JPH0335139A - Fluid testing method - Google Patents
Fluid testing methodInfo
- Publication number
- JPH0335139A JPH0335139A JP16986789A JP16986789A JPH0335139A JP H0335139 A JPH0335139 A JP H0335139A JP 16986789 A JP16986789 A JP 16986789A JP 16986789 A JP16986789 A JP 16986789A JP H0335139 A JPH0335139 A JP H0335139A
- Authority
- JP
- Japan
- Prior art keywords
- wind
- test
- fluid flow
- divided
- directions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 38
- 239000012530 fluid Substances 0.000 title claims abstract description 30
- 238000005259 measurement Methods 0.000 abstract description 12
- 239000007788 liquid Substances 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、気象の変化又は建築物等の風による抵抗を求
める風洞試験方法、水流による構造物の抵抗を求める水
槽試験方法等の流体試験方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to fluid tests such as wind tunnel testing methods for determining weather changes or wind resistance of buildings, water tank testing methods for determining the resistance of structures due to water flow, etc. Regarding the method.
大気中へ排出される汚染ガスの大気拡散の程度を知るた
め、又は、道路、工場、建築物の建設のための地形改変
によって気象がどのように変化するか、もしくは風害が
起きるかを知るために、地形、道路、工場などの模型を
風洞の中に配置して。To know the degree of atmospheric dispersion of pollutant gases emitted into the atmosphere, or to know how the weather changes or wind damage occurs due to terrain modification for the construction of roads, factories, and buildings. Then, models of terrain, roads, factories, etc. were placed inside the wind tunnel.
気象(風向、風速およびこれらの変動1)の変化を調査
する風洞試験が実施されている。Wind tunnel tests are being conducted to investigate changes in weather (wind direction, wind speed, and their variations1).
−置台風等の強風時に超高層の建築物(ビル。- High-rise buildings (buildings) during strong winds such as typhoons.
タワー、煙突など)が1強風によって倒れないように設
計するため、建築物の模型を風洞の中に入れて風による
抵抗(風圧分布など)を調査する風洞試験も実施されて
いる。In order to design structures (towers, chimneys, etc.) that will not collapse in the presence of strong winds, wind tunnel tests are also conducted in which building models are placed in wind tunnels to investigate wind resistance (wind pressure distribution, etc.).
これらの風洞試験の従来例を第2図に示す。風洞測定室
1の中に地物模型7が配置されている。A conventional example of these wind tunnel tests is shown in Figure 2. A feature model 7 is arranged in a wind tunnel measurement room 1.
風洞の風3は、プロワ2の駆動によって発生し。Wind 3 in the wind tunnel is generated by driving the blower 2.
乱流格子4を通りて風洞測定室1の中へ流れる。It flows through the turbulence grid 4 into the wind tunnel measurement chamber 1 .
この間、境界層制御装置5により所要の風速鉛直分布6
をもつように制御され、地物模型7に当る。During this time, the required wind speed vertical distribution 6 is controlled by the boundary layer control device 5.
It corresponds to the feature model 7.
計測位置の風向、風速(必g!に応じて、風圧、乱れな
ど)は、熱線風速計などの風速計8によって計測される
。風速計8は、これを固定保持しているトラバース装置
9により、必要な計測位置へ移動される。The wind direction and wind speed (depending on the required g!, wind pressure, turbulence, etc.) at the measurement position are measured by an anemometer 8 such as a hot wire anemometer. The anemometer 8 is moved to a required measurement position by a traverse device 9 that holds it fixedly.
以上が、地物の背面での風速計測の従来例であるが、こ
の風洞試験で重要なことは、事前に野外の風に相当する
風洞の風3を測定室内に再現することである。この点を
更に詳しく説明する。The above is a conventional example of wind speed measurement on the back side of a feature, but what is important in this wind tunnel test is to reproduce the wind tunnel wind 3, which corresponds to the outdoor wind, in the measurement room in advance. This point will be explained in more detail.
野外の風(風向、風速、風向変化、風速鉛直分布等)を
膜製的に風洞内に再現するため、上記したように、測定
室の風上側には乱流格子4と境界層制御装置5が配置さ
れている。In order to reproduce the outdoor wind (wind direction, wind speed, wind direction change, wind speed vertical distribution, etc.) in a wind tunnel using a membrane, a turbulence grid 4 and a boundary layer control device 5 are installed on the windward side of the measurement chamber, as described above. is located.
