[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0336286A - Descaling method and production of plated steel plate using the same - Google Patents

Descaling method and production of plated steel plate using the same

Info

Publication number
JPH0336286A
JPH0336286A JP17155389A JP17155389A JPH0336286A JP H0336286 A JPH0336286 A JP H0336286A JP 17155389 A JP17155389 A JP 17155389A JP 17155389 A JP17155389 A JP 17155389A JP H0336286 A JPH0336286 A JP H0336286A
Authority
JP
Japan
Prior art keywords
temperature
steel
hot
descaling
direct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17155389A
Other languages
Japanese (ja)
Inventor
Katsuhiro Nojima
克広 野島
Yutaka Hayashi
豊 林
Yutaka Suzuki
豊 鈴木
Hikari Okada
光 岡田
Yukio Matsuda
行雄 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17155389A priority Critical patent/JPH0336286A/en
Publication of JPH0336286A publication Critical patent/JPH0336286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分町] 本発明は鋳片、鋼片、鋼線、@造材、熱延鋼材などの鋼
材表面に生成しているスケールを除去する調相の脱スケ
ール法およびこれを用いたメツキ鋼板製造法に関する。
[Detailed Description of the Invention] (Industrial Applications) The present invention is a phase adjustment method for removing scale generated on the surface of steel materials such as cast slabs, steel slabs, steel wires, @sawn materials, and hot rolled steel materials. This paper relates to a descaling method and a galvanized steel plate manufacturing method using the same.

(従来の技術) 例えば、熱間圧延にて製造された熱延鋼板の表面には鉄
の酸化皮膜であるスケールが生成している。このスケー
ルは、熱延鋼板に冷間圧延を施す場合には完全に除去し
て」3(必要がある。熱延鋼板に適用される脱スケール
法としては、周知のように酸洗方式とメカニカルデスケ
ーリング方式とがあり、両者を組合せた脱スケール法も
一部では用いられている。また、特開昭61−9571
8号公報には、鋼材の表面を火炎により局部加熱した後
に、酸洗やメカニカルデスケーリングを行なう脱スケー
ル法も開示されている。
(Prior Art) For example, scale, which is an oxide film of iron, is formed on the surface of a hot rolled steel sheet manufactured by hot rolling. This scale must be completely removed when cold-rolling a hot-rolled steel sheet.The descaling methods applied to hot-rolled steel sheets include the pickling method and the mechanical method, as is well known. There is a descaling method, and a descaling method that combines both is also used in some cases.
No. 8 also discloses a descaling method in which the surface of a steel material is locally heated with flame and then pickled or mechanically descaled.

(発明が解決しようとする課題) これらの脱スケール法のうち、酸洗方式では長大な酸洗
槽と大規模の廃酸処理設備が必要であり、必要スペース
が大きく設備費もかさむ。また、酸を大量に使用するの
で経済的でなく、作業環境も悪い欠点がある。更に、こ
の力弐では酸液中を通板させるたりでは脱スケール性が
悪い。そこで、スキンバス、スケールブI/−カ、コイ
ル急冷といった前処理でスケール層に予めクラックを入
れるとか、酸洗中にブラシによりデスケーリングを行う
といったことも一部では試行、実施されている。
(Problems to be Solved by the Invention) Among these descaling methods, the pickling method requires a long pickling tank and large-scale waste acid treatment equipment, requiring a large amount of space and increasing equipment costs. Furthermore, since a large amount of acid is used, it is not economical and has the disadvantage of creating a poor working environment. Furthermore, this strength has poor descaling properties when the plate is passed through an acid solution. Therefore, in some cases, attempts have been made to crack the scale layer through pretreatment such as skin bath, scale blotting, and coil quenching, or to perform descaling with a brush during pickling.

しかし、これらの改良によっても装置占有スペース等の
問題は依然として解決されていない。
However, even with these improvements, problems such as the space occupied by the device still remain unsolved.

一方、メカニカルデスケーリング方式は、酸洗方式のよ
うに均一に脱スケールすることができない木質的欠陥を
有している。従って、酸洗方式の前処理や、」二記ブラ
シのように酸洗処理中の補助手段としてしか使用されて
いないのが現状である。
On the other hand, the mechanical descaling method has woody defects that prevent uniform descaling like the pickling method. Therefore, at present, it is used only as a pre-treatment for pickling, or as an auxiliary means during pickling, such as the second brush.

他方、火炎による局部加熱も基本的には上記スキンパス
等と同様、鋼材表面のスケールを剥離させやすい状態に
することが目的であり、酸洗方式やメカニカルデスケー
リング方式との併用が前提であるために、上記問題を解
決するには至っていな本発明は、バーナの直火還元作用
を利用して上記問題の解決を図った小スペースで均一か
つ能率的にスケール除去を行ない得る鋼材の脱スケール
法を提供することを目的とする。
On the other hand, similar to the above-mentioned skin pass method, local heating using flame is basically intended to make it easier to remove scale from the surface of the steel material, and it is assumed that it is used in combination with the pickling method or mechanical descaling method. However, the present invention has not yet been able to solve the above problems.The present invention aims to solve the above problems by utilizing the direct flame reduction effect of a burner. The purpose is to provide law.

