ、前記高屈折材(9)、前記
容器(10)、前記発光手段(1)、前記受光手段(6
)のそれぞれが、1つのユニット状に組み付けられてい
る多重内部反射式の成分分析装置。
[Claims] 1. Opposing surface (11A) facing parallel to the high refractive index material (9)
, (11A), and the opposing surfaces (11A), (1
The sample (S) is brought into close contact with the outside of the material (1A), and the sample (S) is incident on the high refractive index material (9) to form the opposite surface (11A), (
11A) The high refractive material (9) undergoes multiple internal reflections on the inside.
This is a multiple internal reflection type component analysis method for measuring light rays emitted from the high refractive material (9) and the opposing surface (11A).
), (11A), the second opposing surface (11B), (11
B), and this second opposing surface (11B), (11B
), a second sample (S_0) different from the sample (S) is brought into close contact with the sample (S), and the light beam is incident on the high refractive material (9) separately from the light beam, and the second opposing surface (11B), (11B) A multiple internal reflection type component analysis method that measures a second light beam that undergoes multiple internal reflections and exits from the high refractive material (9). 2. Two or more sets of opposing surfaces (11A), (11A), (11B), (11B) facing parallel to the high refractive index material (9) are provided, and one set of opposing surfaces has this opposing surface. (11B
), (11B) is provided, and a container (10) is provided for accommodating the sample (S_0) in close contact with the high refractive material (9), and the opposing surfaces (11A), (
11A), (11B), and (11B) for emitting a light beam that is subjected to multiple internal reflections; and a light receiving means (6) that receives the light beam that has been subjected to multiple internal reflections and is emitted from the high refractive material (9). ), the high refractive material (9), the container (10), the light emitting means (1), and the light receiving means (6).
) is a multiple internal reflection type component analyzer that is assembled into one unit.
JP17157489A 1989-07-03 1989-07-03 Method and apparatus for multiple-inner-reflection type component analysis Pending JPH0337552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17157489A JPH0337552A (en) 1989-07-03 1989-07-03 Method and apparatus for multiple-inner-reflection type component analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17157489A JPH0337552A (en) 1989-07-03 1989-07-03 Method and apparatus for multiple-inner-reflection type component analysis

Publications (1)

Publication Number Publication Date
JPH0337552A true JPH0337552A (en) 1991-02-18

Family

ID=15925674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17157489A Pending JPH0337552A (en) 1989-07-03 1989-07-03 Method and apparatus for multiple-inner-reflection type component analysis

Country Status (1)

Country Link
JP (1) JPH0337552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032417A1 (en) * 1994-05-25 1995-11-30 Daikin Industries, Ltd. Optical measuring method and apparatus therefor
JP2008309785A (en) * 2007-06-13 2008-12-25 Mettler-Toledo Ag Attenuated total reflection sensor
WO2015052893A1 (en) * 2013-10-11 2015-04-16 Dic株式会社 Atr element, immersion probe, and spectrophotometer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032417A1 (en) * 1994-05-25 1995-11-30 Daikin Industries, Ltd. Optical measuring method and apparatus therefor
US5858800A (en) * 1994-05-25 1999-01-12 Shigemori; Kazuhisa Optical measurement method and apparatus thereof
JP2008309785A (en) * 2007-06-13 2008-12-25 Mettler-Toledo Ag Attenuated total reflection sensor
WO2015052893A1 (en) * 2013-10-11 2015-04-16 Dic株式会社 Atr element, immersion probe, and spectrophotometer
JP5839641B2 (en) * 2013-10-11 2016-01-06 Dic株式会社 ATR element, immersion probe, and spectrophotometer
JPWO2015052893A1 (en) * 2013-10-11 2017-03-09 Dic株式会社 ATR element, immersion probe, and spectrophotometer

Similar Documents

Publication Publication Date Title
EP0206433B1 (en) Methods for measuring the light absorbance of a fluid medium
JP3194152B2 (en) An evaluation device that evaluates the brightness of the surface, especially the skin
AU593568B2 (en) An improved system for remote chemical analysis
US8064051B2 (en) Apparatus and method for spectrophotometric analysis
US4678326A (en) Apparatus for the measurement of fluorescence, turbidity, luminescence or absorption
AU769362B2 (en) Method and apparatus for detecting mastitis by using visible light and/or near infrared light
US5035508A (en) Light absorption analyser
CH665033A5 (en) WAVEGUIDE FOR USE AS AN OPTICAL PROBE IN SPECTROSCOPIC ANALYSIS WITH INTERNAL REFLECTION.
US5416579A (en) Method for determining concentration in a solution using attenuated total reflectance spectrometry
US4746214A (en) Spectrophotometer
CN101140222A (en) Spectrometer system and method for measuring whole optical parameter including turbidity dielectric materials
US3433570A (en) Multiple attenuated total reflection apparatus and method
CN102890067A (en) Methanol gasoline quick detector based on near infrared rays
JPH08122247A (en) Analyzer
KR19990029895A (en) Concentration measuring device and measuring method of specific ingredient
JPH0337552A (en) Method and apparatus for multiple-inner-reflection type component analysis
JP2000304694A (en) Method and apparatus for grading of tea leaf
JP3352848B2 (en) Pseudo-object for calibration of internal property measuring device and calibration method of internal property measuring device
US3211051A (en) Optical measuring device for obtaining a first derivative of intensity with respect to wavelength
US5969812A (en) Spectrophotometer apparatus with dual concentric beams and fiber optic beam splitter
WO2002040971A1 (en) Method and apparatus for determination of optical parameters of turbid media and use thereof
CN212514221U (en) Full-spectrum miniature optical fiber spectrometer
JP3324341B2 (en) Spectroscopic analyzer
JPH0585020B2 (en)
JP2590129B2 (en) Liquid physical property measurement device