即ち、風向は、風洞の風に模型7が適宜の角度をなして
当るように配置することによって再現される。風速は、
模型に当る風速が野外と同じになるように、風上側にあ
るプロワ−2の回転数を制御することにより再現される
。風向変化は、乱流格子4の形状を変化させることによ
り、乱流として再現される。また、風速鉛直分布け、境
界層制御装置5によって野外と相似に再現される。That is, the wind direction is reproduced by arranging the model 7 so that it hits the wind in the wind tunnel at an appropriate angle. The wind speed is
This is achieved by controlling the rotational speed of the blower 2 on the windward side so that the wind speed hitting the model is the same as outdoors. Changes in wind direction are reproduced as turbulence by changing the shape of the turbulence grid 4. In addition, the vertical distribution of wind speed and the boundary layer control device 5 reproduce the atmosphere in a manner similar to that in the field.
以上の野外の風の再現後、初めて、前記の風洞試験が可
能と々る。Only after reproducing the outdoor wind as described above can the wind tunnel test described above become possible.
しかし、上記従来の風洞試験において、野外の風向変化
は、「風見鶏」で分るように小さい時もあるが、かなり
大きい範囲となる時もある。「小さい範囲の風向変化」
時の試験は、従来の方法で可能である。しかし、「大き
い範囲の風向変化」については、従来の乱流格子4で再
現することができない。このために、乱流格子に替えて
、翼列な置き、これを強制的に加振させる装置などが開
発されつつあるが、大きい範囲の風向変化の再現までは
至っていない。However, in the conventional wind tunnel test described above, the change in wind direction outdoors is sometimes small, as seen by the "weather vane," but sometimes over a fairly large range. "Small range of wind direction changes"
Testing of time is possible using conventional methods. However, "changes in wind direction over a large range" cannot be reproduced with the conventional turbulence grid 4. To this end, instead of turbulence grids, cascades of blades and devices that forcibly vibrate them are being developed, but they have not yet been able to reproduce changes in wind direction over a large range.
本発明は、新たに高額、高精度の加振翼列装置などを設
置することなく、従来の風洞、水槽等の流体試験装置で
、「大きい範囲の流れの変化」時の試験を可能にする流
体試験方法を提供しようとするものである。The present invention makes it possible to test ``a wide range of flow changes'' using conventional fluid test equipment such as wind tunnels and water tanks, without installing a new expensive and high-precision excitation blade cascade device. It seeks to provide a fluid testing method.
(111題を解決するための手段〕
本発明は、自然の流体流を模型が設けられた流体試験装
置内に再現する流体試験方法において。(Means for Solving Problem 111) The present invention relates to a fluid testing method for reproducing natural fluid flow in a fluid testing device equipped with a model.
流体流の方向な複数個に分割し1分割された各流体流の
方向について試験を行い1分割された流体流の方向それ
ぞれの出現頻度を重みとして上記試験で得られた結果の
加重平均を求め、流体流方向の変化による影響を求める
ようにした。Divide into multiple fluid flow directions, conduct a test for each divided fluid flow direction, and calculate the weighted average of the results obtained in the above test using the appearance frequency of each divided fluid flow direction as a weight. , the influence of changes in fluid flow direction was determined.
本発明では、流体流の方向を複数個に分割して。 In the present invention, the direction of fluid flow is divided into multiple directions.
分割された各流体流の方向について試験を繰返し。Repeat the test for each divided fluid flow direction.
この試験で得られた結果について分割された流体流の方
向それぞれの出現頻暖を重みとした加重平均を求めるこ
とによって、大きい範囲にわたっての流体流の方向の変
化についての影響が求められる。By calculating a weighted average of the results obtained in this test using the frequency of occurrence of each divided fluid flow direction as weight, the influence of changes in the fluid flow direction over a large range can be determined.
例えば、風洞試験においては、風向の変化による気象の
変化又は建物の抵抗の変化等が求められ。For example, in wind tunnel tests, changes in weather due to changes in wind direction or changes in building resistance are determined.
また水槽試験にあっては水流方向の変化による水中構造
物の抵抗の変化等が求められる。In addition, water tank tests require changes in the resistance of underwater structures due to changes in the direction of water flow.
本発明の一実施例として、建物影響を受けた風向(θ)
およびその変動!(σ、)を、「大きい範囲の風向変化
」がある時に求める風洞試験方法を以下説明する。As an embodiment of the present invention, the wind direction (θ) affected by the building
and its variations! A wind tunnel test method for determining (σ,) when there is a "large range of wind direction changes" will be explained below.
風洞内の風向0、風速0.風向変化(σD)、風速鉛直
分布[F]のうち、第2図に示された従来の風洞試験の
設備において、風速0と風速鉛直分布CP)6は、プロ
ワ−回転数と境界層の制御によって再現される。Wind direction in the wind tunnel is 0, wind speed is 0. Among the wind direction change (σD) and wind speed vertical distribution [F], in the conventional wind tunnel test equipment shown in Figure 2, wind speed 0 and wind speed vertical distribution CP)6 are determined by blower rotation speed and boundary layer control. reproduced by
また、風洞測定室の中に、風との相対位置の関係を考慮
して建物模型の方向を適宜配置することによって、風向
−も再現される。つまり、風洞内の模型配置の仕方によ
って、模型に対する風向を容易に変化させることができ
る。Furthermore, the direction of the wind can also be reproduced by appropriately arranging the building model in the wind tunnel measurement room in consideration of its relative position with respect to the wind. In other words, the direction of the wind relative to the model can be easily changed depending on how the model is arranged in the wind tunnel.