本発明の別の目的は、上記脱スケール法を利用した経済
的なメツキ鋼板製造法を提供することにある。
Another object of the present invention is to provide an economical method for manufacturing galvanized steel sheets using the above descaling method.

(課題を解決するための手段) バーナの直火還元作用自体は、既によく知られており、
冷延鋼板の連続焼鈍設備や溶融亜鉛メンキラインにおけ
る連続焼鈍設備等に用いられる直火無酸化炉はこの作用
を利用したものである。溶融亜鉛メツキラインの直火無
酸化炉における直火還元作用は次のとおりである。
(Means for solving the problem) The direct flame reduction effect of the burner itself is already well known.
Direct-fire non-oxidation furnaces used in continuous annealing equipment for cold-rolled steel sheets, continuous annealing equipment in molten zinc coating lines, etc. utilize this effect. The direct fire reduction action in the direct fire non-oxidation furnace of the molten galvanizing line is as follows.

溶融亜鉛メツキラインでは、被メツキ材料として主に冷
延鋼板が用いられる。このa板は、熱延鋼板を酸洗によ
り脱スケールして冷間圧延することにより製造されてい
る。無酸化炉を有する無酸化炉予熱方式のラインでは、
冷延鋼板はまず前処理として清浄化され、次に無酸化炉
のバーナによる直火加熱及び加熱帯でのラジアン[・チ
ューブによる間接加熱を受の、引き続き冷却帯を通過し
て亜鉛ポットに通板される。
In hot-dip galvanizing lines, cold-rolled steel sheets are mainly used as the material to be plated. This A plate is manufactured by descaling a hot rolled steel plate by pickling and cold rolling it. In a non-oxidizing furnace preheating line with a non-oxidizing furnace,
The cold-rolled steel sheet is first cleaned as a pre-treatment, then subjected to direct fire heating with a burner in a non-oxidizing furnace, indirect heating with a radian tube in a heating zone, and then passed through a cooling zone and passed through a zinc pot. Boarded.

無酸化炉の中では鋼板は両側から直火式バーナにより無
酸化加熱され、表面に付着した圧延柚は燃焼により除去
される。直火加熱の特徴は、ラジアントチューブなどに
よる間接力l熱に比べてwA板の加熱速度が著しく速い
点にある。無酸化炉ではバーナの燃焼は空気比0.9前
後で行われ、雰囲気を無酸化または弱酸化性に留め、鋼
板の過度の酸化を防止しながら500〜600 ’Cま
で加温される。
In the non-oxidizing furnace, the steel plate is heated without oxidation by direct fire burners on both sides, and the rolled citron adhering to the surface is removed by combustion. A feature of direct flame heating is that the heating rate of the wA plate is significantly faster than indirect heat using radiant tubes or the like. In a non-oxidizing furnace, combustion in the burner is performed at an air-to-air ratio of around 0.9, the atmosphere is kept non-oxidizing or weakly oxidizing, and the steel plate is heated to 500 to 600'C while preventing excessive oxidation.

次の加熱帯では鋼板はラジアントチ1−ブにより表裏両
面から間接力11熱され、焼鈍のトンプ温度まで力U熱
される。加熱帯では炉内はスナウト部および冷却帯より
送られた還元性の雰囲気ガスで保たれているため、無酸
化炉で発生した鋼板表面の数百大の薄い酸化膜は還元さ
れる。加熱帯の雰囲気はN7を10〜75%含み残りN
2の混合ガスである。加熱帯を通過した鋼板は冷却帯で
還元性の雰囲気ガスにより還元と冷却を同時に受(J亜
鉛浴に入る。
In the next heating zone, the steel plate is heated indirectly by radiant tubes 11 from both the front and back surfaces, and heated to the annealing temperature by a force U. In the heating zone, the inside of the furnace is maintained with reducing atmospheric gas sent from the snout and cooling zone, so the thin oxide film of hundreds of sizes on the surface of the steel sheet that is generated in the non-oxidation furnace is reduced. The atmosphere in the heating zone contains 10 to 75% N7 and the rest is N.
It is a mixed gas of 2. The steel plate that has passed through the heating zone is simultaneously reduced and cooled by reducing atmospheric gas in the cooling zone (enters the zinc bath).

以上のよ・うな工程で冷延鋼板に熱処理及びメツキ作業
が行われ、無酸化炉内ではバーナによる直火還元加熱が
行われている。しかし、鋼板は通常は500〜600℃
の状態で無酸化炉から加熱帯に運ばれてしまうため、無
酸化炉での直火還元作用は弱く、鋼板表面に薄い酸化膜
が残る。また、加熱帯及び冷却帯の還元性の雰囲気ガス
では数百大の薄い酸化膜が還元されるだけである。
Heat treatment and plating work are performed on the cold rolled steel sheet through the processes described above, and direct flame reduction heating is performed using a burner in the non-oxidation furnace. However, steel plates are usually heated at temperatures of 500 to 600℃.
Since the steel is transported from the non-oxidizing furnace to the heating zone in a state of Further, the reducing atmospheric gas in the heating zone and the cooling zone only reduces a thin oxide film of several hundred sizes.

このよ・うに従来は、直火還元作用とN2+H2混合ガ
ス雰囲気との組合せで01μm以下の非常に薄い酸化膜
を還元し、その後の酸化を防止することは行われている
が、熱延鋼板、鋳片、銅片、鋼線、鍛造材等の表面に生
成する5〜10μmの厚いスケールに対しては、直火還
元は適用されておらず、また適用しても十分な脱スケー
ル効果は得られないとされていた。
As described above, in the past, a very thin oxide film of 01 μm or less was reduced by a combination of direct flame reduction action and N2 + H2 mixed gas atmosphere to prevent subsequent oxidation, but hot-rolled steel sheets, Direct flame reduction has not been applied to thick scales of 5 to 10 μm that form on the surfaces of slabs, copper pieces, steel wires, forged materials, etc., and even if it is applied, sufficient descaling effects cannot be obtained. It was said that it would not be possible.

らなみに、鋼板の直火加熱方法については、加熱炉の燃
焼系を制御し、鋼板に当たる燃焼ガスを確実に還元状態
にして、鋼板を酸化さ・lることなく大きな力■熱速度
で加熱できるようにした鋼板の直火力n熱力法が特開昭
60−1.21230号公報により提案されている。し
かしながら、この方法では、酸化膜厚さ約600Åの鋼
板を加熱して、板温700℃で酸化膜厚が20λになる
までの還元しか行われない。従って、熱延鋼板等のスゲ
ール厚が5〜toμmに達する材料を完全に還元するの
は不可能である。
By the way, the direct heating method for steel plates involves controlling the combustion system of the heating furnace to ensure that the combustion gas that hits the steel plates is in a reduced state, and heating the steel plates with great force and thermal speed without oxidizing the steel plates. A direct heating n thermal power method for steel plates has been proposed in JP-A-60-1.21230. However, in this method, a steel plate with an oxide film thickness of approximately 600 Å is heated and reduction is only performed until the oxide film thickness becomes 20λ at a plate temperature of 700°C. Therefore, it is impossible to completely reduce materials such as hot-rolled steel sheets with a scale thickness of 5 to μm.

本発明者らは、このような状況下で熱延S+板等の表面
に生成するjフいスケールに対する直火還元作用の影響
について研究を続+)でおり、その過程で今回、バーナ
の火炎還元域で直火加熱を行・う際の鋼材温度を600
℃以上にすること、直火加熱後の冷却では鋼板が酸化し
ないように雰囲気の02量に応じてその還元力を調整す
ることにより、5〜10μmの厚いスケールも除去でき
ることを知見した。また、直火加熱の段階で残スケール
が生し)でも、冷却雰囲気の還元力を強化することによ
り、冷却時に残スケールを除去できることも知見した。
The present inventors have been continuing their research on the effect of direct flame reduction on the scale that forms on the surface of hot-rolled S+ sheets under these circumstances, and in the process, they The temperature of the steel material when performing direct flame heating in the reduction area is 600.
It has been found that even thick scales of 5 to 10 μm can be removed by adjusting the reducing power to 0.degree. It was also discovered that even if residual scale forms during direct heating, it is possible to remove the residual scale during cooling by strengthening the reducing power of the cooling atmosphere.

本発明は、斯かる知見に基づきなされたもので、表面に
スケールが生成している鋼材を600℃以上の温度でバ
ーナの火炎還元域内に保持または通過させ、しかる後、
該鋼材を、最終的にスケールが残らないように雰囲気中
の○、Nおよび上記鋼材の温度Gこ応じて還元力を調整
した雰囲気中で冷却することを特徴とする鋼材の脱スケ
ール法を要旨とする。
The present invention was made based on this knowledge, and involves holding or passing a steel material on which scale has formed on the surface within the flame reduction zone of a burner at a temperature of 600°C or higher, and then
Summary of a method for descaling steel materials, which is characterized in that the steel material is cooled in an atmosphere whose reducing power is adjusted according to ○, N, and the temperature G of the steel material in the atmosphere so that no scale ultimately remains. shall be.

また、本発明のメツキ鋼板製造法は、上記脱スケール法
の利用により熱延銅板を被メノキ材として直接使用して
、しかもその酸洗を行うことなく溶融メツキ鋼板を製造
する極めて低コストなメツキ鋼板製造法であり、その特
徴とするところは、スケール付の熱延鋼板を直火力11
熱炉に通板し、該直火加熱炉中で熱延鋼板を600℃以
」二の温度でバーナの火炎還元域内に通過させ、引き続
き該熱延′IIA板を、最終的にスケールが残らないよ
うに雰囲気中の02量および上記銅相の温度に応じて還
元力を調整した雰囲気L[iで冷却した後、該熱延鋼板
をメンキ浴に通板する点にある。
In addition, the method for manufacturing galvanized steel sheets of the present invention is an extremely low-cost plating method in which hot-rolled copper sheets are directly used as the plated material by utilizing the above-mentioned descaling method, and hot-dip galvanized steel plates are produced without pickling. This is a steel sheet manufacturing method, and its characteristics are that hot-rolled steel sheets with scales are heated under direct heating power of 11
The hot-rolled steel sheet is passed through a heating furnace in which the hot-rolled steel sheet is passed through the flame reduction zone of the burner at a temperature of 600° C. or higher, and then the hot-rolled steel sheet is passed through the flame reduction zone of the burner until finally no scale remains. The hot rolled steel sheet is passed through a coating bath after being cooled in an atmosphere L[i] in which the reducing power is adjusted according to the amount of 02 in the atmosphere and the temperature of the copper phase so that the hot rolled steel sheet is not heated.