しかし、風向変化(σD)は、その範囲が大きいので、
その変化範囲内を複数個(l個)k分割し。However, since the range of wind direction change (σD) is large,
Divide the range of change into a plurality (l) of k parts.
それぞれの分割された風向を(ψ1)とし、この分割風
向の出現頻度(fi)を野外の風の条件から予め求めて
おく。風洞における風の方向は変らないので、この分割
風向(ψ1)に一致するように、模型の風の方向に対す
る配置方を変えることによって1分割された風向0を設
定する(D=ψ1)。Let each divided wind direction be (ψ1), and the appearance frequency (fi) of this divided wind direction is determined in advance from the outdoor wind conditions. Since the direction of the wind in the wind tunnel does not change, one divided wind direction 0 is set by changing the arrangement of the model with respect to the wind direction so as to match this divided wind direction (ψ1) (D=ψ1).
以上のように、風洞試験の条件を設定した後。After setting the conditions for the wind tunnel test as described above.
分割された風向(ψ1)、風速(ロ)、風速鉛直分布[
F]の風洞試験を行い、@1図に示される建物模型τの
影響を受ける地点Pにおける風向(θi)とその変動(
](σ、)を熱線風速計8を用いて計測する。なお、第
1図中1は風洞測定室、3は風洞の風、9は熱線風速計
などの風区計8のトラバース装置。Divided wind direction (ψ1), wind speed (b), wind speed vertical distribution [
F] wind tunnel tests were conducted to determine the wind direction (θi) at point P affected by building model τ shown in Figure @1 and its fluctuation (
](σ,) is measured using a hot wire anemometer 8. In Fig. 1, 1 is a wind tunnel measurement room, 3 is a wind tunnel wind, and 9 is a traverse device with a total of 8 wind zones, such as a hot wire anemometer.
10は建物模型7′によって影響を受けた流れを示す。10 shows the flow affected by the building model 7'.
また、この場合の乱流格子は、従来の第2図に示される
乱流格子をそのまま使用してよい。Further, the turbulence grid in this case may be the conventional turbulence grid shown in FIG. 2 as is.
以上の計測を風向(ψi)を変えて、分割した数である
工回繰返す。The above measurement is repeated by changing the wind direction (ψi) and dividing the number of times.
これらの得られた風向(θ、)は図示しない演算機へ入
力され、予め同演算機へ記憶されている分割された風向
(ψ、)の出現類IJe(fi)を重みとした次の加重
平均操作を演算機で行い建物模型によって影響を受けた
風向(θ)、およびその変動量(σθ)を求める。These obtained wind directions (θ,) are input to a computer (not shown), and the following weighting is performed using the appearance class IJe(fi) of the divided wind directions (ψ,) stored in advance in the computer. The averaging operation is performed using a computer to determine the wind direction (θ) affected by the building model and its variation (σθ).
以上のようにして1本実施例では、大きい範囲の風向の
変化に伴って建物模型によって影響を受けた風向(θ)
とその変動量(σθ)が求められる。As described above, in this embodiment, the wind direction (θ) affected by the building model is determined as the wind direction changes over a large range.
and its variation amount (σθ) can be found.
また、風向の変化による建物の抵抗は、この風向(θ)
とその変動量(σ、)及び風速(ロ)、風速垂直分布[
F]を用いて求められる。In addition, the resistance of the building due to changes in wind direction is determined by the wind direction (θ)
and its variation (σ, ), wind speed (b), and vertical wind speed distribution [
F].
なお、上記実施例は、風洞を用いた試験方法に係るもの
であるが1本発明は、これに限られず水槽等気体又は液
体を用いた流体試験に広く適用することができる。Although the above-mentioned embodiment relates to a test method using a wind tunnel, the present invention is not limited thereto, and can be widely applied to fluid tests using gas or liquid, such as a water tank.
以上説明したように、本発明によれば、高価な加振翼列
装置等を追加することなく、大きい範囲に方向が変化す
る流体流の試験を行たうことができる。As described above, according to the present invention, it is possible to test a fluid flow whose direction changes over a large range without adding an expensive vibrating blade cascade device or the like.