本発明において重要な点は、表面にスb−ルが生成して
いる鋼板を600 ’C以上の温度域でバーナ火炎の還
元域内に保持または通過さ・已る点にある。第3図はバ
ーナの燃焼ガス温度と鋼材温度との関係を示したグラフ
である。現在実操業で処理されている燃焼ガス流度と鋼
材温度との関係からみると、燃焼ガス温度1200〜1
300′Cでは鋼材温度が500〜600℃の場合に鋼
材は還元領域におかれる。連続溶融メツキ設備では、前
述したよ・うに冷延鋼板は直火力11熱後に、;lJI
’l熱帯でラジアントチューブによる間接加熱を受ける
。この力11熱帯での熱処理温度は700〜800℃で
あり、この面からも前段階の直火力II熱温度は500
〜600℃で充分とされていた。しかし、1−12等に
よる還元力は鋼材温度が高いほど強くなる。本発明は鋼
材の直火加熱時の温度を高め、直火力H熱後に続く冷却
でも鋼材に充分な還元力を作用させるものである。すな
わち、直火加熱時の鋼材温度を高くすることにより、バ
ーナの直火還元力と冷却時の雰囲気還元力の両方により
鋼板を強力に脱スケールするのである。
An important point in the present invention is that the steel plate on which the steel plate is formed is held or passed within the reduction zone of the burner flame at a temperature of 600'C or higher. FIG. 3 is a graph showing the relationship between the burner combustion gas temperature and the steel material temperature. Looking at the relationship between the combustion gas flow rate and steel material temperature currently being processed in actual operation, the combustion gas temperature is 1200 to 1
At 300'C, the steel is placed in the reducing region when the steel temperature is 500-600C. In continuous hot-dip plating equipment, as mentioned above, cold-rolled steel sheets are heated to
'lIndirect heating by radiant tubes in the tropics. The heat treatment temperature in this power 11 tropical region is 700 to 800°C, and from this point of view, the direct heating power II heat temperature in the previous stage is 500°C.
A temperature of ~600°C was considered sufficient. However, the reducing power of 1-12 etc. becomes stronger as the steel temperature increases. The present invention increases the temperature of the steel material during direct heating, and exerts sufficient reducing power on the steel material even after cooling after direct heating. That is, by increasing the temperature of the steel material during direct flame heating, the steel plate is strongly descaled by both the direct flame reducing power of the burner and the atmospheric reducing power during cooling.

直火加熱用のバーナとしては、鋼材温度が高い領域でも
充分な還元力を示すものがよく、そのようなバーナとし
ては例えば実願昭62−168668号にて提案された
ものを挙げることができる。
As a burner for direct flame heating, one that exhibits sufficient reducing power even in a region where the steel material temperature is high is preferable, and an example of such a burner is the one proposed in Utility Model Application No. 168,668/1983. .

このバーナでは後でも述べるが、第3図に・で示すよう
に950℃の銅材温度まで還元領域が広がっており、従
来のバーナでは還元領域外であった750℃以上の鋼材
温度でも充分な還元力が得られる。
As will be discussed later, the reduction range of this burner extends to a copper material temperature of 950°C, as shown in Figure 3, and the reduction range is sufficient even at a steel material temperature of 750°C or higher, which was outside the reduction range in conventional burners. Reduction power can be obtained.

(作  用) 次に、本発明の脱スケール法およびメツキ鋼板製造法に
おける処理条件を説明する。
(Function) Next, processing conditions in the descaling method and the galvanized steel plate manufacturing method of the present invention will be explained.

本発明法では、被処理鋼材を600℃以」二で直火還元
jJ11熱する。そのために、通常は鋼材を600℃以
上に予熱する。鋼材の直火加熱時の温度が600 ’C
未満では、バーナーの直火還元作用による脱スケールが
促進されない。この直火還元作用を高めるためには鋼材
の直火力n熱時の温度を800℃以上どするのが望まし
い。鋼材の直火加熱時の温度の上限については950℃
が望ましい。これを超える温度に鋼材を加熱すると、撚
焼ガス中の未燃COやH2濃度、更には活性な還元イオ
ン濃度が低くなり、還元作用は低下し始める。
In the method of the present invention, the steel material to be treated is heated by direct flame reduction at 600° C. or higher. For this purpose, the steel material is usually preheated to 600°C or higher. The temperature when heating steel materials over direct fire is 600'C.
If it is less than 100%, descaling due to the direct flame reduction effect of the burner will not be promoted. In order to enhance this direct fire reduction effect, it is desirable that the temperature of the steel material when heated under direct fire is 800°C or higher. The upper limit of temperature when heating steel materials over direct fire is 950℃.
is desirable. If the steel material is heated to a temperature exceeding this temperature, the concentration of unburned CO and H2 in the twisting gas, as well as the concentration of active reducing ions, will decrease, and the reducing effect will begin to decrease.

鋼材に対する直火加熱時間はその温度及び鋼材のスケー
ル厚さ等に基づいて適宜調節し、熱延鋼板の場合にはl
0秒が適当である。つまり、鋼材を10秒間火炎還元域
に保持するか10秒間で火炎還元域を通過さ・lqるの
である。バーナーによる直火加熱を受ける過程でスケー
ルは、燃焼ガス中の未燃COやH4及び活性な還元イオ
ンの還元作用により除去される。燃焼用ガスとしては、
丁l−クス炉ガス、転炉ガス、高炉ガス等を使用するこ
とが可能である。
The direct flame heating time for the steel material is adjusted appropriately based on the temperature and scale thickness of the steel material, etc., and in the case of hot rolled steel plate, it is
0 seconds is appropriate. That is, the steel material is held in the flame reduction zone for 10 seconds or passed through the flame reduction zone in 10 seconds. During the process of direct heating with a burner, scale is removed by the reductive action of unburned CO and H4 in the combustion gas and active reducing ions. As a combustion gas,
It is possible to use coal furnace gas, converter gas, blast furnace gas, etc.

バーナーどしては、例えば@焼用空気噴出管と燃料噴出
管の間に旋回羽根を介設し、燃料流に燃焼用空気を旋回
流として混合させるものが望ましい(実願昭62−16
866f3号にて出願)。こ■ のバーナーを使用することにより1秒あたり約10μm
厚のスケールを除去することができる。
As for the burner, it is desirable to have a swirling vane interposed between the burning air jet pipe and the fuel jet pipe to mix the combustion air with the fuel flow as a swirling flow (Utility Application No. 62-16).
866f3). Approximately 10μm per second by using this burner
Thick scale can be removed.

直火加熱の後l、1鋼材を冷却する。この冷却(1こお
いては、鋼材表面を酸化させないことが重要である。そ
の条件は、雰囲気中の02量によって2坤頻に分かれる
。雰囲気中の02Nが1100pp未満の場合は、N2
またはAr等の不活性ガス(100%)中で冷却を行な
えば、鋼材表面の酸化は防止される。02Nが1100
pp以上の場合は、上記ガスとトI2等の還元性ガスど
の混合ガス中で鋼材表面の酸化防止を図りながら冷却を
行ない、02量が多いほど還元性ガスの混合比を高める
After direct heating, the steel material is cooled. During this cooling (1), it is important not to oxidize the steel surface.The conditions are divided into two depending on the amount of O2 in the atmosphere.If the O2N in the atmosphere is less than 1100pp,
Alternatively, oxidation of the steel surface can be prevented by cooling in an inert gas (100%) such as Ar. 02N is 1100
If the amount is more than pp, cooling is performed while preventing oxidation of the steel surface in a mixed gas of the above gas and a reducing gas such as I2, and the greater the amount of O2, the higher the mixing ratio of the reducing gas.

また、直火加熱を受けた鋼材には、直火力■1熱温度に
よっては2次的スケールが生じる場合がある。
In addition, secondary scale may occur in steel materials that have been heated by direct fire, depending on the direct fire power (1) heat temperature.

その場合には冷jJI雰囲気中の還元性ガスの屯合比を
高めることにより2次的スケールが除去される。
In that case, the secondary scale is removed by increasing the combination ratio of the reducing gas in the cold JJI atmosphere.

還元性ガスの混合比は直火加熱温度が低いほど高くする
。鋼材の直火加熱時の温度ど還元性ガスの混合比との関
係を第4図に示す。還元良好領域はI(2濃度1%、直
火)J11熱温度600℃の両直綿に漸近している。
The lower the direct heating temperature, the higher the reducing gas mixing ratio. Figure 4 shows the relationship between the temperature and the mixing ratio of reducing gas when heating steel materials over an open flame. The good reduction region is asymptotic to both straight cottons at I (2 concentration 1%, open fire) J11 thermal temperature 600°C.

(実施例] 以下に本発明の詳細な説明する。(Example] The present invention will be explained in detail below.

第1図は本発明の脱スケール性を実施するのに適した装
置を示している。
FIG. 1 shows an apparatus suitable for carrying out the descaling of the present invention.

該装置は、予熱帯11、直火還元帯12、冷却帯13を
順番に連結した構造の炉体10を備えている。被処理鋼
材である例えば熱延鋼板20は、炉体10内を予熱帯1
1、直火還元帯12、冷却帯13の1昭で進行する。予
熱帯11には熱延鍍板20を600℃以上に予熱するた
めに熱交換設備が設りられ、直火還元帯12には熱延鋼
板20両面に火炎還元域をあて得るように、複数のバー
ナー30が設けられている。また、冷却帯13では、冷
却後の熱延綱板20に残スケールが生しないように02
量および予熱温度に応じて雰囲気ガス組成が決定される
The apparatus includes a furnace body 10 having a structure in which a preheating zone 11, a direct flame reduction zone 12, and a cooling zone 13 are connected in order. For example, a hot rolled steel plate 20, which is a steel material to be treated, is placed in a preheating zone 1 in a furnace body 10.
1, direct fire reduction zone 12, cooling zone 13. The preheating zone 11 is equipped with heat exchange equipment to preheat the hot-rolled plate 20 to 600°C or higher, and the direct-fire reduction zone 12 is equipped with a plurality of heat-exchanging equipment so that both sides of the hot-rolled steel plate 20 can be exposed to flame reduction zones. A burner 30 is provided. In addition, in the cooling zone 13, 02
The atmospheric gas composition is determined depending on the amount and preheating temperature.