第1図は本発明の一実施例において建物模型による風向
変化とその変動量を計測する状態の説明図、第2図は従
来の気象風洞試験の説明図である。
】・・・風洞測定室、 2・・・ブロワ。
3・・・風洞の風。
5・・・境界層制御装置。
7・・・地物模型。
8・・・風速計。
4・・・乱流格子。
6・・・風速鉛直分布。
7′・・・建物模型。
9・・・トラバース装置
代
理
人FIG. 1 is an explanatory diagram of a state in which changes in wind direction and the amount of variation thereof are measured using a building model in an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a conventional meteorological wind tunnel test. ]...Wind tunnel measurement room, 2...Blower. 3... Wind in the wind tunnel. 5... Boundary layer control device. 7... Feature model. 8... Anemometer. 4...Turbulent grid. 6...Wind speed vertical distribution. 7'...Building model. 9... Traverse device agent
Claims (1)
する流体試験において、流体流の方向を複数個に分割し
、分割された各方向の流体流について試験を行い、分割
された流体流の方向それぞれの出現頻度を重みとして上
記試験で得られた結果の加重平均を求め、流体流方向の
変化による影響を求めることを特徴とする流体試験方法
。In a fluid test that reproduces a natural fluid flow in a fluid testing device equipped with a model, the direction of the fluid flow is divided into multiple parts, and the fluid flow in each divided direction is tested. A fluid testing method characterized by determining the weighted average of the results obtained in the above test using the appearance frequency of each direction as a weight, and determining the influence due to a change in the fluid flow direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16986789A JPH0335139A (en) | 1989-07-03 | 1989-07-03 | Fluid testing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16986789A JPH0335139A (en) | 1989-07-03 | 1989-07-03 | Fluid testing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0335139A true JPH0335139A (en) | 1991-02-15 |
Family
ID=15894419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16986789A Pending JPH0335139A (en) | 1989-07-03 | 1989-07-03 | Fluid testing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0335139A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230058528A (en) | 2020-11-25 | 2023-05-03 | 미쓰비시 마테리알 가부시키가이샤 | tin alloy plating solution |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6293626A (en) * | 1985-10-21 | 1987-04-30 | Mitsubishi Heavy Ind Ltd | Method for testing gas diffusion |
-
1989
- 1989-07-03 JP JP16986789A patent/JPH0335139A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6293626A (en) * | 1985-10-21 | 1987-04-30 | Mitsubishi Heavy Ind Ltd | Method for testing gas diffusion |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230058528A (en) | 2020-11-25 | 2023-05-03 | 미쓰비시 마테리알 가부시키가이샤 | tin alloy plating solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Extension of an orographic‐drag parametrization scheme to incorporate orographic anisotropy and flow blocking | |
Zhang et al. | Review on numerical simulation of airflow and pollutant dispersion in urban street canyons under natural background wind condition | |
CN110567670B (en) | Sudden gust response wind tunnel simulation device and test method for large port mechanical equipment | |
CN105335617B (en) | Method and device for evaluating wake effect of wind power plant | |
CN107545100A (en) | A kind of high-resolution Reduced Modeling Methods of venlo types greenhouse | |
Węgrzyński et al. | Wind and fire coupled modelling—Part II: Good practice guidelines | |
CN104361157A (en) | Evaluation method for wind environment between buildings | |
Etheridge | Natural ventilation through large openings-measurements at model scale and envelope flow theory | |
Karava et al. | Impact of internal pressure coefficients on wind-driven ventilation analysis | |
Jagbir et al. | Wind loads on roof of low-rise buildings | |
Chowdhury et al. | Study on roof vents subjected to simulated hurricane effects | |
He et al. | Observational study of typhoon effects on the oval-shaped 330 m high Zhuhai Center Tower | |
JPH0335139A (en) | Fluid testing method | |
CN109799061B (en) | Suction type gust wind tunnel with porous rotating device | |
Etheridge | Modelling of air pollution in single-and multi-cell buildings | |
JPH0564288B2 (en) | ||
Iqbal et al. | Effect of opening the sash of a centre-pivot roof window on wind pressure coefficients | |
CN209372357U (en) | A kind of suction gust wind tunnel with porous rotating device | |
Gerboni et al. | Fluid-Dynamic Calibration of an Atmospheric Wind Tunnel Applied to Test Offshore Infrastructures | |
Nielsen-Gammon | Meteorological modeling for the August 2000 Houston-Galveston ozone episode: PBL characteristics, nudging procedure, and performance evaluation | |
CN113884272B (en) | Wind tunnel test device and method for simulating multi-scale turbulence structure of atmospheric boundary layer | |
Catarelli | Enhancing the Modalities of Boundary Layer Wind Tunnel Modeling and Experimental Flow Simulation over Complex Topography | |
JPH0450529Y2 (en) | ||
JPH0450530Y2 (en) | ||
Lam et al. | Assessment of the effects of environmental factors on air flow in and around buildings |