上記装置を使用して熱延鋼板の脱スケールを行った結果
は、以下のとおりである。
The results of descaling a hot rolled steel plate using the above device are as follows.

熱延鋼板は低炭素鋼、厚a1.6 mmで、脱スケール
前は表面に5〜8μmのスケールを生成していた。炉体
の全長は60m、熱延鋼板の進行速度は120m/mi
nであり、熱延鋼板の帯域通過時間j、よ、予熱帯が8
秒、直火還元帯が10秒、冷却帯が12秒である。熱延
鋼板の予熱温度は550〜900度の間で種々変更し、
冷却帯の雰囲気はN。
The hot-rolled steel plate was made of low carbon steel and had a thickness of 1.6 mm, and had scales of 5 to 8 μm on the surface before descaling. The total length of the furnace body is 60 m, and the advancing speed of the hot rolled steel plate is 120 m/mi.
n, the band passage time of the hot rolled steel plate is j, and the preheating zone is 8.
seconds, 10 seconds in the open flame reduction zone, and 12 seconds in the cooling zone. The preheating temperature of the hot rolled steel plate was varied between 550 and 900 degrees,
The atmosphere in the cooling zone is N.

(100%)、N、−)11゜(5%)、N2+82(
10%) 、N2+Hz  (20%)の4種類とした
。なお、燃焼用ガスはコークス炉ガス、雰囲気中の○、
量は0.5%である。脱スケール結果を第1表に示す。
(100%), N, -) 11° (5%), N2+82 (
10%) and N2+Hz (20%). The combustion gas is coke oven gas, ○ in the atmosphere,
The amount is 0.5%. The descaling results are shown in Table 1.

脱スケール状況は表面にスケール層が残らない状態を○
、045〜1.0μm程度のスケール層が残った状態を
△、1.0μm以上のスケール層が残った状態を×で表
わしている。
The descaling status is the state where no scale layer remains on the surface.
, A state in which a scale layer of approximately 045 to 1.0 μm remains is represented by Δ, and a state in which a scale layer of 1.0 μm or more remains is represented by ×.

第1表に示すように、予熱温度すなわら鋼材の直火加熱
時の温度が600 ’C未満では冷却ガス組成に関係な
く脱スケール性が悪い。また、冷却ガスIJ1戒がN2
 (100%)の場合は、冷却帯に○。
As shown in Table 1, when the preheating temperature, that is, the temperature during direct flame heating of the steel material, is less than 600'C, descaling performance is poor regardless of the cooling gas composition. Also, the cooling gas IJ1 command is N2
(100%), circle the cooling zone.

(500ppm)が含まれるために、予熱温度に関係な
く脱スケール性が悪い。これに対し、予熱温度が600
℃1650℃ては冷却ガス組成がN2+142 (20
%)の場合にやや良好な脱スケール性が得らる。700
′C以上ではN7+1−12 (20%)の場合に脱ス
ケール性が非常に良好になり、N2−I−1−12(1
0%)でも非常に良好な脱スケールが得られ、800℃
以上ではN、(1,00%)の場合を除けば全てのガス
′Ml戒で良好な脱スケール性が得られている。ちなみ
に、これと同程度の脱スケール性を酸洗で得よ・うとす
ると、槽長は100m程度が必要になる。
(500 ppm), descaling properties are poor regardless of the preheating temperature. On the other hand, the preheating temperature is 600
At 1650℃, the cooling gas composition is N2+142 (20
%), slightly better descaling properties are obtained. 700
'C or higher, the descaling property becomes very good in the case of N7+1-12 (20%), and N2-I-1-12 (1
Very good descaling was obtained even at 800℃ (0%).
In the above, good descaling properties were obtained for all gases except for N and (1,00%). By the way, if you try to obtain the same level of descaling performance by pickling, you will need a tank length of about 100 m.

次に、本発明の溶融メツキ鋼板製造法について説明する
Next, a method for manufacturing a hot-dip galvanized steel sheet according to the present invention will be explained.

連続溶融メツキ鋼板の製造設備としては、酸化炉方式、
無酸化予熱炉方式、U、  Sスチール方式、6 シーラス方式、ホイーリング方式が代表的である。
The manufacturing equipment for continuous hot-dip galvanized steel sheets includes oxidation furnace method,
Typical examples include the non-oxidizing preheating furnace method, the U and S steel methods, the 6 Cirrus method, and the Wheeling method.

このうら、酸化炉方式、無酸化予熱炉方式、USスチー
ル方法はライン内に焼鈍設備を有し、シーラス方式には
ラインの内・外で焼鈍する2タイプがある。また、ホイ
ーリング方式はライン外焼鈍タイプである。
Of these, the oxidation furnace method, non-oxidation preheating furnace method, and US Steel method have annealing equipment inside the line, and the Cirrus method has two types, annealing inside and outside the line. The wheeling method is an out-of-line annealing type.

本発明の製造法に適する製造設備は、酸洗槽を有しない
で直火還元バーナを有する酸化炉方式と無酸化予熱炉方
式であり、なかでも後者の無酸化予熱炉方式の設備が好
適である。第2図に無酸化予熱か方式の設備構造および
ヒートパターンを示す。鋼板は無酸化炉41、加熱帯4
2、徐冷帯43、No、 1ジy−ットクーラ44、調
整冷却帯45、No、 2ジエノトクーラ46を順番に
通過し、スナウト47より亜鉛ボソト48内に進入する
Production equipment suitable for the production method of the present invention is an oxidation furnace type and a non-oxidation preheating furnace type that do not have a pickling tank but have a direct-fired reduction burner, and the latter type of non-oxidation preheating furnace type equipment is particularly suitable. be. Figure 2 shows the equipment structure and heat pattern for the non-oxidation preheating method. The steel plate is placed in a non-oxidizing furnace 41 and a heating zone 4.
2, gradual cooling zone 43, No. 1, jet cooler 44, adjustment cooling zone 45, No. 2, passing through the dienoto cooler 46 in order, and enters into the zinc bottom 48 through the snout 47.

従来は鋼板として主に冷延鋼板を使用し、そのfil板
は第2図のグラフに実線で示される如く無酸化炉41に
おいて直火ハ・−すにて500〜600℃まで加熱され
、加熱帯42で更に700℃程度まで力■熱された後、
冷却帯43、ジエ’)トクーラ44で冷却される。
Conventionally, cold-rolled steel plates were mainly used as steel plates, and the fil plates were heated to 500 to 600°C in an open flame furnace in a non-oxidizing furnace 41, as shown by the solid line in the graph of Figure 2. After being further heated to about 700 degrees Celsius at Tropical 42,
It is cooled in a cooling zone 43 and a cooler 44.

このよ・うな従来法に対し、本発明の製造法では鋼1板
としてスケールが付着したままの熱延鋼板を使用する。
In contrast to such conventional methods, the manufacturing method of the present invention uses a hot-rolled steel sheet with scale still attached as one steel sheet.

そして、この銅板を例えば無酸化炉41において従来よ
り高温の例えば800〜900℃まで加熱する。これに
より、鋼板は600’C以上の温度で直火還元される。
Then, this copper plate is heated, for example, in a non-oxidation furnace 41 to a higher temperature than conventionally, for example, 800 to 900°C. Thereby, the steel plate is subjected to direct flame reduction at a temperature of 600'C or more.

そして、次の加熱帯42および冷却帯43の雰囲気を前
述したよ・うに雰囲気中のozNおよび鋼材の直火jJ
I熱時の温度に応じて還元力を調整した雰囲気に保持し
ておいて、上記@板を通板させろ。これル2二より、鋼
板表面のスケールが除去され、スケールのない熱延銅板
に亜鉛メツキが施される。
Then, the atmosphere of the next heating zone 42 and cooling zone 43 is as described above.
Maintain the atmosphere in which the reducing power is adjusted according to the temperature during I heat, and pass the above @ board through it. Using this tool 22, the scale on the surface of the steel sheet is removed, and the scale-free hot rolled copper sheet is galvanized.

[発明の効果] 本発明の脱スケール法は、酸を使用しないので、廃酸処
理の必要がなく、設備を簡素化し得る。更に設備等の腐
食や作業環境上の問題も生しない−Lに、酸洗と比べて
処理スペースが節減できる。主た、メカニカルデスケー
リングで問題となる脱スケールむらも抑制でき、他の脱
スケール法との併用を必須としない利点もイ「する。
[Effects of the Invention] Since the descaling method of the present invention does not use acid, there is no need to treat waste acid, and the equipment can be simplified. Furthermore, it does not cause corrosion of equipment or problems in the working environment, and the processing space can be saved compared to pickling. The main advantage is that it can also suppress uneven descaling, which is a problem with mechanical descaling, and it does not require use in conjunction with other descaling methods.

本発明のメツキ鋼板製造法は、被メツキ月としてスケー
ルが41着したままの熱延鋼板を使用し、熱処理工程で
スケールを除去してメツキ浴に供給するので、従来の製
造法と比較して熱延II板の酸洗工程および冷間圧延工
程が省略され、メソコl−鍬1板の著しいコストダウン
を可能にする。
The galvanized steel sheet production method of the present invention uses a hot-rolled steel plate with 41 scales still attached as the plated plate, removes the scale in the heat treatment process, and supplies it to the plating bath, so compared to the conventional production method. The pickling process and cold rolling process of the hot-rolled II plate are omitted, making it possible to significantly reduce the cost of the Mesoco l-hoe plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の脱スケール法を実施するのに適した装
置の断面図、第2図は本発明のメツキ鋼板製造法の実、
lit!iに適しまた設備の模式図、第3図はバーナの
燃焼ガス温度と銅材の直火加熱温度との関係を示すグラ
フ、第d図1ま還元良好領域を示すグラフである。 図中、10:炉体、11;予熱帯、11直火還元・11
シ、13:冷却帯、20:鋼+4.30;バーナ、41
・無酸化炉、42.加熱4j)、43、冷加411.4
 8  :  (IE?、i X1ミ ・) l−。 1つ
FIG. 1 is a cross-sectional view of an apparatus suitable for carrying out the descaling method of the present invention, and FIG.
lit! Fig. 3 is a graph showing the relationship between the combustion gas temperature of the burner and the direct heating temperature of the copper material, and Fig. d is a graph showing the good reduction region. In the figure, 10: Furnace body, 11: Pre-heating zone, 11 Direct fire reduction, 11
C, 13: Cooling zone, 20: Steel +4.30; Burner, 41
・Non-oxidation furnace, 42. Heating 4j), 43, Cooling 411.4
8: (IE?, i X1mi ・) l-. one

Claims (2)

【特許請求の範囲】[Claims] (1)表面にスケールが生成している鋼材を600℃以
上の温度でバーナの火炎還元域内に保持または通過させ
、しかる後、該鋼材を、最終的にスケールが残らないよ
うに雰囲気中のO_2量および上記鋼材の温度に応じて
還元力を調整した雰囲気中で冷却することを特徴とする
脱スケール法。
(1) A steel material with scale formed on its surface is held or passed through the flame reduction zone of a burner at a temperature of 600°C or higher, and then the steel material is finally exposed to O_2 in the atmosphere so that no scale remains. A descaling method characterized by cooling in an atmosphere whose reducing power is adjusted depending on the amount and the temperature of the steel material.
(2)スケール付の熱延鋼板を直火加熱炉に通板し、該
直火加熱炉中で熱延鋼板を600℃以上の温度でバーナ
の火炎還元域内に通過させ、引き続き該熱延鋼板を、最
終的にスケールが残らないように雰囲気中のO_2量お
よび上記鋼材の温度に応じて還元力を調整した雰囲気中
で冷却した後、該熱延鋼板をメッキ浴に通板することを
特徴とするメッキ鋼板製造法。
(2) Pass the hot-rolled steel sheet with scales through a direct-fired heating furnace, pass the hot-rolled steel sheet into the flame reduction zone of a burner at a temperature of 600°C or higher in the direct-fired heating furnace, and then is cooled in an atmosphere in which the reducing power is adjusted according to the amount of O_2 in the atmosphere and the temperature of the steel material so that no scale ultimately remains, and then the hot-rolled steel sheet is passed through a plating bath. A method for producing plated steel sheets.
JP17155389A 1989-07-03 1989-07-03 Descaling method and production of plated steel plate using the same Pending JPH0336286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17155389A JPH0336286A (en) 1989-07-03 1989-07-03 Descaling method and production of plated steel plate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17155389A JPH0336286A (en) 1989-07-03 1989-07-03 Descaling method and production of plated steel plate using the same

Publications (1)

Publication Number Publication Date
JPH0336286A true JPH0336286A (en) 1991-02-15

Family

ID=15925268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17155389A Pending JPH0336286A (en) 1989-07-03 1989-07-03 Descaling method and production of plated steel plate using the same

Country Status (1)

Country Link
JP (1) JPH0336286A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646679B2 (en) 1991-11-22 2003-11-11 Minolta Co., Ltd. Still image reproducing apparatus saving time for still image reproduction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646679B2 (en) 1991-11-22 2003-11-11 Minolta Co., Ltd. Still image reproducing apparatus saving time for still image reproduction

Similar Documents

Publication Publication Date Title
RU2426815C2 (en) Procedure for continuous annealing and preparing strip of high strength steel for its zinc plating by immersion with heating
JP5268650B2 (en) Heat treatment method for steel strip in a continuous heat treatment furnace equipped with an oxy-fuel burner
JP2587724B2 (en) Method for producing high Si content high tensile galvanized steel sheet with good plating adhesion
CN202047124U (en) Hot rolling pickling strip steel continuous hot galvanizing production line
US6913658B2 (en) Process for the hot-dip galvanizing of metal strip made of high-strength steel
US4535034A (en) High Al heat-resistant alloy steels having Al coating thereon
JP4912684B2 (en) High-strength hot-dip galvanized steel sheet, production apparatus therefor, and method for producing high-strength alloyed hot-dip galvanized steel sheet
EP0523809B1 (en) Method for hot-dip coating chromium-bearing steel
JP5488322B2 (en) Steel plate manufacturing method
JP5581615B2 (en) Steel plate manufacturing method and manufacturing equipment
JPH0336286A (en) Descaling method and production of plated steel plate using the same
JPS59577B2 (en) Short-time continuous annealing method for cold-rolled steel strip
JP2007277627A (en) Manufacturing method of high-strength steel plate and high-strength plated steel plate, annealing furnace and manufacturing equipment used for manufacturing the same
US4123291A (en) Method of treating steel strip and sheet surfaces, in sulfur-bearing atmosphere, for metallic coating
JPS5844133B2 (en) Continuous annealing method for cold rolled steel strip
JP5354156B2 (en) Method for producing galvannealed steel sheet
JP4976942B2 (en) Method for producing hot-dip galvanized steel sheet
JP3889019B2 (en) Method for producing hot-dip galvanized steel sheet
KR100908696B1 (en) Slab heating method before hot rolling of high chromium high molybdenum ferritic stainless steel
JP2016512572A (en) Steel plate heat treatment method and apparatus for its implementation
JPH0230720A (en) Method for heating steel sheet
JP4112670B2 (en) Manufacturing method of steel sheet with excellent surface properties
JPS5849625B2 (en) Continuous annealing treatment method for cold rolled steel sheets
SU1514800A1 (en) Method of thermochemical treatment of steel strip
JPH0348260B2 (en)